用户名: 密码: 验证码:
锅炉炉管管材在含SO_4~(2-)和Cl~-介质中的腐蚀研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着机组参数的提高,对锅炉给水品质的要求也越严格。如果给水中杂质离子含量超过允许浓度,将加速炉管的结垢和腐蚀,严重时将导致爆管。本文重点研究了Cl~-和SO_4~(2-)对水冷壁管的点蚀特性,并分析了其腐蚀机理,不仅为制定电站锅炉炉水中Cl~-和SO_4~(2-)的控制标准提供理论依据,确保电厂的安全经济运行;也为水冷壁管在含Cl~-和SO_4~(2-)炉水中的腐蚀特征与防护技术研究奠定了理论基础。
     本文针对水冷壁管材20G、15CrMoG和12Cr1MoVG,通过常温电化学实验和高温挂片实验,在含Cl~-和SO_4~(2-)的模拟低磷酸盐-低氢氧化钠水工况溶液中,对三种管材的常温性能和高温腐蚀特性进行分析,用透反射金相显微镜、扫描电子显微镜(SEM)、能谱仪(EDS)、X射线衍射仪(XRD)对试片表面形态和组分进行表征与分析,并对Cl~-和SO_4~(2-)促进或减缓点蚀的机理进行了初步探讨。得出的主要结论如下:
     (1)常温下,Cl~-促进未钝化的20G、15CrMoG和12Cr1MoVG电极及其钝化电极的溶解。SO_4~(2-)对未钝化20G电极及其钝化电极的腐蚀有促进作用,但会提高未钝化的15CrMoG和12Cr1MoVG电极及其钝化电极的耐蚀性能。Cl~-/SO_4~(2-)提高未钝化的20G试片及其钝化试片的耐蚀性,降低了未钝化的15CrMoG和12Cr1MoVG试片及其钝化试片的耐蚀性。
     (2)高温下条件下,Cl~-对未钝化的20G、15CrMoG和12Cr1MoVG及其钝化试片的侵蚀性严重,促进材料的溶解,加速材料的点蚀。在实际运行中应分别控制Cl~-浓度低于0.2 mg·L~(-1)、0.2 mg·L~(-1)和0.6 mg·L~(-1)。而对于钝化试片,则应分别控制Cl~-浓度低于0.2 mg·L~(-1)、0.4 mg·L~(-1)和0.6 mg·L~(-1)。
     (3)高温条件下,SO_4~(2-)为侵蚀性离子,会促进未钝化的20G、15CrMoG和12Cr1MoVG试片及其钝化试片溶解,加速材料的点蚀。在实际运行中,应分别控制溶液中SO_4~(2-)的浓度为0.2 mg·L~(-1),0.6 mg·L~(-1)和1 mg·L~(-1)。对于钝化试片,则应分别控制溶液中的SO42浓度为0.6 mg·L~(-1),1 mg·L~(-1)和1 mg·L~(-1)。
     (4)在高温环境中,随着溶液中Cl~-/SO_4~(2-)的增大,未钝化的20G和15CrMoG及其钝化试片的增重速率升高,高温腐蚀速率降低。而对于未钝化的12Cr1MoVG试片及钝化试片,其增重速率升高,高温腐蚀速率先降低后升高。
     (5)常温条件下Cl~-促进点蚀的机理是Cl~-与OH-在金属表面发生竞争吸附,形成复合中间体,促进钝化膜的快速溶解。而且SO_4~(2-)和Cl~-在材料表面存在竞争吸附,当Cl~-/SO_4~(2-)较小时,溶液中SO_4~(2-)的含量较高,使得电极表面有效吸附的Cl~-浓度降低,15CrMoG和12Cr1MoVG的耐蚀性增加,而对于20G而言,则是试片表面总的侵蚀性离子含量(Cl~-+SO_4~(2-))增大,试片的侵蚀程度增大。高温条件下Cl~-促进点蚀的机理是由于Cl~-促进Fe2+水解,生成疏松无保护性的Fe3O4,H+浓度增加,局部酸化,点蚀加剧。高温SO_4~(2-)促进点蚀的机理为局部酸化理论,与Cl~-点蚀机理相似。
As the increase of unit parameters, the quality of feed-water require more and more strict. If feed-water contains impurity ions exceeding allowed concentrations, boiler scale and corrosion accelerate, the waterside of water-wall tube corrodes, causing bursting of water-wall tube. Researching the influence of SO_4~(2-) and Cl~- ions on the pitting corrosion of water-wall tube, and analyzing corrosion mechanisms will provide theoretical basis for relevant standards, in order to control SO_4~(2-) and Cl~- ions concentrations in feed-water, and provider theoretical foundation for protection technology, which is valuable on safe and economic operation of power plants.
     The purpose of this study is to investigate the influence of Cl~- and SO_4~(2-) ions on the pitting corrosion of water-wall tube 20G, 15CrMoG and 12Cr1MoVG. The effect of Cl~- and SO_4~(2-) ions on pitting corrosion at room temperature and high temperature were assessed by electrochemical and high-temperature weight loss experiments. The specimen surfaces were examined by transmission reflection metallurgical microscopy, scanning electron microscope (SEM), energy disperse spectroscopy (EDS), and X-ray diffraction (XRD). The main conclusions are as follows:
     (1) At room temperature, Cl~- accelerates dissolution of unpassivated and passivated 20G, 15CrMoG and 12Cr1MoVG. SO_4~(2-) accelerates dissolution of unpassivated and passivated 20G, but enhances corrosion resistance of 15CrMoG and 12Cr1MoVG. Cl~-/SO_4~(2-) enhance corrosion resistance of unpassivated and passivated 20G, but lows corrosion resistance of unpassivated and passivated 15CrMoG and 12Cr1MoVG.
     (2) At high temperature, Cl~- accelerates dissolution of unpassivated and passivated 20G, 15CrMoG and 12Cr1MoVG. On the unit actual operating condition, Cl~- concentrations must be controlled under 0.2 mg·L~(-1), 0.2 mg·L~(-1) and 0.6 mg·L~(-1) for unpassivated 20G, unpassivated 15CrMoG and unpassivated 12Cr1MoVG, and 0.2 mg·L~(-1), 0.4 mg·L~(-1) and 0.6 mg·L~(-1) for passivated 20G, passivated 15CrMoG and passivated 12Cr1MoVGrespectively.
     (3) At high temperature, SO_4~(2-) accelerates dissolution of unpassivated and passivated 20G, 15CrMoG and 12Cr1MoVG, and the pitting with jagged edge are formed. On the unit actual operating condition, SO_4~(2-) concentrations must be controlled under 0.2 mg·L~(-1), 0.6 mg·L~(-1) and 1 mg·L~(-1) for unpassivated 20G, unpassivated 15CrMoG and unpassivated 12Cr1MoVG, and 0.6 mg·L~(-1), 1 mg·L~(-1) and 1 mg·L~(-1) for passivated 20G, passivated 15CrMoG and passivated 12Cr1MoVG respectively.
     (4) At high temperature, along with Cl~-/ SO_4~(2-) increases, the amount of Cl~- and SO_4~(2-) reduce, mass gain rate of unpassivated and passivated 20G increases, and mass gain rate of unpassivated and passivated 15CrMoG is similar. As Cl~-/ SO_4~(2-) increases, mass gain rate of unpassivated and passivated 12Cr1MoVG increases and then reduces.
     (5) At room temperature, pitting corrosion mechanism of Cl~- ions is competition adsorption of Cl~- and OH-, and the adsorbed Cl~- can form an intermediate complex, the passivated film dissolves. Because of competition adsorption of Cl~- and SO_4~(2-), when Cl~-/SO_4~(2-) is low, SO_4~(2-) content is high, the adsorbed Cl~- concentrations reduce, corrosion resistance of 15CrMoG and 12Cr1MoVG enhance. For 20G specimens, the total erosive ions ( Cl~- + SO_4~(2-) ) concentrations increase, specimens dissolve. The corrosion mechanism of Cl~- is proposed to accelerate Fe2+ hydrolysis, and loosely packed Fe3O4 is unprotected, H+ concentrations increase, local acidification can form, pitting corrosion intensifies. The mechanism of SO_4~(2-) ions is the local acidification theory, which is similar to the mechanism of Cl~-.
     The result indicated that SO_4~(2-) ions inhibited pit corrosion at room temperature, and accelerated corrosion at high temperature, the critical susceptive SO_4~(2-) ions concentrations was 1 mg·L~(-1).
引文
[1]陆延昌.大力发展超临界压力机组优化火电结构[J].中国电力, 2000, 33(1): 1-5.
    [2]陈听宽.超临界与超超临界锅炉技术的发展与研究[J].世界科技研究与发展, 2005, 27(6): 42-48.
    [3]方源.超超临界机组的现状及发展前景[J].中国科技博览, 2010, (31): 633.
    [4]车得福,庄正宁,李军等.锅炉[M].第2版.陕西:西安交通大学出版社, 2008: 18-31.
    [5]张卫会,赵星海,朱吉铭.超临界压力机组的现状及在我国的发展前景[J].东北电力学院学报, 2001, 21(3): 63-66.
    [6]刘堂礼.超临界和超超临界技术及其发展[J].广东电力, 2007, 20(1): 19-22.
    [7]杨道武,朱志平,李宇春等.电化学与电力设备的腐蚀与防护[M].北京:中国电力出版社, 2004: 51-54.
    [8]刘星,余存烨.电厂锅炉炉管失效分析[J].石油化工腐蚀与防护, 2006, 23(2): 39-41.
    [9]洪小飞. 600MW超临界锅炉水冷壁管道一次泄漏原因分析及处理[J].机电信息, 2010, (18):27.
    [10]赵永宁,刘爽,魏玉忠.超(超)临界锅炉管用材料的缺陷和失效分析[J].热力发电, 2010, 39(4): 36-41.
    [11]赵虹,魏勇.燃煤锅炉水冷壁烟侧高温腐蚀的机理及影响因素[J].动力工程, 2002, 22(2): 1700-1704.
    [12]许传凯.关于液态排渣锅炉若干问题的探讨[J].锅炉技术, 1977, (9): 1-20.
    [13]李万详. E11670/140型锅炉水冷壁管烟侧腐蚀原因分析[J].电力技术, 1984, (12): 21-25.
    [14]钱宏利,刘长禄,裴继斌.锅炉水冷壁爆管泄漏原因分析[J].中国石油和化工, 2010, (5): 46-47.
    [15]曾汉才.大型锅炉水冷管的高温腐蚀故障分析[J].华中电力, 2001, 14(4): 5-8.
    [16]朱志平,黄可龙,杨道武等.锅炉给水系统腐蚀原因分析[J].腐蚀科学与防护技术, 2005, 17(3): 195-197.
    [17]李彦林,朱敏,聂常贵等.水冷壁管泄露原因分析与防治对策[C].第二届七省区市机械工程学会科技论坛暨学会改革与发展研讨会论文集,乌鲁木齐, 2006, 316-319.
    [18]邓育红.京西电厂200MW机组炉管腐蚀原因分析[J].华北电力技术, 1999, (9): 1-3.
    [19]徐洪.高压锅炉水冷壁管失效分析[J].中国腐蚀与防护学报, 2003, 23(5): 312-315.
    [20]徐洪.高压锅炉水冷壁管碱腐蚀诊断与机理研究[J].中国电机工程学报, 2003, 23(2): 183-187.
    [21]梅胜,陈小华.电厂炉水品质与炉管的中性盐腐蚀[J].中国给水排水, 2003, 19(13): 25-27.
    [22]朱志平,汪红梅,周琼花.锅炉给水中杂质对炉水pH值的影响研究[J].电力科学与技术学报, 2007, 22(1): 56-60.
    [23]史月丽,顾永琴,孙智等.电厂水冷壁管开裂分析[J].金属热处理, 2007, 32(7): 82-84.
    [24]李胜首,石顺梅.火电厂水冷壁管泄露分析及改进建议[J].广西电力, 2010, 33(3): 61-62.
    [25]朱志平,贺慧勇,周琼花.汽包锅炉炉水pH值精确计算方法[J].中国电机工程学报, 2003, 23(4): 172-176.
    [26]周年光,陈绍艺.锅炉水工况及水冷壁管的水侧腐蚀[J].湖南电力, 2001, 21(2): 13-16.
    [27]黄丽萍.浅谈炉水中氯离子浓度高的原因分析与防止[C].电厂化学2009学术年会暨中国电厂化学网2009高峰论坛会议论文集,武汉, 2009, 94-97.
    [28]郭冬梅,李茂东.锅炉炉管腐蚀穿孔原因分析及预防[C].第二次全国锅炉水处理技术研讨会论文集.杭州, 2003, 71-73.
    [29]朱志平,杨道武,李宇春.磷酸盐处理汽包锅炉技术的比较研究[J].发电设备, 2003, 17(3): 14-19.
    [30]朱志平,周艺,张玲等.锅炉水化学工况分析与pH值计算通式探讨[J].长沙理工大学学报, 2004, 1(1): 91-96.
    [31]李茂东,许崇武,李诚.锅炉磷酸盐处理的发展及平衡磷酸盐处理[J].四川电力技术, 1999, (3): 10-14.
    [32]朱志平,孙本达,李宇春.电站锅炉水化学工况及优化[M].北京:中国电力出版社, 2009: 35-53.
    [33]朱志平,周艺,张玲等.热力发电厂锅炉水化学工况优化研究[C].中国化学会第24届学术年会论文集.长沙, 2004, 51-53.
    [34]朱志平,陈田.磷酸盐处理技术在汽包锅炉炉水调节中的应用与发展[J].长沙电力学院学报(自然科学版), 2002, 17(2): 77-81.
    [35]尚玉珍,米晓琴.汽包锅炉炉内水处理方式的发展及选择[J].山西电力, 2005, (5): 48-49.
    [36]刘艳丽.磷酸盐在锅炉水处理中的应用[J].赤峰学院学报, 2009, 25(11): 156-157.
    [37]耿丽红.锅炉磷酸盐协调处理炉水品质[J].科技风, 2008, (1): 2.
    [38]林根仙,管淑敏.火电厂磷酸盐水化学工况的现状与发展[J].工业水处理, 2001, 21(8): 11-13.
    [39]安香菊,牛明,李文彦.两种炉水处理方式在亚临界参数汽包锅炉上的应用[J].山西电力, 2005, (1): 60-61.
    [40]朱志平,陈向东,付爱玲.氨、硅酸、有机酸及电导率对炉水R值影响的讨论[J].长沙电力学院学报, 1999, 14(3): 262-266.
    [41]许维宗,刘成刚.亚临界压力汽包锅炉水的低磷酸盐处理[J].湖北电力, 2004, 28(4): 35-37.
    [42]李晓泉.炉水低磷酸盐加氢氧化钠处理的试验及应用[J].电力安全技术, 2002, 4(3): 36-37.
    [43]陈振华.炉水低磷酸盐处理在电厂的应用[J].华北电力技术, 2002, (6): 28-31.
    [44]彭泉光,钱生保,凌浩翔等.超高压锅炉炉水低磷酸盐处理[J].广西电力, 2004, (1): 1-6.
    [45]杨列奎,韩庆晟.汽包炉水低磷酸盐处理工艺在我厂的应用[J].科技资讯, 2006, (26): 16.
    [46]石茜.低磷酸盐处理在娘子关发电厂的应用[J].山西电力, 2004, (3): 21-22.
    [47]朱莉,王安宁.亚临界汽包锅炉氢氧化钠处理炉水质量控制研究[J].华东电力, 2007, 35(2): 56-59.
    [48]张玉福.汽包锅炉的氢氧化钠处理[J].湖南电力, 2001, 21(3): 11-12
    [49]关玉芳. AVT工况下600MW超临界机组直流炉首年结垢、积盐特征分析[J].电力技术, 2009, (5): 29-32.
    [50]李志刚,陈戎.火电厂锅炉给水加氧处理技术研究[J].中国电力, 2004, 37(11): 47-52.
    [51]张澄信,陈龙.我国凝结水处理混床运行可能遇到的特殊问题[J].热力发电, 2001, 30(1): 8-12.
    [52]朱志平,杨道武,李宇春.凝汽器空冷区铜管氨腐蚀过程分析与防护措施[J].中国电力, 2002, 35(5): 23-26.
    [53]焦庆丰,陈红冬,冯斌等. 1021t/h锅炉水冷壁管裂纹泄露原因分析及处理措施[J].中国电力, 2000, 33(10): 27-29.
    [54]谭泓,金春南,史卫钢.凝汽器冷却管的腐蚀及预防措施[J].汽轮机技术, 2007, 49(2): 142-145.
    [55]葛红花.凝汽器不锈钢耐蚀性能影响因素及应用[C]. 2009全国电力系统腐蚀控制及检测技术交流会论文集.长沙, 2009, 20-26.
    [56]王殿仲. 630MW机组凝汽器钛管泄漏分析及防治措施[J].发电设备, 2010, 24(6): 456.
    [57]吕玉,丁旭生.富拉尔基发电总厂3号炉水冷壁管氢腐蚀爆管原因分析[J].黑龙江电力, 2009, 31(3): 212-214.
    [58]李锐,何世德,张占梅等.凝结水精处理现状及新技术应用研究[J].水处理技术, 2009, 35(2): 25-28.
    [59]杨崇豪.亚临界炉锅水pH降低原因分析及预防对策[J].热能动力工程, 2001, 16(1): 91-92.
    [60]朱兴宝.凝结水处理用树脂的污染[C].电厂化学2009学术年会暨中国电厂化学网2009高峰论坛会议论文集.武汉, 2009, 448-455.
    [61]朱兴宝,熊京川,梁桥洪.岭澳核电站二期凝结水处理系统重大技术改进[J].核动力工程, 2009, 30(6): 1-5.
    [62] JoséR. Galvele. Transport processes in passivity breakdown—II. Full hydrolysis of the metal ions [J]. Corros. Sci. 1981, 21(8): 551-579.
    [63] Q. Yang, J.L. Luo. Effects of hydrogen and tensile stress on the breakdown of passive films on type 304 stainless steel [J]. Electrochim. Acta. 2001, 46(6): 851-859.
    [64] E.A. Abd El Meguid, N.A. Mahmoud, S.S. Abd El Rehim. The effect of some sulphur compounds on the pitting corrosion of type 304 stainless steel [J]. Mater. Chem. Phys. 2000, 63(1): 67-74.
    [65] S.V. Phanis, A.K. Aatpati, K.P. Muthe, et al. Comparison of rolled and heat treated SS304 in chloride solution using electrochemical and XPS techniques [J]. Corros. Sci. 2003, 45(11): 2467-2483.
    [66] M.A. Ameer, A.M. Fekry, F. El-Tainb Heakel. Electrochemical behaviour of passive films on molybdenum-containing austenitic stainless steels in aqueous solutions [J]. Electrochim. Acta 2004, 50(1): 43-49.
    [67] S.S. El-egamy, W.A. Badway. Passivity and passivity breakdown of 304 stainless steel in alkaline sodium sulphate solutions [J]. J. Appl. Electrochem. 2004, 34(11): 153-1158.
    [68] Y. Tang, Y. Zuo. The metastable pitting of mild steel in bicarbonate solutions [J]. Mater. Chem. Phys. 2004, 88(1): 221-226.
    [69] Y. Tang, Y. Zuo, H. Zhao. The current fluctuations and accumulated pitting damage of mild steel in NaNO2-NaCl solution [J]. Appl. Surf. Sci. 2005, 243(1-4): 82-88.
    [70] N. Cui, H.Y. Ma, J.L. Luo, et al. Use of scanning reference electrode technique for characterizing pitting and general corrosion of carbon steel in neutral media [J]. Electrochem. Commun. 2001, 3(12): 716-721.
    [71] D. You, N. Pebere, F. Dabosi. An investigation of the corrosion of pure iron by electrochemical techniques and in-situ observations [J]. Corros. Sci. 1993, 34(1): 5-15.
    [72] M.G. Alvarez, J.R. Galvele. The mechanism of pitting of high purity iron in NaCl solutions [J]. Corros. Sci. 1984, 24(1): 27-48.
    [73] Y.F. Cheng, M. Wilmott, J.L. Luo. The role of chloride ions in pitting of carbon steel studiedby the statistical analysis of electrochemical noise [J]. Applied surface science, 1999, 152(3-4): 161-168.
    [74]吴玮巍,蒋益明,廖家兴等. Cl离子对304、316不锈钢临界点蚀温度的影响[J].腐蚀科学与防护技术, 2007, 27(1): 16-19.
    [75] Y.F. Cheng, J.L. Luo. Statistical analysis of metastable pitting events on carbon steel [J]. Br, Corros. J. 2000, 35(4): 125-130.
    [76] K.J. Eichhorn, W. Forker. The properties of oxide and water films formed during the atmospheric exposure of iron and low alloy steel [J]. Corros. Sci. 1988, 28(8): 745-758.
    [77] Luis Cáceres, TomásVargas, Leandro Herrera. Influence of pitting and iron oxide formation during corrosion of carbon steel in unbuffered NaCl solutions [J]. Corros. Sci. 2009, 51(5): 971-978.
    [78] T. Hong, M. Nagumo. The effect of chloride concentration on early stages of pitting for type 304 stainless steel revealed by the AC impedance method [J]. Corros. Sci. 1997, 39(2): 285-293.
    [79] Hamdy H. Hassan. Effect of chloride ions on the corrosion behaviour of steel in 0.1 M citrate [J]. Electrochimi. Acta. 2005, 51(3): 526-535.
    [80] Shoufeng Yang, Digby D. Macdonald. Theoretical and experimental studies of the pitting of type 316L stainless steel in borate buffer solution containing nitrate ion [J]. Electrochim. Acta 2007, 52(5): 1871-1879.
    [81] T. Ujiro, S. Satoh, R.W. Staehle, et al. Effect of alloying Cu on the corrosion resistance of stainless steels in chloride media. Corros. Sci. 2001, 43(11): 2185-2200.
    [82] M.B. Valcarce, M. Vázquez. Carbon steel passivity examined in alkaline solutions: The effect of chloride and nitrite ions [J]. Electrochimica Acta. 2008, 53(15): 5007-5015.
    [83] S.A.M. Refaey, F. Taha, A.M. Abd El-Malak. Corrosion and inhibition of stainless steel pitting corrosion in alkaline medium and the effect of Cl- and Br- anions [J]. Appl. Surf. Sci. 2005, 242(1-2): 114-120.
    [84] E. Ramírez, J.A. González, A. Bautista. The protective efficiency of galvanizing against corrosion of steel in mortar and in Ca(OH)2 saturated solutions containing chlorides [J]. Cement and Concrete Research, 1996, 26(10): 1525-1536.
    [85] M. Hashimoto, S. Miyajima, T. Murata, A stochastic analysis of potential fluctuation during passive film breakdown and repair on iron [J]. Corros. Sci. 1992, 33(6): 885-904.
    [86] Yuming Tang, Yu Zuo. The metastable pitting of mild steel in bicarbonate solutions [J]. Materials Chemistry and Physics, 2004, 88(1): 221-226.
    [87] M.A. Deyab, S.S. Abd El-Rehim. Inhibitory effect of tungstate, molybdate and nitrite ions on the carbon steel pitting corrosion in alkaline formation water containing Cl- ion [J]. Electrochimica Acta, 2007, 53(4): 1754-1760.
    [88] E.E Abd El Aal, Breakdown of passive film on nickel in borate solutions containing halide anions [J]. Corros. Sci. 2003, 45(4): 759-775.
    [89]刘延湘,楼台芳.低磷酸盐-低NaOH模拟炉水中20A碳钢的腐蚀[J].腐蚀科学与防护技术, 2003, 15(1): 9-12.
    [90]赵晶晶,黄莉,胡学文.热力机组炉内氯离子的腐蚀机理及其防止对策[J].腐蚀与防护, 2004, 25(2): 65-68.
    [91]李景平,周年光,霍金仙等.高温炉水中Cl-对碳钢水冷壁管的腐蚀行为研究[J].材料保护, 2001, 34(8): 21-22.
    [92] J.R. Galvele, J.B. Lumsdem, R.W. Staehle. Effect of molybdenum onn the pitting potential of high purity 18%Cr ferritic stainless steel [J]. J. Electrochem. Soc. 1978, 125(8): 1204-1208.
    [93] J.L. Dawson, M.G.S. Ferreira. Electrochemical studies of the pitting of austenitic stainless steel [J]. Corros. Sci. 1986, 26(12): 1009-1026.
    [94] C.J. Semino, P. Pedeferri, G.T. Burstein, et al. The localized corrosion of resistant alloys in chloride solutions [J]. Corros. Sci. 1979, 19(7): 1069-1078.
    [95] M. Urquidi, D.D Macdonal. Solute-Vacancy interaction model and the effect of minor alloying elements on the initiation of pitting corrosion [J]. J. Electrochem. Soc. 1985, 132(3): 555-558.
    [96] G. Okamoto. Passive film of 18-8 stainless steel structure and its function [J]. Corros. Sci. 1973, 13(6): 471-489.
    [97] R.C. Newman. In: A. Turnbull(Ed.), Corrosion Chemistry within Pits, Crevices and Cracks [C], HMSO, London, 1987, 14.
    [98] H.C. Man, D.R. Gabe, The study of pitting potentials for some austenitic stainless steels using a potentiodynamic technique [J]. Corros. Sci. 1981, 21(9-10): 713-721.
    [99] S.I. Ali, G.J. Abaschian, The chloride corrosion of austenitic stainless steels and of an inconel alloy in hot acidic media [J]. corros. Sci. 1978, 18(1): 15-19.
    [100] M.M. El-Naggar. Effects of Cl-, NO3-, and SO42- anions on the anodic behavior of carbon steel in deaerated 0.50 M NaHCO3 solutions [J]. Applied Surface Science, 2006, 252(18): 6179-6194.
    [101] H.P. Leckie, H.H. Uhlig. Environmental factors affecting the critical potential for pitting in 18-8 stainless steel [J]. J. Electrochem. Soc. 1966, 113(12): 1262-1267.
    [102] Y. Zuo, H. Wang, J. Zhao, et al. The effects of some anions on metastable pitting of 316L stainless steel [J]. Corros. Sci. 2002, (44): 13-24.
    [103] P.C. Pistorius, G.T. Burstein. Growth of corrosion pits on stainless steels in chloride solution containing dilute sulphate [J]. Corros. Sci. 1992, 33(12): 1885-1897.
    [104] Y.L. Chou, Y.C. Wang, J.W. Yeh, et al. Pitting corrosion of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1 in chloride-containing sulphate solutions [J]. Corros. Sci. 2010, 52(10): 3481-3491.
    [105] T. Hong, M. Nagumo. The effect of SO42- concentration in NaCl solution on the early stages of pitting corrosion of type 430 stainless steel [J]. Corros. Sci. 1997, 39(5): 961-967.
    [106]秦瑞杰.酸性氯化物溶液中304不锈钢的表面活性和局部腐蚀的研究:[山东大学硕士学位论文].山东:山东大学, 2008, 55-60.
    [107] P.Q. Zhang, J.X. Wu, W.Q. Zhang, et al. A pitting mechanism for passive 304 stainless steel in sulphuric acid media containing chlorides ions [J]. Corros. Sci. 1993, 34(8): 1343-1354.
    [108] E.A. Abd El Meguid, A.A Adb El Latif. Electrochemical and SEM study on Type 254 SMO stainless steel in chloride solutions [J]. Corros. Sci. 2004, 46(10): 2431-2444.
    [109] M.R. Schock, Internal corrosion and deposition control [C], in: F.W. Pontius (Ed.), Water quality and treatment, McGraw-Hill Inc., New York, 1990, 997-1111.
    [110]廖家兴,蒋益明,吴玮巍等.含Cl-溶液中SO42-对316不锈钢临界点蚀温度的影响[J].金属学报, 2006, 42(11): 1187-1190.
    [111] M.H. Moayed, R.C. Newman. Aggressive effects of pitting inhibitors on highly alloyed stainless steels [J]. Corros. Sci. 1998, 40(40): 519-522.
    [112] B. Deng, Y. Jiang, Y. Hao, et al. Dependence of critical pitting temperature on theconcentration of sulphate ion in chloride-containing solutions [J]. Appl. Surf. Sci. 2007, 253(18): 7369-7375.
    [113] Y.X. Qiao, Y.G. Zheng, W. Ke, et al. Electrochemical behaviour of high nitrogen stainless steel in acidic solutions [J]. Corros. Sci. 2009, 51(5): 979-986.
    [114] Y.Y. Chen, T. Duval, U.D. Hung, et al. Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel [J]. Corros. Sci. 2005, 47(9): 2257-2279.
    [115]李谋成,曾潮流,林海潮等.不锈钢在含SO42-稀HCl中的电化学腐蚀行为[J].腐蚀科学与防护技术, 2002, 14(3): 132-135.
    [116]解群,梁磊.冷却水中SO42-对凝汽器不锈钢管的缓蚀作用[J].上海电力学院学报, 2000, 16(2): 33-36.
    [117]刘延湘,楼台芳.炉水中侵蚀性阴离子对碳钢腐蚀的试验研究[J].工业水处理, 2001, 21(7): 30-32.
    [118]曲秀华,许淳淳,吕国诚等.低硬度循环冷却水中Cl-、SO42-及水处理剂对304不锈钢腐蚀行为的影响[J].中国腐蚀与防护学报, 2009, 29(3): 187-190.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700