用户名: 密码: 验证码:
牙哈区块凝析气井生产动态系统分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牙哈凝析气田地层压力已低于露点压力,反凝析现象突出,对气井或气藏生产影响很大,造成了气井产能大幅下降情况;为制定合理生产制度,以整个凝析气井生产系统为研究对象,应用节点系统分析和物质平衡原理方法进行动态分析和优化设计,实现了高效、合理开发凝析气藏的目的。为此,本文完成的主要工作如下:
     1.结合PR状态方程,给出了气液两相平衡模型求解方法,为牙哈区块凝析气井生产动态分析提供了相平衡理论基础。
     2.基于凝析气藏稳定渗流理论,牙哈区块中凝析油在储层中流量较小,速度较慢的特点,视其流动为达西渗流;而凝析气在地层中流动粘度较小、速度较快的特点,视其流动为非达西渗流;建立了地层渗流段油、气两相流动的流入动态数学模型及其求解方法。
     3.利用牙哈区块15口井87次测试数据,对多相管流常用计算模型Gray模型、Hagedorn&Brown模型、Duns&Ros模型、Mukherjee&Bril模型进行了评价分析:Gray模型的流压交汇图及相对性能系数RPF最小,适合该区块凝析气井井筒压力计算。
     4.根据所建立的气液两相产能方程,及凝析气井垂直管流计算,建立适合于牙哈凝析气田气井的节点系统分析计算模型;利用节点系统分析程序,绘制了凝析气井流入流出动态曲线图,并敏感性分析了井口压力、油管直径,气嘴直径等参数对凝析气井产能影响。
     5.根据防止井底积液、井底出砂及地层不发生明显反凝析的压力界限等方法,综合确定了牙哈区块凝析气井合理生产压差,从而确定凝析气井合理产量。
     6.基于凝析气藏物质平衡原理,应用节点系统分析方法,对比分析了合理产量和目前产量下稳产、递减时期的气井产量、井底压力等重要生产数据随时间的变化规律,结果表明在合理产量的稳产和递减时期末的采收率均高于目前产量下生产时的采收率。
     针对牙哈区块实际情况,利用上述理论确定了一套研究凝析气井生产动态系统优化设计的理论和方法,并采用VB语言编制了凝析气井生产动态系统分析相关程序,分析了凝析油析出对凝析气井产能的影响,敏感性了油管尺寸、井口压力等参数,优选了合理生产参数,以及预测了凝析气井生产动态变化。为凝析气井不同开采时期凝析气产量预测、合理生产制度确定、管柱优化设计等提供了技术手段。
Nowadays, the formational pressure of Yaha gas condensating reservoir is below the dew point pressure, and the retrograde condensate phenomenon is serious, which has great influence on gas well or reservoir, making the productivity of gas well declines substantially.In order to draw the reasonable producing system, the methods of nodal system analysis and material balance principle is applied to have dynamic analysis and optimal design, aiming at the production system of gas condensate wells,which makes the efficient and rational development of gas condensate reservoir become reality. So, the main accomplished work of this article is as follows:
     1. Incorporating the PR state equation and providing the fluid two phase equilibrium model solution method has provided the phase equilibrium theoretical foundation for the Yaha block gas-condensate well production performance analysis.
     2. Based on the condensation gas reservoir steady seepage theory, the condensate oil in the Yaha block is regarded as the Darcy seepage because of its low delivery and flow rate in the reservoir.However, the condensate gas own the character that the kinematic viscosity is low and the flow rate is fast in the stratum,for which its flow can be regarded as the Non-Darcy seepage; The oil-gas two-phase inflow dynamic mathematical model is established in the stratum seepage section and the relevant solution method is provided.
     3. The Yaha block 87 testing datas of the 15 wells are evaluated and analysed by using the common computation model which includes Gray model, the Hagedorn&Brown model, the Duns&Ros model, the Mukherjee&Bril model. Because of the flowing pressure intersection chart and the smallest relative performance coefficient(RPF), the Gray model is selected and it fits for the wellbore pressure calculation of this block.
     4. On the basis of the gas-fluid two-phase production equation and the gas condensate well vertical pipe flow computation, the establishment of the nodal system analysing and computing model is appropriate for the gas condensate well in the Yaha block; By using the nodal system analysis procedure,the flow-in and flow-out dynamic curve plate for the gas condensate well is plotted, and some factor, including wellhead pressure,tubing diameter and gas nipple diameter,which will affect the condensate gas production, is analysed sensitively.
     5. With these methods of the prevention to the liquid loading and sand entry at the bottom of a well and the appearance of the retrograde condensate pressure border, the rational drawdown for the Yaha gas condensate well is established integratively,so the reasonable production of the gas condensate well is determined.
     6. On the basis of the material balance principle, the rational production and some key production datas altered regularly,such as rational production and the gas well production during the steady and deceasing production period at the present production, can make comparison and analysis. The recovery at the rational production during the steady production and the end of the decreasing period is higher than the recovery at the present production.
     In view of the Yaha block, a set of studying gas condensate well dynamic production system optimization and designing theory and method is determine by using the above theory. The procedure of the gas condensate well production performance system analysis programed by the use of the VB, analyse the effect to the gas condensate well production as a result of the the drop out of the condensate oil and some parameter including tubing diameter and wellhead pressure is analysed sensitively.The rational production parameters are optimized,and the gas condensate well performance can be predicted.the optimal reasonable production parameter, as well as has forecast the gas-condensate well dynamic change. This article can provide technological method for the prediction of the condensate gas production and the establishment of the rational production condition as well as the optimizing and designing of the tube pillars.
引文
[I]M.Muskat. Some theoretical aspects of cycling-part2:RetrogradeCondensation about Well Bores[J]. Oil and Gas Journal.1950.48(39):53-55.
    [2]M. J. Fetkovich. The Isochronal Testing of Oil Wells. at the 1973 SPE annual technical conference and exhibition. [J] SPE 4529.
    [3]O'Dell H.G., Miller R.N. Successfully Cycling a Low-Permeability,High-Yield Gas Condensate Reservoir. JPT[J].1967.19(1):41-47.
    [4]Roebuck,I.F.Jr,Ford, W. T. Henderson, G. E. and Douglas, Jim. Jr. The Compositional Reservoir Simulator:Case I-The Linear Model [J]. SPE1969(3):125-130.
    [5]Fussell D.D.Single-Well Performance PredictionsReservoirs. JPT.1973.25(7): 860-870Hinchman,S.B., Baree, R. D. Productivity LossReservoir[J]. SPE 14203.1985(9)of Gas-Condensatein Gas Condensate.
    [6]Jones, J. R., Vo. D.T. and Raghavan, R. Interpretation of Pressure Buildup Responses in Gas Condensate Wells[J]. SPE 15535.1988(10).
    [7]Fevang, C.H.and Gas Joural.Whiton. Modeling Gas-Condensate Well Deliverability Oil [J].1996.48(39):53-55.
    [8]Ali J K, Whitson C J. Experimental Studies and Modeling of Gas Condensate Flow Near the Wellbore[J]. SPE 39053,1998:79-82..
    [9]Fawzi MG. Inflow Performance Relationships for Gas Condensates. paper SPE63158 was presented at the 2000 SPE Annual Technical Conference and Exhibition held in Dallas,Texas[J],1-4 Oct.2000.
    [10]Sarfraz AJokhio, Djebbar. Establishing Inflow Performance Relationship(IPR)for Gas Condensate Wells[J]. Paper SPE75503 was presented at the 2002 SPE Annual Technical Conference and Exhibition held in Calgary, Alberta, Cana-da,30 April-2 May 2002.
    [11]M Jamiolahmady, A.Danesh, SPE, A.Rezaei, R. Ataei Calculation of Productivityof a Gas-Condensate well:Application ofSkin with Rate Dependent Pseudo pressure[J].SPE 94718 2005,(5)..
    [12]Xiong Yu, Sun Liangtian. A New Method for Predicting the Law of Unsteady Flow Through Porous Medium on Gas Condensate Well[J]. SPE 35649.
    [13]何志雄,等.凝析气井产能分析方法[J].天然气工业,1996(05):32-36.
    [14]赵子刚,等.确定凝析气藏相态特征和气井产量预测的方法[J].石油学报.2001.22(02)49-55.
    [15]谢兴礼,罗凯,宋文杰等.凝析气新的产能方程研究[J].石油学报.2001.22(3)36-42.
    [16]康晓东,覃斌,李相方,程时清.凝析气藏考虑毛管数和非达西效应的渗流特征[J]. 石油钻采工艺.2004(4):4144.
    [17]唐恩高,李相方等.基于凝析气相变的凝析油聚集规律研究[J].石油勘探与开发.2005(05).
    [18]梅青燕,张烈辉等.一种新的凝析气井产能方程确定方法[J].西南石油学院学报.2006(4):26-28.
    [19]童敏,等.毛细管数效应对凝析气井流入动态的影响[J].新疆石油地质.2006(2).
    [20]石德佩,等.考虑相变的凝析气井产能方程[J].石油学报,2006(04):68-70.
    [21]Duns H.J.R.,Ros N.C.J.Vertical Flows of Gas and Liquid Mixtures in Well[J].SixthWorld Petroleum Congress,1963:22-24.
    [22]Hagedorn A.R.,Brown K.E.Experimental Study of Pressure Gradients Occurring During Continuous Two-PhaseFlow in Small Diameter Vertical Conduits [C].JPT,1965:79-82.
    [23]Mukherjee H., Brill J. P. Pressure Drop Correlation for Inclined Two-Phase Flow[C]. JERT,1985:102-104.
    [24]User's Manual for API 14B, SSCSV sizing computer program, second edition, API (1978) Appendix B,38-41.
    [25]郭春秋,李颖川.气井压力温度预测综合数值模拟[J].石油学报,2001.5,22(3).
    [26]蒋建勋,石庆等.考虑相态变化的凝析气井井筒瞬变流动分析[J].钻采工艺,2006.3,29(2).
    [27]朱炬辉,胡永全等.相态变化影响下的凝析气井井筒压力计算分析[J].天然气勘探与开发,2006.6,29(2).
    [28]何志雄,杜竞等.低气液比凝析气井井筒动态预测[J].天然气勘探与开发,2009.7,32(3).
    [29]何志雄,钱贺斌.高气液比凝析气井井筒动态预测[J].天然气勘探与开发,2008.12,31(4).
    [30]孟悦新,等凝.析气井井筒流通压力分布计算方法[J].工程热物力学报,2010,09期
    [31]李颖川.采油工程[M].北京:石油工业出版社,2008,10.
    [32]何志雄,孙雷,等.凝析气井生产系统分析方法[J].石油学报,1998.10,19(4).
    [33]李志芬.凝析气井生产系统优化设计[D].东营:中国石油大学(华东),2003.
    [34]常志强.考虑多相流体复杂相态变化的凝析气井生产动态分析方法[D].西南石油大学,2005.
    [35]项小星.凝析气井合理产量的确定研究[D].西南石油大学,2009.
    [36]李士伦等.天然气工程[M].北京:石油工业出版社,2008.
    [37]陈铁莲.凝析油气体系相平衡计算研究及相态计算软件研制[D].西南石油学院博士论文,1990:12-43.
    [38]Peng, D-Y. and Robinson, D. B.:"Two and Three-Phase Calculations for Systems Containing Water"[J]. Can. J. Chem. Eng, Dec.1976:595-599.
    [39]李士伦,黄瑜,孙雷,等.一个新的三次方状态方程[J].西南石油学院学报,1988,9(3):50-53.
    [40]何志雄.凝析气井生产系统分析及其软件研制[D].西南石油大学,1994.
    [41]刘伟伟.凝析气井生产系统参数优化设计方法研究[D].中国石油大学,2009.
    [42]J. J. Xiao, J. Al-Muraikhi. A new method for the determination of gas condensate well production performance[J]. SPE909290, Texas,26-29 September 2004.
    [43]H. Al-Attar, S. Al-Zuhair A general approach for deliverability calculations of gas wells[J].SPE111380,Texas,12-14 March 2008.
    [44]FawziM. Guehria. Inflow performance relationships for gascondensates[J]. SPE63158, Texas,1-4 October 2000.
    [45]孙志道、胡永乐等.凝析气藏早期开发气藏工程研究[M].北京:石油工业出版社,2003:42-50.
    [46]石庆.凝析气井井筒数值模拟研究及应用[M].西南石油大学,2006.
    [47]李颖川、朱家富等.排水采气井油管和环空两相流压降优化模型[J].石油学报,2001,22(3):101-107.
    [48]疏壮志、杜志敏等.气井生产动态预测方法研究[J].天然气工业,2004,24(8):78-81.
    [49]覃斌,李相方,程时清等.基于反凝析特性的凝析气井生产优化分析[J].天然气工业,2004,24(4):68-72.
    [50]张烈辉.一种简便的凝析气井合理产量确定方法[J].天然气工业,2005,25(10):79-81.
    [51]刘一江、李相方等.凝析气藏合理生产压差的确定[J].石油学报,2006,27(2):85-89.
    [52]杨翠萍、黄全华等.大涝坝2号凝析气藏合理生产压差的确定[J].油气田地面工程,2010,29(6):19-21.
    [53]Turner R Get all Analysis and Prediction of Minimum Flow Rate for the Continuous Removeal of Liquids from Gas Wells [J]. JPT, Nov11969:75-82.
    [54]孙龙德.塔里木盆地凝析气田开发[M].北京:石油工业出版社,2003:178-182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700