用户名: 密码: 验证码:
兰坪低品位高钙氧化锌矿保锌脱钙预富集试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低品位高钙氧化锌矿石的选矿一直是国内外选矿界极大的难题。论文以兰坪低品位高钙氧化锌矿为研究对象进行了系统的试验研究,获得了较好的试验指标,并对试验结果进行了初步的理论分析。
     原矿工艺矿物学研究显示,兰坪低品位高钙氧化锌矿含锌7.47%,含氧化钙22.23%,氧化率高达93.93%,是典型的低品位、高钙、高氧化率氧化锌矿;矿石中的主要有用矿物为菱锌矿和异极矿,主要脉石矿物为方解石、石英、白云石和褐铁矿;矿石性脆,在碎矿、磨矿过程中极易泥化,对有用矿物的分选极为不利。
     论文在考查矿石性质的基础上,对矿石进行了重选和浮选探索试验,研究表明,重选能获得品位较高的精矿产品,但在碎矿和磨矿过程中极易产生大量次生矿泥,而大量的细粒级矿物采用重选法难于回收,从而造成锌的回收率极低。因此,本论文对矿石进行了硫化-胺浮选探索试验,试验结果显示,配合采用改性胺类捕收剂HHA、硫化剂TZ-1、水玻璃和六偏磷酸钠的组合抑制剂能在保锌脱钙的前提下实现锌的初步富集,为后续的湿法工艺提供优质的原料。
     为了优化浮选工艺,本论文分别采用全粒级浮选工艺和预先脱泥浮选工艺进行了对比试验研究。全粒级浮选的最佳浮选条件为:磨矿细度85%-74μm,浮选硫化矿时,黄药用量为100g/t,松醇油用量为60g/t,浮选氧化矿时,混合抑制剂用量为1200g/t、硫化剂用量为15000g/t,捕收剂用量为800g/t,浮选指标为:硫化矿含锌品位为8.39%,回收率为5.24%,氧化锌粗精矿含锌品位为15.28%,回收率为85.80%,总锌回收率91.04%,氧化钙的脱除率为72.12%;脱泥浮选的最佳浮选条件为:首先脱除原矿中-20μm粒级产率为20%的原生矿泥后,将+20μm的原矿磨至细度为89%-74μm,浮选硫化矿时,黄药用量为100g/t,松醇油用量为60g/t,浮选氧化矿时,组合抑制剂用量为900g/t、硫化剂TZ-1用量为8000g/t、捕收剂用量为900g/t,浮选指标为:硫化矿含锌品位为7.92%、回收率3.02%,氧化锌粗精矿含锌品位为18.19%、回收率72.47%,矿泥含锌品位为7.01%、回收率17.88%,锌总回收率为95.20%,氧化钙脱除率为63.66%,初步达到了该氧化锌矿的保锌脱钙预富集的目的。
     为了考查选冶工艺流程的可行性,本论文重点对预先脱除的原生矿泥和氧化锌粗精矿产品进行了酸浸试验,浸出结果表明,在硫酸浓度为80g/L、浸出时间为60min、液固比为6:1、搅拌转速为400r/min条件下,氧化锌粗精矿常温浸出率为92.64%,酸耗为2.55t/t.Zn,而对预先脱除的矿泥,在硫酸浓度为200g/L、浸出时间为50min、液固比为6:1、搅拌转速为400r/min的浸出条件下,其常温浸出率为90.32%,酸耗为8.04 t/t.Zn。这说明对原矿含锌7.47%,氧化钙含量为22.23%的低品位高钙氧化锌矿采用“预先脱泥-保锌脱钙预富集-酸法浸锌”的选冶联合工艺流程,能得到全流程总锌回收率为85.35%的良好经济技术指标。
     为了查明浮选药剂对矿物表面的作用规律,论文重点研究了调整剂的联合作用,初步查明了碳酸钠的使用有利于异极矿的浮选,六偏磷酸钠和水玻璃的联合使用能强化对脉石矿物方解石和石英的抑制作用。
Utilization of low grade and high caium zinc oxide ore has become a world challenge for the mineral processing area, so systematic mineral processing experiments were carried out to extract zinc in the low grade high caium zinc oxide ore from LanPing, and good concentrate index was obtained, furthermore a few flotation reaction mechanism were investigated too.
     Process mineralogy investigate of the ore indicated the ore contains 7.47% of zinc, oxygenation rate is 93.93%, CaO grade is 22.23%, is a typical low grade, high oxygenation rate, high CaO content zinc oxide ore. The mainly available minerals of the ore are hemimorphite and smithsonite,the mainly gangue minerals of the ore are calcite, quartz, dolomite, limonite and so on.The ore is fragile, in the process of crushing and grinding could easily be heavy slliming,that is unfavourable for the flotation of available zinc oxide ore.
     Based on the process mineralogy investigate of the ore, gravity experiments and flotation experiments were carried out to explore the washability of the ore, results show that although gravity separation could obtain high grade rough zinc oxide concentrate, but large amount of fine zinc mineras were lost in the tailing which is difficulty to recover. Sulphidation-amine flotation experiments show, the application of collector HHA, sulfurizing agent TZ-1, use sodium silicate in combination with sodium hexametaphosphate as depressor, could not only preconcentrate the zinc grade and efficiently remove most of alkalescent gangue minerals, but could also supply superior quality material for the sulfuric acid leaching.
     Both "whole grain flotation" and "predesliming flotation" flowsheet were adopted to optimizing the flotation condition. Results show the optimal processing parameters of whole grain flotation flowsheet were:grinding fineness of 85%-74μm, sulphide ore flotation condition were xanthate dosage of 100g/t, pine wine oil dosage of 60 g/t, zinc oxide ore flotation condition were sulfurizing agent TZ-1 dosage of 15000g/t, HHA dosage of 800g/t. depressor dosage of 1200g/t, under these optimal flotation condition, flotation index were:the grade of rough zinc oxide concentrate was 15.28%, which recovery was 85.80%. the grade of rough sulphide concentrate was 8.39%, which recovery was 5.24%,total zinc recovery was 91.04%, furthermore 72.12% of CaO were concentrated in the tailing. As the dosage of whole grain flotation was too high, pre-desliming flotation processing was consequently adopted. Results indicated the optimal flotation condition of predesliming flotation were:after removing 20% yield of-20μm sliming, the oversize product were grinded to fineness of 89%-74μm, sulphide ore flotation condition were xanthate dosage of 100g/t, pine wine oil dosage of 60 g/t, oxide ore flotation condition were depressor dosage of 1200g/t, sulfurizing agent dosage of 8000g/t, HHA dosage of 900g/t, under these optimal flotation condition the pre-desliming flotation index were:the grade of rough zinc oxide concentrate was 18.19%, which recovery was 72.47%, the grade of rough sulphide concentrate was 7.92%, which recovery was 3.02%, the grade of slime was 7.01%, which recovery was 17.88%, the total zinc recovery of 95.07%, and 63.66% of CaO were concentrated in the tailing. Compare with the all fraction flotation flowsheet, predesliming flotation flowsheet was more suitable for ultilizing the zinc in the ore, for it's flotation agent consumption was lower.
     Acid leaching experiments were carried out in order to investigate the feasibility of predesliming-amine flotation-acid leaching technological process; Experiments were focused on rough concentrate and sliming. Results indicate that under the condition of:80g/L of sulfuric acid,liquid ratio of 6:1,leaching time of 60min, zinc leaching rate could reach to 92.64%,sulfuric consumption was 2.55t/t.Zn. Slime leaching experiments indicated under the condition of:200g/L of sulfuric acid, liquid ratio of 7:1, leaching time of 50min, zinc leaching rate could reach to 90.32%, sulfuric consumption was 8.04t/t. Zn.Adopted "cacium removal and preconcentrate by flotation-acid leaching" technical flowsheet ultilizing the zinc in the low grade high cacium zinc oxide ore, the total zinc recovery could reach to 85.35%.
     The reaction mechanism between mineral surface and flotation agent(focused on regulator) were studied via pure mineral flotation experiments, results shows the application of sodium carbonate obviously increased the recovery of hemimorphite, use sodium silicate in combination with sodium hexametaphosphate could strengthen the inhibitory action on calcite and quartz.
引文
[1]U.S.Geological Survey. Mineral Commodity Summaries[Z].2010:184-196
    [2]Wold Metal Statistics Yearbook[M].2009.
    [3]奚甡.世界铅锌资源开发现状及其利用[J].中国金属通报.2009,(37):32-35
    [4]马茁卉.我国锌资源形势分析及可持续利用[J].当代经济.2010,(10下):94-96
    [5]石道明,杨敖.氧化铅锌矿的浮选[M].云南科技出版社,1996,50-53
    [6]周怡玫,严志明,汤小军,邱允武.从四川某铅锌矿尾矿中回收氧化锌的选矿工艺研究[J].有色金属(选矿部分)2008,(1):11-15
    [7]杨敏,周怡玫,汤小军,王宏亮.浮选脱泥选别某难选氧化锌矿试验研究[J].有色金属(选矿部分).2010,(4):5-8
    [8]王宏菊,刘全军,皇甫明柱,邓久帅.难选氧化锌矿浮选过程中脱泥作业的生产实践[J].有色金属(选矿部分).2009,(5):11-13
    [9]汪兆龙.某含大量易浮石英的氧化锌矿石的浮选[J].云南冶金.1995,(2):26-30
    [10]冉银华,杨玉珠.内蒙某氧化锌矿的选矿研究[J].云南冶金.2000,(5):10-13
    [11]罗琳.微细粒氧化铅锌矿复合活化疏水聚团浮选分离新工艺[J].国外金属矿选矿.2000,(12):7-9
    [12]张文彬,杨启明,戈保梁.氧化铅锌矿浮选—重选联合选矿工艺的改进[J].云南冶金.1989,(6):21-25
    [13]张积寿.电化学方法预处理矿浆时氧化铅锌矿物的浮选[J].有色金属(选矿部分).1988,(3):1-6
    [14]梁冬云,张志雄,许志华.白铅矿、菱锌矿晶体化学性质与硫化行为[J].广东有色金属学报.1992,(2):83-88
    [15]邱显扬,李松平,邓海波,何晓娟.菱锌矿加温硫化浮选动力学研究[J].有色金属(选矿部分).2007,(7):24-26
    [16]H·霍森尼,王海亮,童雄,李长根.用戊基钾黄药和己硫醇浮选菱锌矿.国外金属矿选矿.2007,(3):32.36
    [17]Douglas, R.Shaw.Dodecyl Mercaptan:A Superior Collector for Sulfide ores.Mining Engineering,1981,33(6):686-692
    [18]韩文静.絮凝浮选氧化铅锌矿的理论与实践[J].中国矿山工程.2011,(1):22-24
    [19]谭欣,李长根.螯合捕收剂CF对氧化铅锌矿捕收性能初探[J].有色金属(选矿部分).2002,(4):31-36
    [20]邱允武,周怡玫,汤小军,杨敏.新型螯合捕收剂E-5浮选氧化锌的研究[J].有色金属(选矿部分).2007,(4):43-46
    [21]李三可.凡口铅锌矿开发闪速浮选的前景[J].工程设计与研究.1989,(3):15-19
    [22]法克清,王淑秋,张心平.应用闪速浮选技术处理某铜镍矿石的研究[J].矿冶.1991,(3):11-14
    [23]陈世明,瞿开流.兰坪氧化锌矿石处理方法探讨[J].云南冶金.1998,(10):31-34
    [24]蓝卓越,胡岳华,黎维中.低品位氧化锌矿硫酸浸出工艺研究[J].矿冶工程.2002,(3):63-65
    [25]林柞彦,华一新.高硅氧化锌矿硫酸浸出的工艺及机理研究[J].有色金属(冶炼部分).2003,(5):9-11
    [26]Hua Yixin, Lin Zuoyan, Yuan Zhenlin. Application of microwave irradiation to quick leach of zinc silicate ore[j]. Minerals Engineering,2002(15):451-459
    [27]刘红卫,蔡江松,王红军,张登凯.低品位氧化锌矿湿法冶金新工艺研究[J].有色金属(冶炼部分).2005(5):29-31
    [28]杨大锦,谢刚,贾云芝,杨德明,彭建蓉.低品位氧化锌矿堆浸实验研究[J].过程工程学报.2006,(2):59-62
    [29]刘三军,欧乐明,冯其明,张国范,卢毅屏.氧化锌矿的碱法浸出研究[J].矿产保护与利用.2004,(8):39-43
    [30]蒋崇文,罗艺,钟宏.低品位氧化锌矿氨一碳酸氢铵浸出制备氧化锌工艺的研究[J].精细化工中间体.2010,(6):54-56
    [31]陈晔,陈建华,覃华.胺类捕收剂对异极矿等4种矿物浮选行为的影响[J].矿业研究与开发:32-34
    [32]黄毓玫等.氧化铅锌矿石新型浮选药剂-磷胺六号和醚胺.氧化铅锌矿选冶学术交流会论文集.1985
    [33]严小陵.氧化铅锌矿石浮选的若干问题[J].云南冶金.1985,(4):21-29
    [34]朱建光,赵景云.6RO-X系列捕收剂浮选氧化铅锌矿[J].湖南冶金.1991,(5):14-17
    [35]朱建光,赵景云.6RO-X系列捕收剂浮选水锌矿试验[J].湖南冶金.1991,(1):5-8
    [36]赵景云,朱建光.水杨羟肟酸浮选菱锌矿和硫酸铅试验[J].有色属.1991.(11):27-32
    [37]邱允武,周怡玫,汤小军,杨敏.新型螯合捕收剂E-5浮选氧化锌的研究[J].有色金属(选矿部分).2007,(4):43-46
    [38]伍喜庆,朱建光.苯甲异羟肟酸浮选菱锌矿及其机理[J].矿冶程.1991,(6):28-31
    [39]何晓娟,程德明,宫中桂.螯合型捕收剂辛基羟肟酸浮选氧化锌矿机理的研究[J].广东有色金属学报.1991,(3):1-6
    [40]S.Hamid Hosseimi, Eric Forssberg.Physicochemical studies of smithsonite flotation using mixed anionic/cationic collector.Minerals Engineeering[J].2007,(20).621-624
    [41]文书明,张文彬,刘邦瑞.无机硫代类活化剂对异极矿胺法浮选的影响[J].昆明工学院学报.1994,(5):112-114
    [42]张覃,唐云.氧化锌矿石活化浮选行为的观察[J].贵州工业大学学报,1994,(5):89-91
    [43]羊依金,刘邦瑞,冷娥.用二甲酚橙活化异极矿的研究[J].云南冶金,1992,(2):35-38
    [44]文书明,张文彬,刘全军乙二胺活化菱锌矿的浮选试验研究[J].昆明工学院学报.1994,(3):73-75
    [45]羊依金,刘邦瑞,冷娥.羟肟酸活化异极矿浮选的研究[J].云南冶金.1992,(3):5-8
    [46]吴卫国,孙传尧,朱永揩.五种有机螯合剂活化菱锌矿作用机理研究[J].矿冶.2007,(3):17-21
    [47]冷娥,汪伦,刘邦瑞.应用有机螯合捕收剂活化异极矿的研究[J].有色金属.1991,(2):45-49
    [48]汪伦,冷娥,刘邦瑞.用水杨醛肟作活化剂,黄药作捕收剂浮选氧化锌矿的研究[J].昆明工学院报.1991,(8):31-34
    [49]胡岳华,徐竞,罗超启,袁诚.菱锌矿/方解石胺法浮选溶液化学研究[J].中南工业大学学报.1995,(10):590-593
    [50]陈华强.几种无机/有机抑制剂对方解石浮选抑制行为的研究[J].四川有色金 属.1998,(2):42-45
    [51]汪兆龙,朱从杰,严小陵.胺法浮选菱锌矿的脉石抑制剂研究[J].云南冶金.1993,(1):16-22
    [52]张心平.氧化铅锌矿石浮选新药剂的研究[J].矿冶.1996,5(3):40-45
    [53]A.M.马拉比尼等.抑制剂对氧化锌矿物浮选的影响[J].国外金属矿选矿1995.(8)16-24
    [54]R.Herrera Urbine,J.J.Sotillo,D.W.Furestenau.Effect of sodium sulfide additions on the pulp potential and amyl xanthate flotation of cerussite and galena[J].International Journal of mineral processing,1999,55(3):157-170
    [55]M.Irannajad,M.Ejtemaei,M.Gharabaghi.The effect of reagents on selective flotation of smithsonite-calcite-quartz[J].Minerals Engineering,2009,22(9-10):766-711
    [56]王淀佐,胡岳华.浮选溶液化学[M].长沙:湖南科学技术出版社,1998:19-24
    [57]C.A.Perera, A.E.C.Peres. Reagents in calamine zinc ores flotation[J]. Minerals Engineering,2005,18(2):275-277
    [58]A.Sayilgan, A.I.Arol. Effect of carbonate alkalinity on flotation behavior of quartz [J]. International Journal of Mineral Preocessing,2004,74(1-4):233-238
    [59]M.O.Silvestre, C.A.Pereira, R.Galery, etal. Dispersion effect on a lead-zinc fulphide ore flotation [J]. Minerals Engineering,2009(9-10):752-758
    [60]朱玉霜,朱建光.浮选药剂的化学原理[M].中南工业大学出版社:324-334
    [61]A.H.Navidi Kashani,F.Rashchi. Seperation of oxidized zinc minerals from tailings: Influence of floatation reagents [J]. Minerals Engineering,2008,21(12-14):92-97
    [62]Fernanda Andreola, Elena Castellini, Tiziano Manfredini. The role of sodium hexametaphosphate in the dissolution process of kao linite and kaolin[J]. Journal of the European Ceramic Society,2004,24(7):2113-2124
    [63]A.M.Vieira, A.E.C.Peres.The effect of amine type, pH, and size range in the flotation of quartz[J].Minerals Engineering,2007,20(10):1008-1013
    [64]卢寿慈.矿物浮选原理[M].北京:冶金工业出版社,1998,118-119

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700