用户名: 密码: 验证码:
不同初始氧化还原电位土壤中重金属Cd/Zn/Cu的运移实验及数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤化学环境是人类生活的重要环境因素之一,重金属污染物能通过多种途径进入土壤并不断富集,从而影响着土壤的化学环境。由于土壤对重金属离子的强吸附性,传统上把土壤中的重金属看作是不动的,但是当土壤环境发生变化时,重金属离子就会释放到土壤溶液中,并随之运移到地下水中,对地下水环境造成污染。氧化还原反应是土壤中一种基本的化学和生物化学过程,可通过改变离子的价态而对土壤中无机物和有机物的存在形态、吸附、迁移转化等过程产生作用。因此研究土壤的氧化还原电位对重金属迁移转化的影响,对深入了解重金属在土壤中的运移行为和归宿、评价其污染风险以及进行污染修复有重要意义。
     本文以较为常见的镉、锌、铜三种重金属作为研究对象,以五种不同初始氧化还原电位(Eh)的土壤为介质,首先研究了静态情况下,三种重金属的吸附、竞争吸附特性;接着重点研究了三种重金属在五种不同初始Eh土壤中的迁移规律,并进一步探讨了多种重金属共存时,竞争吸附作用对其迁移规律和作用机理的影响,并应用美国盐土实验室研制的HYDRUS-1D软件,模拟了重金属在土壤中的穿透曲线,获得了拟合参数;最后运用这些参数对土壤不同埋深条件下重金属的迁移行为进行预测。得出以下结论:
     1)在静态等温吸附实验中,五种不同初始Eh土壤对单一重金属离子的吸附量存在很大差别,还原性土壤>原棕壤>氧化性土壤;随着平衡液中重金属浓度的增加,土壤对重金属的吸附量呈增大趋势。当两种重金属共存时,土壤对单一重金属的吸附量要大于两种重金属共存时的吸附量;三种重金属离子共存时,重金属离子的竞争吸附能力大小顺序为:Cu2+>Cd2+>Zn2+。另外,随着平衡液中重金属浓度的增大,平衡液的pH呈下降趋势,Eh呈现上升趋势且均高于土壤初始Eh,平衡液的电导率(Ec)呈上升趋势,且氧化性土壤的Ec大于还原性土壤的Ec。用Langmuir方程和Freundlich方程对数据进行拟合,确定性系数R2都在0.948以上,总体拟合效果较好,Freundlich方程的拟合效果更佳。
     2)Br-在棕壤中迁移的穿透曲线(BTCs)具有较好的对称性,说明土壤的物理非平衡影响较小。与Br-的BTCs相比,不同初始Eh土壤对三种重金属BTCs的形状和峰值等都有影响,所有能检测出重金属的BTCs均呈现出不同程度的非对称性,解吸部分有较长的“拖尾”。
     3)对比不同初始Eh土壤中单一重金属Cd、Zn、Cu的BTCs发现,氧化性土壤中Cd、Zn、Cu运移较快,表现为出流较早,峰值较高;而还原性土壤能明显促进Cd的迁移,抑制Cu的迁移,对Zn迁移的影响并不明显。出流液pH的变化是先下降后上升最后趋于平缓,Eh的变化则是先上升后下降最后趋于平缓。
     4)在两种重金属离子Cd、Zn的共存实验中,重金属出流的拐点比单一离子时出现的提前,峰值也要高,这说明共存条件下,Cd、Zn共同利用吸附点位而使吸附受到彼此牵制。Cd、Zn共存迁移时,出流液pH比单一重金属离子时的相对要低,Eh相对要高,共存迁移时Ec低于单一重金属离子存在时的Ec,可能主要是受土壤颗粒表面吸附的阳离子的导电性的影响。
     5)在两种重金属离子Cd/Cu、Zn/Cu的共存实验中,重金属Cd/Zn的穿透曲线出流拐点比Cu的穿透曲线要提前,峰值也要高,这主要是因为共存时,重金属的不同迁移规律可能与重金属水解能力强弱有关。不同初始Eh的土壤中,与单一重金属离子存在时相比,共存迁移出流液pH都最低,Eh最高,Ec最低。当三种重金属共存迁移时,出流液峰值顺序为:Zn2+>Cd2+> Cu2+,这主要是受不同重金属离子的离子半径、原子量、水解常数和软度系数等性质的影响。
     6)利用平衡模型对Br的BTCs进行拟合,得到r2>0.98, MSE<0.006,表明Br-的BTCs能被平衡模型较好的拟合,拟合得到的参数可用于Cd、Zn、Cu运移的数值模拟。将静态吸附的数据,用Langmuir、Freundlich方程求得Rd值用于重金属拟合过程,能够更好地了解重金属在不同初始Eh土壤中的吸附特性。
     7)由单点吸附模型对不同初始Eh土壤中重金属Cd、Zn、Cu的迁移行为进行描述可以看出,BTCs拟合的r2>0.814, MSE<0.028,这说明应用单点吸附模型能较好地描述重金属的迁移行为,单点吸附模型拟合的β值普遍较小,质量传递系数ω远小于100。本文还应用单点吸附模型预测了不同初始Eh土壤中,不同深度处出流液中重金属浓度的动态变化,随着深度由5cm增加到15cm,它们的相对浓度对孔隙体积的响应均表现滞后。
Soil chemical environment is one of the important environmental factors in a human life, which affects plant growth and development, to a large extent restricts the quality of food. However, Soil chemical environment is vulnerable to heavy metal contamination of materials. The heavy metals which are introduced into the soils either accumulate in the surface layer or transport into the groundwater. Redox reaction is a basic soil chemical and biochemical processes, which changs the valence state of ions in soil affected by the presence of inorganic and organic forms, migration and transformation. Redox potential plays an important role on various chemical, biological processes of the soil. Therefore the study of transport processes is of utmost importance for the evaluation of environmental risks.
     First of all, the present study evaluates the adsorption and competitive adsorption of three heavy metals (Cd, Zn, Cu) in five different initial redox potential of soils by means of sorption isotherms, evaluates the capacity of these soils to sorb these metals. And then, we are to evaluate the transport and competitive transport of the metals (Cd, Zn, Cu) in these soils based on miscible displacement experiments and HYDRUS-1D package is used to determine model parameters and predict the outflow dynamics. The conclusions have been drawn as followed:
     In the static adsorption isotherm experiment, five different initial redox potential of soils have significant differences of adsorption capacity of a single heavy metal, reduced soil> brown> oxidized soil. The adsorption amounts of heavy metals in soils are increased with its increasing equilibrium concentration. The adsorption amounts of two ions in the competitive experiment are less than that in single system. Coexistence of three heavy metal ions, the sequence of the competitiveness of three heavy metals is Cu2+>Cd2+>Zn2+. With its increasing equilibrium concentration, pH is decreased, Eh is increased and Ec is increased. In this paper, the Freundlich equation is more accurately than the Langmuir equqtion to describe adsorption behavior of three heavy metals.
     Compared with the BTCs of Br", the five different initial redox potential of soils can obviously influence the shape and peak values of the BTCs of heavy metals. The BTCs of heavy metals from the transport experiment are exceedingly asymmetric.
     In the five different initial redox potential of soils, compared with the BTCs of heavy metals, it was found that the initial redox potential were positively correlated with the transport of heavy metals. The change of the leachate pH is degressive, then leveling off. The change of the leachate Eh is increased, then leveling off.
     In the competitive experiment of Cd and Zn, the resident concentration of heavy metals was higher than that in the single system. The total adsorption of heavy metals (the amount of the Cd and Zn competitive adsorption) than a single condition in the adsorption is significantly lower. The change of the leachate pH in the competitive experiment is lower than single ion and the Eh is the higher, the Ec is the lower.
     Compared with the competitive experiment of Cd and Cu, Zn and Cu, in the single-ion experiments, it was found that the flow time of copper is higher than that of cadmium/zinc, the peak value of copper is higher than that of cadmium/zinc in the oxidized soil, the peak value of the reduced soil is lower than the oxidized soil. In the competitive experiment, the resident concentration of heavy metals was higher than that in the single system. The change of the leachate pH in the competitive experiment is lower than single ion and the Eh is the higher, the Ec is the lower.In the competitive experiment, the sequence of the capacity of the three heavy metals adsorption by the soils was Zn>Cd>Cu. It can be explained by the hydrolysis capacity, atomic weight, the hydrolysis constant and coefficient of soft.
     The BTCs of Br- can all be fitted by One-site sorption model with high goodness of fit(r2>0.98, MSE<0.006). When we use the retardation factor to fit the BTCs, we find the retardation factors from Freundlich are suitable in most cases, which can understand the initial redox potential of heavy metals in soils of different adsorption characteristics.
     The BTCs of heavy metals in soil column can all be fitted by One-site sorption model with high goodness of fit (r2>0.814, MSE<0.028). Through these model parameters acquired by the One-site sorption model, we can predict the BTCs of heavy metals at different depth of soil columns. As the depth of soil column increased from 5cm to 15cm, the hysterestic effect of response of relative concentration of heavy metals to the pore volumes will be more and more obvious.
引文
[1]魏世强,青长乐等.模拟淹水条件下紫色土镉的释放疼正及影响因素[J].环境科学学报,2002,22(6):690-700
    [2]李其林,魏朝富等.重金属在土壤载体中的行为和环境响应[J].土壤通报,2008,39(2):441-447
    [3]McBride M B. Environmental Chemistry of Soils [M]. New York:Oxford University,1994
    [4]Bradl H B. Adsorption of heavy metal ions on soils and soils constituents [J]. J. Colloid Interface Sci.2004,277:1-18
    [5]张磊,宋凤斌.土壤吸附重金属的影响因素研究现状及展望[J].土壤通报,2005,36(4):628-631
    [6]Grey M, Henry C. Phosphorus and nitrogen runoff from a forested watershed fertilized with hiosolids. J. Environ. Qual,2002,31:926-936
    [7]Bruemmer G W, Gerth J, Herms U. Heavy metal species, mobility and availability in soils. Z Pflanzenernaehr Bodenkd,1986,149:382-398
    [8]徐明岗,张青.土壤锌自然消减的研究进展[J].生态环境,2004,13(2):268-270
    [9]胡超,徐运清,邓雅丽.模拟酸雨对灰潮土中铅、镉的浸出特性研究.安徽农业科学,2007,35(21):6498-6499
    [10]徐明岗.土壤离子吸附1.离子吸附的类型及研究方法[J].土壤肥料,1997,5:3-7
    [11]Bradl H B. Adsorption of heavy metal ions on soils and soils constituents [J]. J. Colloid Interface Sci.2004,277:1-18
    [12]Elliott HA, Liberati M R, Huang C P. Effects of iron oxide removal on heavy metal sorption by acid subsoils [J]. Water, Air Soil Pollut.1985,27:379-389
    [13]Chip Appel, Lena Ma. Concentration, pH, and Surface Charge Effects on Cadmium and Lead Sorption in Three Tropical Soils. J. Environ. Qual.,2002,31:581-589
    [14]Naidu R, Bolan NS, Kookana R S, et al. Ionic-strength and pH effects on the sorption of cadmium and the surface charge of soils[J]. Euro. J. Soil Sci.1994,45:419-429
    [15]廖敏,谢正苗等.镉在土水系统中的迁移特性[J].土壤学报,1998,35(2):170-185
    [16]Davranche M, Bollinger J C. Heavy metals desorption from synthesized and natural iron and manganese oxyhydroxides:Effect of reduction conditions. Journal of Colloid and Interface Science, 2000,227:531-539
    [17]丁昌璞,潘映华.红壤对铝、锰离子的吸附特性:Ⅰ.铝、锰离子的非等当量交换[J].土壤学报,2002,39(4):560-567
    [18]齐雁冰,黄标等.氧化与还原条件下水稻土金属形态特征的对比[J].生态环境, 2008,17(6):2228-2233
    [19]祖艳群,刘凡等.针铁矿对几种氧化锰矿物氧化As(Ⅲ)特性的影响[J].生态环境,2004,13(4):538-541
    [20]丁昌璞,B.Ceccanti等.绿肥分解产物中水溶性有机物质的伏安行为及其影响因素[J].土壤学报,1989,26(4):331-336
    [21]Vincent Chatain, Florence Sanchez. Effect of experimentally induced reducing conditions on the mobility of arsenic from a mining soil. Journal of Geochemical Exploration.2005,22:119-128
    [22]徐仁扣,肖双成.氧化铁的存在方式对土壤和黏土矿物胶体动电电位的影响[J].土壤学报,2009,46(5):945-947
    [23]丁昌璞,B.Ceccanti.土壤中水溶性有机物质的数量、性质及其变化[J].土壤学报,1987,24(3):210-217
    [24]Choi J. Genchemical modeling of cadmium sorption to soil as a function of soil properties. Chemosphere.2006,63:1824-1834
    [25]刘鹏.淹水条件下土壤硒迁移行为的研究Ⅱ.还原淋溶作用下土壤硒的迁移机理[J].湖南农业大学学报,2000,26(2):84-87
    [26]唐罗忠.湿地林土壤中Fe2+、Eh及pH值的变化[J].生态学报,2005,25(1):103-107
    [27]董军,赵胜勇等.垃圾渗流液中重金属在不同氧化还原带中的衰减[J].中国环境科学,2007,27(6):743-747
    [28]Chuan M C, Shu G Y, Liu J C. Solubility of heavy metals in a contaminated soil:Effects of redox potential and pH. Water, Air, and Soil Pollution,1996,90:543-556
    [29]Brennan EW. The role of pyrite in controlling metal ion acticities in highly reduced soils. Geochaimica et Cosmochimica Acta.1996,60(19):3609-3618
    [30]Delaune R D, Shenyu Miao. Influwence of sediment redox conditions on release/solubility of metals and nutrients in a Louisiana Mississippi River deltaic plain freshwater lake. Science of the Total Environment.2006,60(371):334-343
    [31]廖敏,黄昌勇,谢正苗.pH对镉在土水系统中的迁移和形态的影响[J].环境科学学报,1999,19(1):81-86
    [32]刘桂秋,刘凡等.几种土壤铁锰结核对Cr(Ⅲ)的氧化特性Ⅱ.pH、离子强度、温度等因素的影响[J].土壤学报,2003,40(6):852-857
    [33]Sauve S, McBride M B, Hendershot W H. Soil solution speciation of lead(Ⅱ):Effects of organic matter and pH. Soil Sci. Soc. Am. J.,1998,62:618-621
    [34]徐明岗,李菊梅,张青.pH对黄棕壤重金属解吸特征的影响.生态环境,2004,13(3):312-315
    [35]Sauve S, McBride M B, Norvell W A, Hendershot W H. Copper solubility and speciation of in situ contaminated soils:Effect of copper level, pH and organic matter. Water Air and Soil Pollution, 1997,100:133-149
    [36]梁晶,蒋新等.不同pH下两种可变电荷土壤中Cu(Ⅱ)、Pb(Ⅱ)和Cd(Ⅱ)吸附与解吸的比较研究[J].土壤,2007,39(6):992-995
    [37]Jeffery A R. pectroscopic study of sur face redox reactions with manganese oxides. S oil Science S ociety American Journal,1992,56:82-88
    [38]Altin O. Effect of pH, flow rate and concentration on the sorption of Pb and Cu on monmorillonite Experimental [J]. Journal of Chemical Technology and Biotechnology,1999,74: 1131-1138
    [39]杨忠芳,陈岳龙等.土壤pH对镉存在形态影响的模拟实验研究[J].地质前沿,2005,12(1):252-260
    [40]焦文涛,蒋新.土壤有机质对镉在土壤中吸附-解吸行为的影响[J].环境化学,2005,24(5):545-549
    [41]Backstr mM, DarioM, Karlsson S, et al. Effects of fulvic acid on the adsorption of mercury and cadmium on goethite [J]. Sci. Total Environ.2003,304:257-268
    [42]李福燕,李许明等.湖南省农用地土壤重金属含量与土壤有机质及pH的相关性[J].土壤,2009,41(1):49-53
    [43]Ephraim J H, Xu H. The binding of cadmium by an aquatic fulvic acid:a comparison of ultrafiltrationwith ion-exchange distribution and ion-selective electrode techniques [J]. Sci. Total Environ.1989,81/82:625-634
    [44]Kooner ZS. Comparative study of adsorption behavior of copper, lead, and zinc onto goethite in a queous systems. Environ. Geol.,1998,21:242-250
    [45]胡宁静,骆永明等.长江三角洲地区典型土壤对镉的吸附及其与有机质、pH和温度的关系[J].土壤学报,2007,44(3):437-443
    [46]Jordan. Enhanced mobility of Pb in the presence of dissolved natual organic matter[J]. Journal of Contaminant Hydrology,1997,29:59-80
    [47]Elrashidi M A, O'Connor G A. Influence of solution composition on sorption of zinc by soils [J]. Soil Science Society of America Journal,1982,46:1153-1158
    [48]杨亚提,张平.离子强度对恒电荷土壤吸附Cu2+和pb2+的影响[J].环境化学,2001,20(6):566-571
    [49]Bittell J E, Miller R F. Lead, cadmium and calcium selectivity coefficients on montmorillonite, illite, and kaolinite [J]. Journal of Environmental Quality,1974,3:250-253
    [50]Baker A S, Kuo S. Sorption of copper, zinc and cadmium by some acid soil [J]. Soil Sci. Soc.Am.J. 1980,44:969-973
    [51]Msaky J. Adsorption behavior of copper and zinc in soils influence of pH on adsorption characteriscics [J]. Soil Sci.1990,150:513-522
    [52]邹献中,徐建民等.离子强度和pH对可变电荷土壤与铜离子相互作用的影响[J].土壤学报,2003,40(6):845-850
    [53]Echeverria J C, Morera M T, Mazkiaran C, et al. Competitive sorption of heavy metal by soils, is otherms and fractional factorial experiments [J]. Environmental Pollution,1998,101:275-284
    [54]何江,李朝生等.多离子体系中黄河沉积物对重金属的竞争吸附研究[J].沉积学报,2003,21(3):501-505
    [55]Arias M. Adorption and desorption of copper and zinc in the surface layer of acid soil[J]. J. Colloid. Inter. Sci.1998,101:275-284
    [56]Saha U K, Taniguchi S, Sakurai K. Simultaneous adsorption of cadmium, zinc, and lead on hydroxyalumium- and hydroxyaluminosilicate-montmorillonite complexes. Soil Sci. Soc. Am. J.,2002, 66:117-128
    [57]Heidmann I. Competitive sorption of protons and metal cations omto kanlinite:experiments and modeling [J]. J. Colloid. Inter. Sci.2005,282:270-282
    [58]朱波,汪涛,王艳强.锌、镉在紫色土中的竞争吸附[J].中国环境科学,2006,26,(Suppl.):73-77
    [59]戴树桂.土壤多介质环境污染研究进展[J].土壤与环境,2001,2
    [60]李广辉,魏世强.土壤溶质运移特性研究进展[J].土壤通报,2003,34,(6):576-580
    [61]王福利.降雨淋浴条件下溶质在土壤中运移的初步研究[J].土壤学报,1992,29,(4):451-457
    [62]Lindsey WL. Use of pe+pH to predict and interpret metal solubility relationships in soil. Science of the Total Environment,1983,28:169-178
    [63]Kookana R S. Effect of soil solution composition on cadmium transport therough variable charge soils. Geoderma,1998,84:235-248
    [64]刘继芳.重金属离子在土壤中的竞争吸附动力学初步研究Ⅱ.铜与镉在褐土中竞争吸附动力学[J].土壤肥料,2000,(3):10-15
    [65]Nielson D R.. Flow and solute transport processes in the Unsaturated Zone.1986(22):53-59
    [66]Hinz C. Transport of zinc and cadmium in soils:experimental evidence and modeling approaches. Soil Sci. Soc. Am. J.1994,58:1316-1327
    [67]陈威,杨亦霖.非饱和土壤中重金属污染物迁移机理分析[J].安徽大学学报(自然科学版),2010,34,(5):98-103
    [68]Van Genuchten M.Th. Two—Site/two-region models for pesticide transport and degradation: theoretical development and analytical aolutions [J]. Soil Sci. Soc. Am. J,1989,101:275-284
    [69]Selim HM. Modeling the transport and retention of cadmium in soils:multireaction and multicomponent approaches. Soil Sci. Soc. Am. J.1992,56:1004-1015
    [70]Gerritse R G. Dispersion of cadmium in columns of saturated sandy soils. J. Environ, Qual.1996, 25:1344-1349
    [71]Scuntjens P. Aging effects on cadmium transport in undisturbed contaminated sandy soil columns. J. Enciron. Qual.2001,30:1040-1050
    [72]Amacher MC. Kinetics of chromium (Ⅵ) and cadmium retention in soils:a nonlinear multireation. Soil Sci. Soc. Am. J.1988,52:398-408
    [73]丁昌璞.中国自然土壤、旱作土壤、水稻土的氧化还原状况和特点[J].土壤学报,2008,45(1):66-75
    [74]张平,杨亚提.离子强度对恒电荷土壤胶体吸附和的影响[J].环境化学,2001,20(6):566-571
    [75]李学垣.土壤化学[M].北京:高等教育出版社,2001
    [76]Brusseau M L, Hu Q, Srivastava R. Using flow interruption to identify factors causing nonideal contaminant transport. J. Contam. Hydrol.,1997,24:205-219
    [77]李义纯,葛滢等.淹水还原条件下土壤铁氧化物对镉活性制约机理的研究进展[J].土壤,2009,41(2):160-165
    [78]Backstrm M, Dario M, Karlsson S, et al. Effects of fulvic acid on the adsorption of mercury and cadmium on goethite [J]. Sci. Total Environ.2003,304:257-268
    [79]Ephraim J H. Heterogeneity as a concept in the interpretation of metal ion binding by humic substances. The binding of zinc by an aquatic fulvic acid [J]. Anal. Chim. Acta.1992,267:39-45
    [80]邹献中,赵安珍等.可变电荷土壤吸附铜离子时氢离子的释放[J].土壤学报,2002,39(3):308-317
    [81]唐罗忠,黄宝龙等.湿地林土壤的Fe2+,Eh及pH值的变化[J].生态学报,2005,25(1):103-107
    [82]Gotoh S, Patrick W H. Transformation of iron in a waterlogged soil as influenced by redox potential and pH [J]. Soil Sci. Soc. Am. Proc,1974,38:66-71
    [83]查甫生,刘松玉.土的电导率理论及其应用探讨[J].工程勘察,2006,5:10-16
    [84]丁昌璞.低分子量有机还原性物质与土壤的相互作用Ⅰ.低分子量有机还原性物质的化学性质[J].土壤学报,2010,47(3):451-457
    [85]王玉军等.土壤中铜、铅离子的竞争吸附动力学[J].中国环境科学,2006,26(5):555-559
    [86]McBride M B. Environmental Chemistry of Soils. New York:Oxford Univ. Press,1994
    [87]杨金燕,杨肖娥,何振立等.土壤中铅的吸附-解吸行为研究进展.生态环境,2005,14(1):102-107
    [88]Flogeac K, Guillon E, Aplincourt M. Competitive sorption of metal ions onto a north-eastern France soil:Isotherms and XAFS studies. Geoderma,2007,139:180-189
    [89]Elliot H A, Liberati M R, Huang C P. Effect of iron oxide removal on heavy metal adsorption by acid subsoil. Water Air and Soil Pollution,1986,27:379-389
    [90]Abu-Hassanein, Z, Benson, C. Electrical resistivity of compacted clays [J]. J. Geotech. Engrg, ASCE,1996,122(5):397-406
    [91]Saha U K, Taniguchi S, Sakurai K. Simultaneous adsorption of cadmium, zinc, and lead on hydroxyalumium-and hydroxyaluminosilicate-montmorillonite complexes. Soil Sci. Soc. Am. J.,2002, 66:117-128
    [92]Elliot H A, Liberati M R, Huang C P. Effect of iron oxide removal on heavy metal adsorption by acid subsoil. Water Air and Soil Pollution,1986,27:379-389
    [93]高超,张桃林等.氧化还原条件对土壤磷素固定与释放的影响[J].土壤学报,2002,39(4):542-549
    [94]沈仁芳,朱兆良等.不同氧化还原电位条件下稻田土壤中15N标记硝态氮的反硝化作用[J].中国环境科学,2000,20(6):519-523
    [95]Randall S R, Sherman D M, Ragnarsdottir K V, Collins C R. The mechanism of cadmium surface complexation on iron oxyhydroxide minerals. Geochimica et Cosmochimica Acta,1999,63 (19/20): 2971-2987
    [96]邓建才.典型地区饱和土壤中硝态氮垂直运移及拟合[J].环境科学,2005,2(26):200-205
    [97]谭文峰,刘凡等.土壤中铁铝氧化物与黏士矿物交互作用的研究进展[J].土壤,2007,39(5):726-730
    [98]Brennan EW, Lindsay WL. Reduction and oxidation effect on the solubility and transformation of iron oxides [J]. Soil Science Society of America Journal,1998,62:930-937
    [99]刘鑫,雷宏军等.变动氧化还原状况下酸性土壤中活性锰的变化[J].土壤学报,2008,45(4):734-739
    [100]Yang J Y, Yang X E, et al. Effects of pH, organic acids, and inorganic ions on lead desorption from soils. Environmental Pollution,2006,143:9-15
    [101]李九玉,徐仁扣.低分子量有机酸对土壤中铝的化学行为的影响[J].土壤,2007,39(2):196-203
    [102]Veeresh H, Tripathy S, Chaudhuri D, Hart B R, Powell M A. Competitive adsorption behavior of selected heavy metals in three soil types of India amended with fly ash and sewage sludge. Environ. Geol.,2003,44:363-370
    [103]邱少敏,薛家骅.红壤中镉的竞争吸持动力学[J].环境化学,1990,9(2):1-5
    [104]王玉军,周东美等.土壤中铜、铅离子的竞争吸附动力学[J].中国环境科学,2006,26(5):555-559
    [105]林青,徐绍辉.土壤中重金属离子竞争吸附的研究进展[J].土壤,2008,40(5):706-711
    [106]李韵珠,李保国.土壤溶质运移.北京:科学出版社,1998
    [107]Das B S, Kluitenberg G J. Moment analysis to estimate degradation rate constants from leaching experiments. Soil Sci. Soc. Am. J.,1996,60:1724-1731
    [108]Van Genuchten, M.Th., Wagenet R J. Two-site/two-region models for pesticide transport and degration:Theoretical development and analytical solutions. Soil Sci. Soc. Am. J.,1989,51: 1303-1310
    [109]Zhang Hua, Selim H M. Modeling the Transport and Retention of Arsenic (V) in Soils. Soil Sci. Soc. Am. J.,2006,70:1677-1687
    [110]Toride N, Leji F J, van Genuchten, M Th. The CXTFIT Code for Estimating Transport Parameters from Laboratory or Field Tracer Experiments. Version 2.1. U.S. Salinity Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Riverside, CA. Research Report No. 137, April 1999
    [111]郝芳华,孙雯等.HYDRUS-1D模型对河套灌区不同灌溉情景下氮素迁移的模拟[J].环境科学学报,2008,28(5):852-858
    [112]吕家珑,张一平,张君常,苏仕平.土壤磷运移研究[J].土壤学报,1999,36(1):75-82
    [113]Liping Pang, Murray Close, Daniela Schneider, Greg Stanton. Effect of pore-water velocity on chemical nonequilibrium transport of Cd, Zn, and Pb in alluvial gravel columns. Journal of Contaminant Hydrology,2002,57:241-258
    [114]Anderson P R, Christensen T H. Distribution coefficients of Cd, Co, Ni and Zn in soils. Soil Sci. 1988,39:15-22
    [115]雷志栋,杨诗秀,谢森传.土壤水动力学.北京:清华大学出版社,1988
    [116]Van Genuchten M Th. Non-equilibrium transport parameters from miscible displacement experiments.U.S. Dep. Agric., Res. Rep.1981, No.119,88 pp

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700