用户名: 密码: 验证码:
ω-醇溶蛋白基因的克隆及通过RNAi抑制小麦α-醇溶蛋白基因家族表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦醇溶蛋白主要赋予面粉的粘性。目前,已从普通小麦(Triticum aestivum)中克隆了大量的α-、γ-醇溶蛋白基因,但是已克隆的ω-醇溶蛋白基因数量还很少。根据小麦属ω-醇溶蛋白基因设计了一对简并引物,以体细胞杂种渐渗系Ⅱ-12及其亲本小麦Jinan 177和十倍体长穗偃麦草的gDNA为模板,扩增得到了16个ω-醇溶蛋白基因序列,长度变化为924~1146bp。其中,6个序列中因为含有编码框内提前终止密码子,因此可能是假基因。这些序列与已知的ω-醇溶蛋白基因序列有高度的相似性。通过分析ω-醇溶蛋白基因推导的氨基酸序列发现ω-醇溶蛋白由两侧短的N-端与C-端保守区及中间长重复可变区组成。系统进化分析表明这些ω-醇溶蛋白基因聚为三个亚家族:第一个包括来源于5个长穗偃麦草和1个Ⅱ-12的序列,表明至少有一个长穗偃麦草ω-醇溶蛋白基因通过体细胞杂交渗入Ⅱ-12中;第二个包括3个来自Ⅱ-12和6个来自于Jinan177的序列,它们都属于ARQ/E型ω-醇溶蛋白基因;第三个由三个来自于普通小麦的SRL型ω-醇溶蛋白基因组成。我们还发现,来自于第二亚家族的Ⅱ-12的一个ω-醇溶蛋白基因在其C端有一个Cys位点,这可能使其与面粉品质相关。所以我们预测,通过体细胞渐渗的方式使得杂种Ⅱ-12产生了新的ω-醇溶蛋白基因。
     乳糜泻(coeliac disease)是患者进食麦类食品后,对其中的醇溶谷蛋白不耐受而引起的慢性小肠吸收不良综合症,而α-醇溶蛋白含有大量可导致乳糜泻疾病的毒性肽段。本论文通过对已发布的α-醇溶蛋白基因进行聚类,找出它们保守性较强的片段,根据本实验室得到的一个来自于体细胞杂种渐渗系Ⅱ-12的α-醇溶蛋白基因设计引物,经PCR扩增得到保守性片段作为干扰α-醇溶蛋白基因家族的出发序列,并构建了RNA干扰真核表达载体p3301-Ubi-AR12与p3301-Ubi-AR34。通过农杆菌介导的转化方法,分别将上述两个载体转化小麦株系,经PCR筛选后,初步得到了30株阳性株系。利用酸性聚丙烯酰胺凝胶电泳分别对这三十株阳性株系的种子进行了醇溶蛋白组成的分析检测,发现其中有六株籽粒表现出明显的α-醇溶蛋白干扰现象。为进一步研究RNA干扰是否对植株的高、低分子量谷蛋白亚基产生影响,我们通过SDS-聚丙烯酰胺凝胶电泳对上述六株产生RNA干扰效应的植株进行分析,发现它们的HMW-GS组成与对照相比没有发生改变,而LMW-GS发生了一定程度的改变。这为进一步研究RNA干扰技术在小麦谷蛋白的功能提供了理论基础。
The wheat gliadins are mainly responsible for viscosity of dough. To date, a number ofα-andγ-gliadin genes have been cloned from common wheat, but only severalω-gliadin genes have been published on GenBank. A pair of degenerate PCR primers that targeted the entire coding sequence of the Triticeae co-gliadin genes was used to amplify the DNA of a somatic hybrid introgression line and its two parents Jinan177, a bread wheat genotype(Triticum aestivum L.) and a tall wheatgrass (Agropyron elongatum, 10x). Cloning and sequencing of the resulting amplicons identified 16 distinct sequences, ranging in length from 924 to 1146 bp. Six of the sequences represented pseudogenes. The sequences shared a high degree of homology to knownω-gliadin sequences. The primary structure of the deduced polypeptides comprised a short N-terminal and C-terminal conserved domain, and a long repetitive and variable domain. A phylogenetic analysis produced three major clades:the first contained five tall wheatgrass parent sequences and one introgression line sequence, suggesting the transfer of at least one tall wheatgrassω-gliadin gene into the introgression line; the second group clustered three introgression line sequences with six Jinan 177 sequences, both of these groups were populated by ARQ/E-typeω-gliadins; the third group comprised three bread wheat SRL-typeω-gliadins. The co-gliadin of one of the introgression lines in group 2 has a cysteine residue in its C-terminal domain which may allow it to be involved in the determination of end-use quality. We present that somatic hybridisation of bread wheat could introgress wild and produce novelω-gliadin genes in the introgression lines.
     Coeliac disease is a chronic enteropathy caused by intolerance to gluten proteins. There are many toxic peptides that can result in celiac disease in a-gliadins. In order to inhibit/decrease the expression of a-gliadin gene family, conserved fragments of all a-gliadin genes released were found by sequence aligned and one sequence from 11-12 possessed conserved fragments was selected to design the RNAi trigger sequences. Then they were used to construct the RNA interference eukaryotic expression vectors p3301-Ubi-AR12 and p3301-Ubi-AR34. As followed, both of them were transformed into the wheat strain respectively by using Agrobacterium-mediated transformation method. Thirty positive transgenic plants were obtained by PCR screening. Seeds of six plants presented apparently silencing of a-gliadins examined by acid-PAGE and band scan analysis compared with control. In order to investigate whether the composition and expression patterns of HMW-GS and LMW-GS were influenced by RNAi, SDS-PAGE profile was examined to analyse these positive lines in which present a-gliadins silencing. It was shown that the composition and expression patterns of LMW-GS were changed but HMW-GS not. It will provide useful information in further functional study of wheat gluten by RNAi.
引文
1. Anderson OD and Greene FC (1989) The characterization and comparative analysis of high molecular weight glutenin genes from genomes A and B of a hexaploid bread wheat. Theor Appl Genet 77:689-700
    2. Anderson OD, Greene FC (1997) The a-gliadin gene family. Ⅱ. DNA and protein sequence variation, subfamily structure, and origins of pseudogenes. Theor Appl Genet 95:59-65
    3. Anderson OD, Hsia CC, Torres V (2001) The wheat γ-gliadin genes:characterization of ten new sequences and further understanding of γ-gliadin family structure. Theor Appl Genet 103:323-330
    4. Anderson OD, Litts JC, Gautier MF, Greene FC (1984) Nucleic acid sequence and chromosome assignment of a wheat storage protein gene. Nucl Acids Res 12(21):8129-8144
    5. Anderson OD, Litts JC, Greene FC (1997) The a-gliadin gene family. I. characterization of ten new wheat a-gliadin genomic clones, evidence for limited sequence conservation of flanking DNA, and Southern analysis of gene family. Theor Appl Genet 95:50-58
    6. Arentz-Hansen H, Korner R, Molberg 0, Quarsten H, Vader W, Kooy YMC, Lundin KEA, Koning F, RoepstorV P, Sollid LM, McAdam SN (2000) The intestinal T-cell response to a-gliadin in adult celiac disease is focused on a single deamidated glutamine targeted by tissue transglutaminase. J Exp Med 191:603-612
    7. Arentz-Hansen H, McAdam SN, Molberg Φ, Fleckenstein B, Lundin KEA, Jorgensen TJD, Jung G, RoepstorV P, Sollid LM (2002) Coeliac lesion T cells recognize epitopes that cluster in regions of gliadins rich in proline residues. Gastroenterology 123:803-809
    8. Bartels D, Altosaar J, Harberd NP, Barker RF, Thompson RD (1986) Molecular analysis of gamma-gliadin gene families at the complex Gli-1 locus of bread wheat (T. aestivum L.). Theor Appl Genet 72:845-853
    9. Baulcombe D (2004) RNA silencing in plants. Nature 431:356-363
    10. Becker D, Folck A, Knies P, Lorz H, Wieser H (2007) Silencing the a-gliadins in hexaploid bread wheat.9th Annual Gluten Workshop. Gluten proteins pp.86-89.
    11. Bernstein E, Denli AM, Hannon GJ (2001) The rest is silence. RNA 7:1509-1521
    12. Bethune MT, Khosla C (2008) Parallels between Pathogens and Gluten Peptides in Celiac Sprue. PLoS Pathogens 4(2):0001-0016
    13. Briani C, Samaroo D, Alaedini A (2008) Celiac disease:from gluten to autoimmunity. Autoimmunity reviews 7:644-650
    14. Chen F, Li Z, Wu Y, Zhang H Xia G. (2008c) Location and prokaryotic expression of low-molecular-weight (LMW) glutanin subunit gene 177-21 from Triticum aestivum. Biol Plantarum 52:275-280
    15. Chen F, Xu C, Chen M, Wang Y, Xia G (2008a) A new a-gliadin gene family for wheat breeding:somatic introgression line 11-12 derived from Triticum aestivum and Agropyron elongatum. Mol Breeding 22(4):675-685
    16. Chen F, Zhao F, Liu S, Xia G (2009) The y-gliadin gene content of a derivative from a somatic hybrid between bread wheat and tall wheatgrass. Mol Breeding 24:117-126
    17. Chen F, Zhao F, Xu C Xia G (2008b) Molecular characterization of LMW-GS genes from a somatic hybrid introgression line 11-12 between Triticum aestivum and Agropyron elongatum in relation to quick evolution. J Genet Genomics 35:743-749
    18. Chen F., Luo Z., Zhang Z., Xia G. and Min H. (2007) Variation and potential value in wheat breeding of low-molecular-weight glutenin subunit genes cloned by genomic and RT-PCR in a derivative of somatic introgression between common wheat and Agropyron elongatum. Mol Breed 21:141-152
    19. ChengM, Fry JE, Pang SI, Zhou H, Horinaka CM, Duncan DR, Conner TW, Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971-980
    20. Christensen AB, Thordal-Christensen H, Zimmermann G, Gjetting T, Lyngkjaer MF, Dudler R, Schweizer P (2004) The Germinlike protein GLP4 exhibits superoxide dismutase activity and is an important component of quantitative resistance in wheat and barley. Mol Plant Microbe Interact 17:109-117
    21. Dachkevitch T, Redaelli R, Biancardi AM, Metakovsky EV, and Pogna NE (1993) Genetics of gliadins coded by the group 1 chromosomes in the high quality bread wheat cultivar Neepawa Theor Appl Genet 86:389-399
    22. Denli AM, Hannon GJ (2003) RNAi:an ever-growing puzzle. Trends Biochem Sci 28:196-201
    23. Dong YS, Zheng DS (2000) Genetic resource of Chinese wheat, pp.198-201. China agriculture press, Beijing
    24. Dupont FM, Vensel W, Encarnacao T, Chan R, Kasarda DD (2004) Similarities of omega gliadins from Triticum urartu to those encoded on chromosome 1A of hexaploid wheat and evidence for their post-translational processing. Theor Appl Genet 108:1299-1308
    25. Eamens A, Wang MB, Smith NA, Waterhouse PM (2008) RNA silencing in plants:Yesterday, today, and tomorrow. Plant Physiol 147:456-468
    26. Ensari A, Marsh MN, Moriarty KJ, Moore CM, Fido RJ, Tatham AS (1998) Studies in vivo of co-gliadins in gluten sensitivity (celiac sprue disease). Clin Sci (Lond) 95:419-424
    27. Feng D, Chen F, Zhao S, Xia GM (2004) High-molecular weight glutenin subunit genes in decaploid Agropyron elongatum. Acta Bot Sin 46:489-496
    28. Fire A, Xu S, Montgomery M K (1998) Potentand specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806-811
    29. Fu DL, Uauy C, Blechl A, Dubcovsky J (2007) RNA interference for wheat functional gene analysis. Transgenic Res 16:689-701
    30. Galili G, and Feldman M (1984) Mapping of glutenin and gliadin genes located on chromosome 1B of common wheat. Mol Gen Genet 193:293-298
    31. Gao S, Gu YQ, Wu J, Coleman-Derr D, Huo N, Crossman C, Jia J, Zuo Q, Ren Z, Anderson OD, Kong X (2007) Rapid evolution and complex structural organization in genomics regions harboring multiple prolamine genes in the polyploidy wheat genome. Plant Mol Biol 65:189-203
    32. Gil-Humanes J, Piston F, Tollefsen S, Sollid LM, Barro F (2010) Effective shutdown in the expression of celiac disease-related wheat gliadin T-cell epitopes by RNA interference. Proc Natl Acad Sci U S A 107(39):17023-17028
    33. Gu YQ, Crossman C, Kong XY, Luo MC, You FM, Coleman-Derr D, Dubcovsky J, Anderson OD (2004) Genomic organization of the complex a-gliadin gene loci in wheat. Theor Appl Genet 109:648-657
    34. Halttunen T, Maki M (1999) Serum immunoglobulin A from patients with celiac disease inhibits human T84 intestinal crypt epithelial cell differentiation. Gastroenterology 116:566-72
    35. Hammond SM, Bernstein E, Beach D, Hannon GJ (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293-296
    36. Han Y, Grierson D (2002) The influence of inverted repeats on the production of small antisense RNAs involved in gene silencing. Mol Genet Genomics 267:629-635
    37. Harberd NP, Bartels D, and Thompson RD (1985) Analysis of the gliadin multigene loci in bread wheat using nullisomic-tetrasomic lines. Mol Gen Genet 198:234-242
    38. Harberd NP, Bartels D.Thompson R D (1986) DNA restriction-fragment variation in the gene family encoding high molecular weight (HMW) glutenin subunits of wheat. Biochem Genet 24:579-596
    39. Hassania ME, Sharifloua MR, Gianibellid MC, Sharp PJ (2008) Characterisation of a co-gliadin gene in Triticum tauschii. Journal of Cereal Science 47:59-67
    40. He GY, Jone HD, D'Ovidio R, Masci S, Chen M, West J, Butow B, Anderson OD, Lazzeri P, Fido R, Shewry PR (2005) Expression of an extended HMW subunit in transgenic wheat and the effect on dough mixing properties. Journal of Cereal Science 42:225-231
    41. Herberd NP, Bartels D, Thompson RD (1985) Analysis of the gliadin multigene loci in bread wheat using nullisomic-tetrasomic lines. Mol Gen Genet 198:234-242
    42. Hiro Nakamura (1999) Ident ificat ion of alleles for complex gene loci Glu-A1, Glu-B1, and Glu-D1, wich code for high molecular weight subunit s of glutenin in Japanese hexaploid wheat varieties. J Agrio Food Chem 47:5273—5277
    43. Hsia CC, Anderson OD (2001) Isolation and characterization of wheat ω-gliadin genes. Theor Appl Genet 103:37-44
    44. Jackson EA, Holt LM, and Payne PI (1983) Characterization of high molecular weight gliadin and low molecular weight glutenin subunits of wheat endosperm by two-dimensional electrophoresis and the chromosomal localization of their controlling genes. Theor Appl Genet 66:29-37
    45. Jiang LL, Zhang BL, Liu YS (2009) Is adult celiac disease really uncommon in Chinese? J Zhejiang Univ Sci B 10(3):168-171
    46. Kasarda DD (1989) Glutenin structure in relation to wheat quality. In:Pomeranz Y (ed) Wheat is unique. American Association of Cereal Chemists pp 277-302
    47. Kasarda DD, Autran JC, Lew JL, Nimmo CC, Shewry PR (1983) Nterminal amino acid sequences of co-gliadins and ω-secalins. Biochim Biophys Acta 747:138-150
    48. Kumar S, Tamura K, and Nei M (2004) MEGA3:Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Briefings in Bioinformatics 5:150-163
    49. Lafiandra D, Kasards DD, Morris R (1984) Chromosomal assignment of genes coding for the wheat gliadin protein components of the cultivars Cheyenne and Chinese Spring by two dimensional (two-pH) electrophoresis. Theor Appl Genet 68:531-539
    50. Li JR, Zhao W, Li QZ, Ye XG, An BY, Li X, Zhang XS (2005) RNA silencing of Waxy gene results in low levels of amylose in the seeds of transgenic wheat(Triticum aestivum L). Acta Genet Sin 32:846-854
    51. Liu S, Zhao S, Chen F, Xia G (2007) Generation of novel high quality HMW-GS genes in two introgression lines of Triticum aestivum/Agropyron elongatum. BMC Biol Evol 7:76-83
    52. Louka AS, Sollid LM (2003) HLA in coeliac disease:unravelling the complex genetics of a complex disorder. Tissue Antigens 61:105-117
    53. Martin JM, Meyer FD, Smidansky ED, Wanjugi H, Blechl AE, Giroux MJ (2006) Complementation of the pina(null) allele with the wild type Pina sequence restores a soft phenotype in transgenic wheat. Theor Appl Genet 113(8):1563-1570
    54. Masci S, Egorov TA, Ronchi C, Kuzmicky DD, Kasarda DD, Lafiandra D (1999) Evidence for the presence of only one cysteine residue in the D-type low molecular weight subunits of wheat glutenin. J Cereal Sci 29:17-25
    55. Masci S, Lafiandra D, Porceddu E, Lew EJL, Tao HP, Kasarda DD (1993) D-glutenin subunits:N-terminal sequences and evidence for the presence of cysteine. Cereal Chem 70:581-585
    56. Masoudi-Nejad A, Nasuda S, Kawabe A, and Endo TR (2002) Molecular cloning, sequencing, and chromosome mapping of a 1A-encoded co-type prolamin sequence from wheat. Genome 45:661-669
    57. Matsuo H, Kohno K, Morita E (2005) Molecular cloning, recombinant expression and IgE-binding epitope of ω-5 gliadin, a major allergen in wheat-dependent exercise-induced anaphylaxis. The Federation of European Biochemical Societies Journal 272:4431-4438
    58. Matysiak-Budnik T, Candalh C, Dugave C, Namane A, Cellier C, Cerf-Bensussan N, Heyman M (2003) Alterations of the intestinal transport and processing of gliadin peptides in celiac disease. Gastroenterology 125:696-707
    59. McGough N and Cummings JH (2005) Coeliac disease:a diverse clinical syndrome caused by intolerance of wheat, barley and rye. Proceedings of the Nutrition Society 64:434-450
    60. Meins F, Si-Ammour A, Blevins T (2005) RNA silencing systems and their relevance to plant development. Annu Rev Cell Dev Biol 21:297-318
    61. Metakovsky EV, Akhmedov MG, and-Sozinov AA (1986) Genetic analysis of gliadinencoding genes reveals gene clusters as well as single remoted genes. Theor Appl Genet 73:278-285
    62. Miki D, Itoh R, Shimamoto K (2005) RNA silencing of single and multiple members in a gene family of rice. Plant Physiol 138:1903-1913
    63. Mowat AM (2003) Coeliac disease-a meeting point for genetics, immunology, and protein chemistry. Lancet 361:1290-1292
    64. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321-4325
    65. Okita TW, Cheesbrough V, Reeves CD (1985) Evolution and heterogeneity of the a-/β-type and γ-type gliadin DNA sequences. J Bio Chem 260:8203-8213
    66. Payne PI (1987) Genetics of wheat storage proteins and the effect of allelic variation on breadmaking quality. Annu Rev Plant Physiol 38:141-153
    67. Payne PI, Holt LM, Law CN (1981) Structural and genetical studies of the high molecular subunits of wheat glutenin. I. Allelic variation in subunits amongst varieties of wheat. Theor Appl Genet 60:229-236
    68. Payne PI, Holt LM, Worland AJ, Law CN (1982) Structural and genetical studies on the high-molecular-weight subunits of wheat glutenin. Part 3. Telocentric mapping of the subunit genes on the long arms of the homeologous group 1 chromosome. Theor Appl Genet 63:129-138
    69. Piston F, Marin S, Hernando A, Barro F (2009) Analysis of the activity of a y-gliadin promoter in transgenic wheat and characterization of gliadin synthesis in wheat by MALDI-TOF during grain development. Mol Breed 23:655-667.
    70. Piston F, Uauy C, Fu L, Langston J, Labavitch J, Dubcovsky J (2010) Down-regulation of four putative arabinoxylan feruloyl transferase genes from family PF02458 reduces ester-linked ferulate content in rice cell walls. Planta 231:677-691.
    71. Qi PF, Wei YM, Chen Q, Ouellet T, Ai J, Chen GY, Li W, Zheng YL (2011) Identification of novel alpha-gliadin genes. Genome 54 (3):244-252
    72. Rafalski JA (1986) Structure of wheat gamma-gliadin genes. Gene 43:221-229
    73. Reeves CD, Okita TW (1987) Analyses of α/β-gliadin genes from diploid and hexaploid wheats. Gene 52:257-266
    74. Regina A, Bird A, Topping D, Bowden S, Freeman J, Barsby T, Kosar-Hashemi B, Li Z, Rahman S, Morell M (2006) High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proc Natl Acad Sci USA 103:3546-3551
    75. Ruiz M and Carrillo JM (1993) Linkage relationships between prolamins genes on chromosomes 1A and 1B of durum wheat. Theor Appl Genet 87:353-360
    76. Sabelli PA, Shewry PR (1991) Characterization and organization of gene families at the Gli-1 loci of bread and durum wheats by restriction fragment analysis. Theor Appl Genet 83:209-216.
    77. Scheets K, Hedgcoth C (1988) Nucleotide sequence of a γ-gliadin gene:comparisons with other gamma-gliadin sequences show the structure of γ-gliadin genes and the general primary structure of γ-gliadins. Plant Science 57:141-150
    78. Schweizer P, Pokorny J, Schulze-Lefert P, Dudler R (2000) Double-stranded RNA interferes with gene function at the single-cell level in cereals. Plant J 24:895-903
    79. Shan L, Qiao S, Arentz-Hansen H, Molberg (?), Gray GM, Sollid LM, Khosla C (2005) Identification and analysis of multivalent proteolytically resistant peptides from gluten: implications for celiac sprue. J Proteome Res 4(5):1732-1741
    80. Shewry PR, Napier JA and Tatham AS (1995) Seed storage proteins:structures and biosynthesis. Plant Cell 7:945-956
    81. Shewry PR, Tatham AS (1997) Biotechology of wheat quality. J Sci Food Agric 73:397-406
    82. Sturgess R, Day P, Ellis HJ, Lundin KE, Gjertsen HA, Kontakou M, Ciclitira PJ (1994) Wheat peptide challenge in celiac disease. Lancet 343:758-761
    83. Sumner-Smith M, Rafalski JA, Sugiyama T, Soll M, and Soll D (1985) Conservation and variability of wheat α/β gliadin genes. Nucleic Acids Res 11:3905-3916
    84. Tang GL, Galili G (2004) Using RNAi to improve plant nutritional value:from mechanism to application. Trends in Biotechnology 22:463-469
    85. Tijsterman M, Ketting RF, Plasterk RHA (2002) The genetics of RNA silencing. Annu Rev Genet 36:489-519
    86. Vaccino P, Becker HA, Brandolini A, Salamini F, Kilian B (2009) A catalogue of Triticum monococcum genes encoding toxic and immunogenic peptides for celiac disease patients. Mol Genet Genomics 281:289-300
    87. Vader W, Stepniak T, Bunnik M, Kooy M, de Haan W, Drijfhout W, van Veelen PA, Koning F (2002a) Characterization of cereal toxicity for celiac disease patients based on protein homology in grains. Gastroenterology 125:1105-1113
    88. Vader W, Kooy Y, van Veelen P, de Ru A, Harris D, Benckhuijsen W, Pena S, Mearin L, Drijfhout JW, Koning F (2002b) The gluten response in children with recent onset celiac disease. A highly diverse response towards multiple gliadin and glutenin derived peptides. Gastroenterology 122:1729-1737.
    89. Wang J, Xiang F, Xia G (2004) Transfer of small chromosome fragments of Agropyron elongatum to wheat chromosome via asymmetric somatic hybridization. Sci China Series C 47(5):434-441
    90. Weir B, Gu X, Wang MB, Upadhyaya N, Elliott AR, Brettell RIS (2001) Agrobacterium tumefaciens-mediated transformation of wheat using suspension cells as a model system and green fluorescent protein as a visual marker. Aust J Plant Physiol 28:807-818
    91. Wieser H, Koehler P, Folck A, Becker D (2007) Characterization of wheat with strongly reduced α-gliadin content. In:Lookhart GL, Ng PKW (eds) Gluten proteins. AACC, St Paul Minn, pp 13-16
    92. Wieser H, Koehler P, Folck A, Becker D (2007) Characterization of wheat with strongly reduced a-gliadin content.9th Annual Gluten Workshop.Gluten proteins pp.13-16
    93. Wu H, Sparks C, Amoah B, Jones HD (2003) Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Rep 21:659-666
    94. Xia G, Xiang FN, Zhou AF, Wang H, He SX Chen HM (2003) Asymmetric somatic hybridization between wheat (Triticum aestivum L.) and Agropyron elongatum (Host) Nevski. Theor Appl Genet 107:299-305
    95. Xie ZZ, Wang CY, Wang K, Wang SL, Li XH, Zhang Z, Ma W, Yan YM (2010) Molecular characterization of the celiac disease epitope domains in a-gliadin genes in Aegilops tauschii and hexaploid wheats(Triticum aestivum L.). Theor Appli Genet 121 (7):1239-1251
    96. Xue ZY, Zhi DY, Ren W, Xia GM (2004b) Transgenic plant and progenies of wheat with barley leaf-type aphal-thionin gene mediated by Agrobacterium tumefaciens. High Tech Lett 14:34-38
    97. Xue ZY, Zhi DY, Xue GP, Zhang H, Zhao YX, Xia GM (2004a) Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L) expressing a vacuolar Na+/H+antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci 167:849-859
    98. Zhao TJ, Zhao SY, Chen HM, Zhao QZ, Hu ZM, Hou BK, Xia GM (2006) Transgenic wheat progeny resistant to powdery mildew generated by Agrobacterium inoculums to the basal portion of wheat seedling. Plant Cell Reports 25,1199-1204
    99.高梅,张国权,魏益民(2007)小麦醇溶蛋白A-PAGE电泳鉴定技术的分析。西北农林科技大学学报:自然科学版35(9):53-57
    100.耿洪伟,张庆祝,何中虎,夏兰芹,陈新民,王德森,曲延英(2006)转外源puroindoline基因小麦的获得与检测。中国农业科学39(9):1751-1755
    101.侯义龙(2010)RNA干扰及其在植物上的应用研究进展与展望。信阳师范学院学报23(2):316-320
    102.柳觐,相微微,张怀刚(2009)RNA干扰技术在小麦中的应用研究进展。麦类作物学报29(4):725-72
    103.施农农,何光源,李克秀,Jones HD, Shewry PR(2005)基因枪法获得优质HMW亚基基因表达的转基因小麦。中国农业科学38(5):874-881
    104.汪越胜,柯涛,李三和,覃建兵,刘勇,何光源(2005)转基因小麦后代HMW-GS组成的变异研究。作物学报31(4):529-531
    105.张晓东,梁荣奇,陈绪清,杨凤萍,张立全(2003)优质HMW谷蛋白亚基转基因小麦的获得及其遗传稳定性和品质性状分析。科学通报48(5):474-479
    106.张晓科,李耀科,魏益民(2002)小麦贮藏蛋白特性及其遗传转化。麦类作物学报22(2):78-82

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700