用户名: 密码: 验证码:
等离子体处理稠油的机理与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着轻质原油的不断减少以及人们对石油资源需求的不断增加,迫使人们纷纷把目光转向资源量相对丰富的重质原油的开发和利用。重质原油的高粘度特性使其在井筒举升和集输中不易流动,其较高的金属杂质含量常常使催化加工中催化剂中毒失活。为了使重油轻质化,实现重油的高效开发和利用,人们不断地寻找新技术,等离子体技术就是其中之一。
     介质阻挡放电等离子体处理重油,较传统的技术有许多优势,但是目前该技术还处于实验室研究阶段。本文在国内外研究工作的基础上,分别作了等离子体处理柴油和重油的研究,并对反应机理了做了讨论。为了研究的简便性,首先研究了原油的馏分产品柴油在等离子体作用下的变化情况,柴油经空气DBD等离子体处理后,颜色加深,有刺激性气味气体生成,阻挡介质石英片上有胶状物产生,柴油的粘度、元素组成、红外光谱和表面张力都发生了变化;经氩气DBD等离子体处理后,气相色谱分析有氢气、低分子烷烃和少量的烯烃生成。在柴油实验研究的基础上,对柴油的裂解机理作了分析,选取正庚烷作为柴油的模型化合物,设计了正庚烷在高能电子作用下的初始裂解反应,共包括13个反应,并计算了各反应的反应速率,拟合得到了Arrhenius公式的三参数。最后,对稠油进行了等离子体处理,空气等离子体处理稠油有难闻气体和胶状物生成,稠油的粘度、四组分和红外光谱都发生了变化,机理分析显示主要是氧化反应所致;氩气等离子体处理稠油后有气体生成,产物组分包括氢气、低分子烷烃和少量烯烃,机理分析认为主要是烷基链的断裂反应。通过实验和理论研究发现,使用介质阻挡放电等离子体可以使柴油、稠油在室温条件下发生化学反应,裂解生成氢气和低碳烃类,剩余油粘度升高,有待作进一步的研究。
With decrease of light crude oil and increase of the demand for crude oil, development and utilization of heavy oil is becoming more and more important. The characteristics of high viscosity of heavy oil made it difficult in the wellbore lifting, gathering and transporting pipeline, its high content of metal impurities always cause the catalyst poisoning and deactivation in the heavy oil process. In order to convert the heavy oil to light and to achieve efficient exploitation and utilization of heavy oil, people are making efforts to looking for new technologies; the plasma technology is one of them.
     Using dielectric barrier discharge plasma updating heavy oil has many advantages, but currently this technology is still in the laboratory research stage. Based on situation of the present developing researches at home and abroad, this paper studys the diesel and heavy oil treated by DBD plasma, discusses the crack mechanism of diesel and heavy oil. Simply, we first treated the diesel using DBD plasma, in the air DBD plasma process, The color changes of diesel, the production of gas with pungent odor and the appearance of jelly on the quartz medium plate were observed, while viscosity, elemental composition, infrared spectroscopy and surface tension of diesel were changing; in the argon DBD plasma process, the result of gas chromatography of gas products showed that it contains hydrogen, low molecular weight alkanes and a small amount of alkenes. Based on experiment, n-heptane was selected as model compoun, and its cracking mechanism contains 13 reactions induced by incident electron was designed; reaction rate of each reaction was calculated and three parameter in Arrhenius formula was obtained. Finally, heavy oil was treated, in the air DBD plasma process, also gas and jelly product were abserved, the viscosity, infrared spectroscopy and SARA were changing, mechanism analysis showed they were the result of oxidizing reaction. In the argon DBD plasma, GC result showed hydrogen, low molecular weight alkanes and a small amount of alkenes, we considered it is the crack result of alkyl chain. Experimental and theoretical study found that both diesel and heavy oil could be cracked by DBD plasma, hydrogen and C1~C5 hydrocarbons were produced, but the oil viscosity increased after the DBD plasma treatment, further study has to be done.
引文
[1]张琪.采油工程原理与设计[M].东营:石油大学出版社, 2000.
    [2]孙为民.稠油管输技术综述.油气田地面工程, 2003, 22(5): 23-24.
    [3]彭仁林,康义逵等.空心杆电加热采油技术的改进[J].石油地质与工程, 2007, 21(1): 93-94.
    [4]王立影,李启堂等.井下伴热电缆导体集肤效应的有限元法分析[J],石油机械, 2005, 33(5): 10-12.
    [5]曲占庆,张琪等.空心杆掺稀油深层稠油举升设计方法研究[J].石油大学学报(自然科学版), 2000, 24(5): 63-66.
    [6]袁美,韩鹏等.泵上掺水降粘工艺在零散稠油开采中的应用[J].石油矿场机械, 2005, 34(5): 86-88.
    [7]王建成,傅绍斌.稠油集输降粘方法概述[J].安徽化工, 2005(2): 15-18.
    [8] G. S. Kovener. Use of an rf plasma for the thermal pyrolysis of CH4 and heavy oils[A]. ISPC-6 Montreal, 1983: 258-263.
    [9] J. M. Baronnet, J. Lesinki. Hydropyrolysis of heavy oils in H2/CH4 arc plasma[A]. Ispc-8 Tokyo, 1987: 672-677.
    [10] G.. Kubanek. Heavy oil processing in steam and hydrogen plasmas[A]. Ispc-7 eindhoven, 1985: 225-231.
    [11] K. Gehrmann, H. Schmidt. Pyrolysis of hydrocarbons using a hydrogen plasma[M]. The production of olefins and acetylene as raw materials for use in the chemical industry, 1971: 379-388.
    [12] C. motallebi, J. F pernin, J. amouroux. Catalytic hydrocracking of heavy hydrocarbon in plasma/spouted bed reactor[A]. Ispc-10, bochum, 1991: 1-6.
    [13] J. L. Leuenberger, M. Mohammedi. Cracking of hydrocarbons in a plasma reactor with high concentration of actived hydrogen: interactions H/CH3 radicals and effects on hydrocarbons conversion[A]. Ispc-7 eindhoven, 1985: 595-600.
    [14] M.nikravech, J. F. pernin, S. lecrivain, J. amouroux.. Plasma-fluidized bed Hydrocracking process of heavy hydrocarbon[A]. Ispc-9, Pugnochiuso, 1989: 709-714.
    [15] Peter C. Kong. Method for cracking hydrocarbon compositions using a submerged reactive plasma system[P]. US Patent:5626726, 1997-5-6.
    [16] Graciela Prieto, Mamoru Okumoto. Reforming of Heavy Oil Using Nonthermal Plasma[J]. IEEE transactions on industry applications, 2001, 37(5): 1464-1467.
    [17] Graciela Prieto, Mamoru Okumoto. A Plate-to-Plate Plasma Reactor as a Fuel Processor for Hydrogen-Rich Gas Production. 2001,1099-1102
    [18] Maurice G. Fey, Plum Borough, Pa. Arc Heater Apparatus for Producing Acetylene From Heavy Hydrocarbons[P]. USA: 4,105,888, 1978(8).
    [19] Jacques Amouroux, Mehrdad Nikravech. Process For The Hydrocracking of A Hydrocarbon Feedstock And Hydrocracking Plant For Carrying[P]. USA: 4,941,965, 1990(7).
    [20] Peter C. Kong, Paul A. Lessing. Method and Apparatus For Producing Oxygenates From Hydrocarbons[P]. USA: 5,427,747, 1995(6).
    [21] Peter C. Kong, Lee O. Nelson. Nonthermal Plasma Systems and Methods For Natural Gas and Heavy Hydrocarbon Co-conversion[P]. USA: 6,896,854 B2, 2005(5).
    [22] Shyam V. Dighe, Mark Anthony Montemurro. Martorell. System and Process For Upgrading Heavy Hydrocarbons[P]. USA: 2008/0299019 A1, 2008(4).
    [23] Peter C. Kong, Lee O. Nelson, Brent A. Detering. Methods For Natural Gas and Heavy Hydrocarbon Co-conversion[P]. USA: 7,494,574 B2, 2009(2).
    [24] R. W. Grimes, Francis. P. Miknis. Preliminary evaluation of a process using plasma reactions to desulfurize heavy oil[R]. Laramie: 1997.
    [25] F.P.Miknis Fossil fuel and hydrocarbon conversion using hydrogen-rich plasmas[R]. Laramie: 1994-1995.
    [26] Langmuir, I. Proceedings of the National Academy of Sciences of the United States of America[J]. 1928, 14(8): 627.
    [27]许根慧,姜恩永等.等离子体技术与应用[M].北京:化学工业出版社, 2006: 1-2.
    [28]博伊德等.等离子体动力学[M].戴世强等译.北京:科学出版社, 1977.
    [29] Fridman A, Chirokov A and Gutsol A. Non-themmal atmospheric pressure discharge,J.Phys. D:Appl.Phys. 2005, 38: 224.
    [30]黄石生,杜贵平等.电弧等离子体及其高效电源[J].华南理工大学学报(自然科学版), 2003, 31(10): 11-14.
    [31] G. Bonizzoni, E. Vassallo, Plasma physics and technology: industrial applications[J]. Vacuum, 2002, 64(3-4):327-336.
    [32]曾栋,文瑞芝等.电感耦合等离子体质谱法分析异地丹参中52中无机元素[J].药物分析杂志, 2010, 30(11): 2096-2100.
    [33]刘松艳,岳发贵等.电感耦合等离子体质谱法测定藜中多种无极元素[J].特产研究, 2010, (3): 46-49.
    [34]徐学基,诸定昌.气体放电物理[M].上海:复旦大学出版社, 1996.
    [35]董丽芳,李雪晨等.大气压介质阻挡放电中的自组织斑图结构[J].物理学报, 2002, 51(10): 2296~2301.
    [36]王燕,赵艳辉等. DBD等离子体及其应用技术的发展[J].自然杂志, 2002, 24(5): 277~282.
    [37]蔡忆昔,刘志楠等.介质阻挡放电特性及其影响因素[J].江苏大学学报,2005,26(6): 476~479.
    [38]罗毅,方志等.介质阻挡放电影响因素分析[J].高压电器, 2004, 40(2): 81~83.
    [39]王辉,孙岩洲等.不同电极结构下介质阻挡放电的特性研究[J].高压电器, 2006, 42(1): 25~27.
    [40]戴玲,韩永霞等.介质阻挡放电击穿场强影响因素的研究[J].华中科技大学学报, 2007, 35(2): 93-95.
    [41]徐家鸾,金尚宪.等离子体物理学[M].北京:原子能出版社, 1981: 341-343.
    [42]迈克尔. A.力伯曼,阿伦. J.里登伯格著.等离子体放电原理与村料处理[M].蒲以康等译.北京:科学出版社, 2007: 20-63.
    [43]董松祥,王建方.常减压柴油抗氧剂的应用[J].中国石油大学胜利学院学报. 2010, 24(1): 26-28.
    [44]战风涛,吕志凤等.催化柴油中的酚类化合物及其对柴油安定性的影响[J].燃料化学学报, 2000, 28(1): 59-62.
    [45]齐江,李林等.催化裂化柴油不安定因素的考察[J].石油大学学报(自然科学版), 1997, 21(5): 72-75.
    [46]李婷婷,王心亮等.气体NO/SO2/N2/O2等离子体反应机理及动力学分析[J].工程热物理学报, 2007, 28(3): 531-533.
    [47]陈洁,宋启泽.有机波谱分析[M].北京:北京理工大学出版社, 2006: 43-92.
    [48] P. Subramonium, M. J. Kushner. Two dimensional modeling[J]. J. Vac. Sci. Technol. A. 2002, 20(2): 318.
    [49]熊春华,田高友等.柴油理化性质与烃族组成关联[J].石油学报(石油加工), 2010, 26(4): 551-555.
    [50]刘泽龙,高红等.柴油烃类组成分析[J].质谱学报, 2000, 21(3-4): 1-2.
    [51]关亚风,赵景红等.油品族组成的详细分析和燃油中芳烃的分析[J].色谱, 2004, 22(5): 509-514.
    [52]赵昌普,陈生齐等.正庚烷燃烧详细化学动力学模型的简化及其有效性分析[J].内燃机学报, 2008, 26(4): 346-352.
    [53] D. I. Slovetsky. Mechanisms of decomposition of hydrocarbons in electrical discharges[J]. Pure & Appl. Chem. , 1988, 60(5): 753-768.
    [54] Hiraoka K, Aoyama K, Morise K. Can. J. Chem. , 1985, 63: 2899-2901.
    [55] Yun Yang. Direct Non-oxidative Methane Conversion by Non-thermal Plasma: Modeling Study[J]. Plasma Chemistry and Plasma Processing, 2003, 23(2): 327-346.
    [56] R. K. Janev, D. Reiter. Collision processes of C2,3Hy and C2,3Hy hydrocarbons with electrons and protons[J]. Physics of plasmas, 2004, 11(2): 780-830.
    [57] Agiral, Cassia Boyadjian. Pathway Study on Dielectric Barrier Discharge Plasma Conversion of Hexane[J]. J. Phys. Chem. C, 2010, 114(44): 18903-18910.
    [58] D. S. Aribike and A. A. Susu. Mechanistic modeling of the pyrolysis of n-heptane[J]. Thermochimica Acta, 1988, 127: 259-273.
    [59] A. Consoli, J. Benedikt. Initial Polymerization Reactions in Particle-Forming Ar/He/C2H2 Plasmas Studied via Quantitative Mass Spectrometry[J]. J. Phys. Chem. A. 2008, 112: 11319–11329.
    [60] H. Pitsch, K. Seshadri. Extinction and autoignition of n-heptane in counterflow configuration[J]. Proceedings of the Combustion Institute, 2000, 28: 2029-2037.
    [61]高艳秋.渣油中四组分的测定[M].化学工程师, 2004: 48-49.
    [62]赵玉建.稠油中沥青质井下裂解及应用技术研究[D].大庆石油学院,大庆, 2008.
    [63]王杰祥,张琪等.注空气驱油室内实验研究[J].石油大学学报(自然科学版), 2003, 2(4): 73-77.
    [64]张娜,孙学文等.减粘裂化产物的长期储存稳定性.燃料化学学报, 2010, 38(6): 701-704.
    [65]王会东,韩志群等.不同紫外光照条件下加氢基础油性质变化研究.润滑油, 2003, 18(1): 47-50.
    [66]王会东,韩志群等.加氢处理润滑油基础油各组分对光安定性的影响.石油学报(石油加工), 2003, 19(2): 57-61.
    [67]王会东,韩志群等.加氢处理润滑油基础油光照沉淀的研究.石油学报(石油加工), 2003, 19(3): 72-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700