用户名: 密码: 验证码:
汶川大地震对紫坪铺工程边坡稳定性影响的监测分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
四川紫坪铺水利枢纽工程是岷江上游一座以灌溉和供水为主,兼有发电、防洪等综合效益的大型水利工程。右岸为一三面被河曲围绕的条形山脊,构造上为一沙金坝向斜,工程水工建筑物均布置于右岸,施工期开挖形成多个高陡岩质边坡。由于边坡内存在断层、层间剪切破碎带等软弱结构面,使边坡的稳定性问题尤为突出。紫坪铺坝区基本地震烈度为Ⅶ度,5.12汶川大地震对距震中仅17km的紫坪铺工程造成了Ⅸ度的影响,各工程边坡均受到了很大的影响,但所有边坡均未产生整体失稳,岩质边坡在强烈地震作用下的变形破坏机理和抗震设计值得研究。
     本文按边坡地质结构类型将其分类,通过地震后的现场调查并结合边坡内设置的多点位移计、锚索测力计、测斜孔等监测成果,对强震作用下不同地质结构、支护措施边坡的变形差异以及分布特征进行分析。
     通过地震调查发现,支护边坡整体稳定性较好,仅坡体表面混凝土喷层出现少量裂缝,开挖范围之外未支护边坡出现塌方等现象。各边坡监测成果显示,锚索支护边坡变形量较小,从几毫米到十几毫米,锚杆、挂网喷护或框架梁支护部位坡体变形可达20mm以上,F3断层经过的泄洪洞出口边坡最大变形量达78mm,变形主要发生在主震时期,地震停止后变形即终止。
     震后多点位移计监测成果显示,边坡变形主要受支护措施、坡高、坡角、地层岩性、与断层带的关系等因素影响。对于反倾向结构边坡、顺层结构边坡,边坡的主要变形区域为层间剪切破碎带等软弱岩层,其他部位岩体随该部位岩体发生同步的变形;中倾横向边坡表面测点的位移增量最大,随孔深的增加位移增量减小,坡体内未出现明显的变形区域;由于存在F3断层,软岩边坡的整体变形均较大;覆盖层边坡变形主要发生在覆盖层内,边坡由基覆界面开始变形,随高程的增加变形逐渐增加,基岩内变形量较小。地震动荷载作用下锚索荷载发生一定的变化,荷载以增大为主,锚索荷载变化主要发生在主震期间,余震及后期的坡体蠕变使锚索荷载变化较小。
     测斜孔观测成果显示,对于中倾横向边坡,坡体主要发生蠕变变形,变形随高程的增加而增加,孔口累计合位移在20mm以内,坡体在层间剪切破碎带等软弱岩层面附近发生剪切变形;覆盖层边坡变形从基覆界面开始变形,覆盖层内发生蠕滑变形,变形量随高程的增加而增加,基岩内变形较小,测斜孔主要向坡外变形,变形向下游方向。
Sichuan Zipingpu water conservancy project, located in the upper stream of the Min Jing River, is a large scale water dam, being build for agricultural irrigation and civil water supply, it also have the functions like power generation, flood prevention, etc. Right bank is a thin and weak ridge, which is surrounded by river on three sides, is a structure of Shajinba syncline. All of the hydraulic structures are arranged in the right bank, a lot of high steep rock slopes are formed during excavating time. Because of the existence of weak structural planes, such as faults, interbeded shearing belts, the stability of slopes are quite obvious. The Wenchuan earthquake has broughtⅨdegrees earth intensity on Zipingpu hydraulic project, which is only 17km from the epicenter, the deformation characteristics and the stability of rock slopes under strong earthquake needed to be studied.
     In this paper, the author selected several slopes of Zipingpu conservancy project to analysis the influence of earthquake, those slopes contain discharging tunnel slope, water in-take and out-take slope, spillway slope, discharging tunnel slope in left-bank. In those slopes, we stalled multi-point extensometer, load cell, borehole inclinometer, etc. monitoring equipment, according to the monitoring results combine with the geostatistical site investigations, can analysis the deformation characteristics of slopes under different rock structure and support measure.
     Through the geostatistical site investigation, the stability of slopes with support measure are well, there are only several cracks on the surface of concrete spray layer, several point of collapse occur out the range of excavation and unsupport slopes. According to the monitoring results, the values of anchor supported slopes’s deformation are quite small, from a few millimeter to tens millimeter; the slopes with bolt, nets spray joint and frame beam supporting has a deformation more than 20mm, discharging tunnel slope’s maximum deformation come to 78mm through F3 fault, the deformation mainly occur in the major shock period, it instant stop after earthquake.
     According to the multi-point extensometer’s monitoring results,antidip stratified rock slope and bedding rock slope has a main deformation region, this is interbeded shearing belts and other weak structural planes, it takes most of deformation and other place has a synchronization with those; medium-dip transverse rock slope’s surface point has a maximum deformation, the values become smaller with the deep of hole become bigger, there aren’t existence the main deformation region; as soft rock slope, because F3 fault’s character are weak, it make the deformation quite big; accumulation slope’s deformation mainly occur in overburden, the deformation started at the interface between rock and overburden, the value ordinarily decreases with height.
     Anchor load increased under earthquake, the change of anchor mainly occur during the main shock period, aftershock and after creep of slope make a few deformation. Borehole inclinometer monitoring show, medium-dip transverse rock slope take a creep deformation increased with height, the ground displacement is below 20mm, there has a shear deformation during weak structural planes; accumulation slope’s displacement started at the interface of overburden, in overburden has a creep deformation, the displacement increase with height, borehole’s deformate to out of slope, it directed to the lower strctches.
引文
[1]李海波,蒋会军,赵坚,等.动荷载作用下岩体工程安全的几个问题[J].岩石力学与工程学报,2003,22(11): 1887-1891.
    [2]四川地震局. 1933年叠溪地震[M].成都:四川科学技术出版社,1983.
    [3]李树德,任秀生,岳升阳,等.地震滑坡研究[J].水土保持研究,2001,8(2):24-25.
    [4] Christopher R J. Kilburn, David N. Petley. Forecasting giant, catastrophic slope collapse: lessons from Vajont, Northern Italy[J]. Geomorpholigy,2003,54:21-32.
    [5]赵志峰.基于位移监测信息的岩石高边坡安全评价理论和方法研究[D].南京:河海大学,2007.
    [6]贾娟,汪益敏,林淑珍.不良地质路堑高边坡的施工模拟与监测分析[J].岩石力学与工程学报,2005,24(22):4106-4110.
    [7]罗志强.边坡工程监测技术[J].公路,2002,5(5):45-48.
    [8]国家电力公司成都勘测设计研究院.四川岷江紫坪铺水库工程初步设计报告(第三篇工程地质)[R],1994.
    [9]张勤,陈志坚.岩土工程地质学[M].郑州:黄河水利出版社,2000.
    [10]张倬元,王士天,王兰生.工程地质分析原理[M].北京:地质出版社,1994.
    [11]胡广韬.滑坡动力学[M].北京:地质出版社,1995.
    [12]周维恒.高等岩石力学[M].北京:水利电力出版社,1990.
    [13]薛守义.岩体边坡动力性研究[D].合肥:中国科学技术大学,1989.
    [14]胡广韬,毛新虎,石耀武.地震滑坡启程剧动的机理研究及离散元模拟[J].工程地质学报,2001,9(1):74-80.
    [15]伍法权,刘春玲,丁彦慧.地震边坡稳定性的工程地质分析[J].岩石力学与工程学报,2004,23(16):2792-2797.
    [16]陈天红.地震作用下岩质高边坡的非线性动力反应分析[D].西安:西安理工大学,2008.
    [17]刘红帅.岩质边坡地震稳定性分析方法研究[D].哈尔滨:中国地震局工程力学研究所,2006.
    [18]陈国兴.岩土地震工程学[M].北京:科学出版社,2007.08.
    [19] GB 18306-2001,中国地震动参数区划图[S].石家庄:河北省地震局,2008.
    [20] SL 203-97,核电站抗震设计规范[S].北京:中华人民共和国建设部,1998.
    [21] GB 50011-2001,建筑抗震设计规范[S].北京:中华人民共和国建设部,2001.
    [22] DL 5073-2000,水工建筑物抗震设计规范[S].北京:中国水利水电科学研究院,2000.
    [23] Newmark N. M. Effects of earthquakes on dams and embankment[J]. Geotechnique,1965,15(2):139-160.
    [24]黄志全.边坡工程非线性分析理论及应用[M].郑州:黄河水利出版社,2005.
    [25] Zienkiewicz O C. The finite Element Method[M]. London:McGraw-Hill,1977.
    [26]王泳嘉.边界元法在岩石力学中的应用[J].岩石力学与工程学报,1986,5(2):205-222.
    [27] Cundall P A. A computer model for simulation progressive large scale movements in bloky systems. Proceeding of the symposium of the International Society of Rock Mechanics. Nancy:France,1971,Ⅱ(18).
    [28] Goodman R E,,Shi G H. Block theory and its application to rock engineering [M]. New Jersey,1985.
    [29]汪茜.地震作用下顺层岩质边坡变形破坏机理研究[D].南京:河海大学,2010.
    [30]周蒂.国际数学地质届的盛会—记IAMG第25周年大会[J].物探化探计算技术,1994,16(1):89-92.
    [31]王兰生,张倬元.边坡地质工程理论与实践[M].成都:四川大学出版社,2009.
    [32] Halatchev Rossen A. Probabilitic stability analysis of structure considering tensile failure. 12WCEE,2000.
    [33]国家地震局,兰州地震研究所,宁夏自治区地震队. 1920年海源大地震[M].北京:地震出版社,1980.
    [34]钟立勋.中国重大地质灾害实例分析[J].中国地质灾害与防治学报,1999,10(3):1-10.
    [35]汪小刚,夏万仁,郭映龙,等.水电工程高边坡稳定问题研究现状和发展方向[J].水力发电,1994,(5):15-18.
    [36]黄润秋,张倬元,王士天.高边坡稳定研究现状及发展展望[J].水文地质工程地质,1991,18(1):31-34.
    [37]白云峰.工程地质[M].郑州:郑州大学出版社,2007.01.
    [38]夏才初.土木工程监测技术[M].北京:中国建筑工业出版社,2001.07.
    [39]杨志法,齐俊修,刘大安,等.岩土工程监测及监测系统问题[M].北京:海洋出版社,2004.08.
    [40]刘祖强,张正禄,邹启新,等.工程变形监测分析预报的理论与实践[M].北京:中国水利水电出版社,2008.12.
    [41]李迪,王德厚.水电工程岩体安全监测的发展[J].岩石力学与工程学报,2001,20(增):1623-1625.
    [42]刘平禄,周鸿汉.二滩水电站2号尾水渠边坡处理[J].水利发电,1993,(11):25-28.
    [43]夏才初,潘国荣.土木工程监测技术[M].北京:中国建筑工业出版社,2001.07.
    [44]白云峰.普通高等教育土木工程专业“十一五”规划教材工程地质[M].郑州:郑州大学出版社,2007.01.
    [45]湖南省水利水电勘测设计院.边坡工程地质[M].北京:水利水电出版社,1983.04.
    [46]毛彦龙,胡广韬,赵法锁.地震动触发滑坡体滑动的机理[J].西安工程学院学报,1998,20(4):46-48.
    [47]祁生文,伍法权,严福章,等.岩质边坡动力反应分析[M].北京:科学出版社,2007,10.
    [48]刘红帅,薄景山,刘德东.岩土边坡地震稳定性研究评述[J].地震工程与工程振动,2005,25(1):164-170.
    [49]刘立平,雷尊宇,周富春.地震边坡稳定分析方法综述[J].重庆交通学院学报,2001,20(3):83-88.
    [50] Keightley W O. Vibration tests of structure. Earthquake Engineering Research Laboratory. Caltech[M]. Pasadena,1963.
    [51] Keightley W O. Vibrational characteristics of an earth dam[J]. Bull Seism Soc Am,1966,56(6):1207-1226.
    [52] Okamoto S. et al. On the dynamic behavior of an earth dam during earthquake[M]. Proc,4 World Conf Earth Engrg,Santiago,1969.
    [53] Scott A. Ashford,Nicholas Sitar,John Lysmer,et al. To Pographic effects on the seismic response of steep slopes[J]. Bulletin of the Seismological society of America,1997,87(3):701-709.
    [54]刘春玲,祁生文,童立强,等.利用FLAC3D分析某边坡地震稳定性[J].岩石力学与工程学报,2004,23(6):2730-2733.
    [55]张建海,范景伟,何江达.用刚体弹簧元求解边坡、坝基动力安全系数[J].岩石力学与工程学报,1999,18(4):387-391.
    [56]刘君,孔宪京.卫生填埋场复合边坡地震稳定性和永久变形分析[J].岩土力学,2004,25(5):778-782.
    [57]卓家寿,章青.不连续介质力学问题的界面元法[M].北京:科学出版社,2000.
    [58]石根华.数值流形方法与非连续变形分析[M].北京:清华大学出版社,1997.
    [59]祁生文,伍法权,刘春玲,等.地震边坡稳定性的工程地质分析[J].岩石力学与工程学报,2004,23(16):2792~2797.
    [60]唐荣昌,韩渭宾.四川活动断裂与地震[M].北京:地质出版社,1993.
    [61]洪时中.汶川大地震基本特征概述[C].宋胜武,汶川大地震工程震害调查分析与研究.北京:地质出版社,2009:3-5.
    [62]黄润秋.“5.12”汶川地震地质灾害与地质环境概况[C].宋胜武,汶川大地震工程震害调查分析与研究.北京:地质出版社,2009:155-158.
    [63]郑声安,王仁坤,章建跃,等.汶川地震对岷江上游水电工程的影响分析[J].水力发电,2008,34(11):5–9.
    [64]彭仕雄,杨建,张世殊,等.紫坪铺水利枢纽工程震损地质调查分析研究[C].宋胜武,汶川大地震工程震害调查分析与研究.北京:地质出版社,2009:465-469.
    [65]彭仕雄,杨建.紫坪铺水利枢纽工程地震震害分析与修复设计[C].宋胜武,汶川大地震工程震害调查分析与研究.北京:地质出版社,2009:499-507.
    [66]吴成根,王磊.汶川大地震对紫坪铺面板堆石坝的影响及震后修复施工[C].宋胜武,汶川大地震工程震害调查分析与研究.北京:地质出版社,2009:514-524.
    [67]罗志强.边坡工程监测技术分析[J].公路,2008,(5):45–48.
    [68]中国水电顾问集团成都勘测设计研究院.紫坪铺水利枢纽工程重大工程地质问题研究[M].中国水利水电出版社,2006.
    [69]潘宏雨,马锁柱,刘连成.水文地质学基础[M].北京:地质出版社,2008.
    [70]成都理工大学地质灾害与地质环境保护国家专业实验室.四川岷江紫坪铺水利枢纽工程开挖边坡稳定性地质工程系统研究阶段报告(五),泄洪洞进口边坡岩体结构类型及失稳模式研究[R].成都:成都理工大学,2004.
    [71]杨绪波,黄润秋,沈军辉,等.紫坪铺电站2#泄洪洞进口边坡变形特征及其机理研究[J].岩石力学与工程学报,2005,24(15):2035-2040.
    [72]高鹏伟,罗晓薇,朱海亚,等.振弦式多点位移计在穿黄隧洞工程F3断层施工中的应用[J].海河水利,2010,(3):50-53.
    [73]黄秋香,汪家林.某水利枢纽工程泄洪洞进口边坡稳定性监测分析[J].防灾减灾工程学报,2005,25(4):401-405.
    [74]杜拱辰,米祥友.世纪之交的预应力新技术[M].北京:专利文献出版社,1998.11.
    [75]邓铁六,王清标,胡建明,等.振弦传感技术的新进展及新型锚索测力计[J].岩石力学与工程学报,2001,20(增):1769-1771.
    [76]王清标,吕爱钟,邓铁六.长效振弦式锚索测力计应用研究[J].岩土力学,2003,24(增):150-153.
    [77]成都理工大学地质灾害与地质环境保护国家重点实验室.四川岷江紫坪铺水利枢纽工程开挖边坡稳定性系统工程地质研究[R].成都:成都理工大学,2006.
    [78]苏春.紫坪铺水库泄洪洞进口高边坡加固设计[J].四川水利,2003,(6):29-31.
    [79]钟贤五,周先齐.预应力锚索在紫坪铺水利枢纽边坡工程中的应用[J].中国西部科技,2008,26(7):20-22.
    [80]杨志宏.紫坪铺工程岩质高边坡处理设计[J].四川水利发电,2006,25(4):22-26.
    [81]马玉梅,汪家林,徐湘涛.紫坪铺引水发电洞进水口边坡震后安全监测分析[J].地质灾害与环境保护,2010,22(1):46-50.
    [82]程良奎,李象范.岩土锚固·土钉·喷射混凝土—原理、设计与应用.北京:中国建筑出版社,2008.12.
    [83]张顶立,王悦汉,曲天智.夹层对层状岩体稳定性的影响分析[J].岩石力学与工程学报,2000,19(2):140–144.
    [84]韩立军,张茂林,贺永年.岩土加固技术[M].徐州:中国矿业大学出版社,2005.9.
    [85]徐湘涛,严丽娟,汪家林.紫坪铺水利枢纽引水发电洞进口边坡锚索预应力损失分析[J].地质灾害与环境保护,2005,16(2):207–211.
    [86]张金龙,徐卫亚,徐飞,等.深卸荷变形拉裂岩体锚索预应力损失规律研究[J].岩石力学与工程学报,2009,28(增2):3965–3970.
    [87]朱晗迓,孙红月,汪会帮,等.边坡加固锚索预应力变化规律分析[J].岩石力学与工程学报,2004,23(16):2756–2760.
    [88]张发明,赵维炳,刘宁,等.预应力锚索锚固荷载的变化规律及预测模型[J].岩石力学与工程学报,2004,23(1):39–43.
    [89]汪鹏程,朱大勇,许强.强震作用下加固边坡的动力响应及不同加固方式的比较研究[J].合肥工业大学学报(自然科学版),2009,32(10):1501–1504.
    [90]张发明,刘宁,赵维炳.岩质边坡预应力锚固的力学行为及群锚效应[J].岩石力学与工程学报,2000,19(增):1077–1080.
    [91]李勇,黄润秋,周荣军,等.龙门山地震带的地质背景与汶川地震的地表破裂[C].宋胜武,汶川大地震工程震害调查分析与研究.北京:地质出版社,2009:514-524.
    [92]中国地震局地震预测研究所,中国地震灾害防御中心.四川省岷江紫坪铺水利枢纽工程场地地震安全性评价复核报告[R].北京:地震出版社,2009.
    [93]郑颖人,陈祖煜,王恭先,等.边坡与滑坡工程治理[M].北京:人民交通出版社,2007.1.
    [94] Shou Keh-jian,Wang Cheng-fung. Analysis of the chiufengershan landslide triggered by the 1999 chi-chi earthquake in Taiwan[J]. Engineering Geology,2003,68:237–250.
    [95]陶夏新,王国新.近场强地震动模拟中对破裂的方向性效应和上盘效应的表达[J].地震学报,2003,25(2):191–198.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700