用户名: 密码: 验证码:
软硬岩组合型斜坡地震动响应的大型振动台模型试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国多山、多地震的地质构造背景下,斜坡地震动响应问题突出。2008年的‘5.12’汶川Ms 8.0级地震在山区引发了数以万计的斜坡次生地质灾害,损失巨大。震后,多数学者集中于震源机制、灾害形成机理或灾害风险管理与评价方面的研究,对斜坡的动力响应特性研究甚少。震后调查表明,斜坡的动力变形破坏多见于硬质岩中,在谷坡坡顶和坡形转折带等特殊部位响应尤为强烈。沿发震断裂带分布的极震区,竖向地震动力特征表现明显。对有关斜坡动力响应特性的宏观上的定性认识在国内外并不少见。然而,由于缺乏充足的地震实测数据,加上影响因素错综复杂,实现斜坡动力响应规律的时空定量化统一,从而用于指导工程实践还言之尚早。随着全球逐渐进入地震活跃期,对这一问题的研究必将具有重大的理论和现实意义。
     本文以‘5.12’汶川地震为研究背景,旨在通过物理模拟试验手段在一定程度上探讨斜坡的地震动响应特性及其规律,其主要工作与成果如下:
     (1)以‘5·12’汶川地震灾区典型斜坡岩体结构为模拟特征,采用水平层状上硬下软和上软下硬两种岩性组合概念模型,设计并完成了1:100比尺的大型振动台试验。从最开始的相似关系设计和相似材料选取,到传感器的布置,再到输入波的选取和制定加载方案等一系列工作中,建立了一套适合水平层状软硬岩组合型斜坡的试验准备与试验过程设计思路。
     (2)通过在模型底部输入不同类型(按频谱特性不同分类)、激振方向和振动强度的激振波,观测记录软硬岩组合型斜坡模型的宏观变形破坏特征及与以上输入振动参数的关系。同时,对斜坡模型的失稳破坏机制分析表明,上硬下软组合模型以崩塌破坏为主,而上软下硬组合模型发生“拉-剪”式的滑坡破坏。
     (3)试验共完成了101个工况的加载,通过布置在坡内和坡表的大量加速度传感器采集到了6000多条加速度水平向和竖直向分量的时程波形数据,随后提取出了每个波形的绝对峰值(PGA)并计算出其相对于台面的放大系数。通过对这些数值的分析比较,获得了两模型的水平向和竖直向加速度动力响应规律,并采用“单因素法”分析了激振波类型、激振方向和振动强度对加速度响应规律的影响。
     分析结果很好地揭示了加速度沿高程的非线性放大效应,以及水平向与竖直向加速度动力响应特性的差异。结果同时表明,激振波频谱特性的不同导致了模型完全不同的动力响应规律;合成向激振相比单向激振使模型产生了更强的响应;在天然波作用下,随着振动强度的增加,模型在水平向和竖直向的响应强度均有所减弱。
     (4)最后,对加速度时程波形进行了傅里叶变换,再利用两种常见的傅里叶谱比值初步探讨了模型不同高程部位对振动波的传递特性。两种谱比值较准确地确定了模型的基频分布。另外,模型表面与台面上的水平向加速度谱比值在模型的上段很好地揭示了模型动力响应对着振动强度增加而出现的非线性特征。
China is a mountainous and earthquake-prone country, and problems caused by seismic slope response are prominent. During the‘May 12’Wenchuan earthquake in 2008, tens of thousands of secondary geological hazards were triggered in a mountain area, causing great loss. After the earthquake, most researchers oriented their work on source mechanism, hazard formation mechanism, or hazard risk management and assessment, however, research on seismic slope response was limited. Post-earthquake survey indicates that, dynamic slope deformation and failure mostly occurred in hard rocks, with the pronounced response in the special parts of valley slopes like crest and the transition part between two slope angles. Macroscopically qualititive knowledge of seismic slope response has reached a basic agreement at home and abroad. Due to the limited earthquake recordings, however, in addition to the complicated influence factors, it is to early to get a systematic understanding of the seismic slope response laws from the time and space angles, let alone guide the engineering practice. With gradually entering into the seismically active period on a world scale, study on seismic slope response is bound to have great significance in theory and practice.
     On the background of‘May 12’Wenchuan earthquake, the present paper aims to explore the seismic slope response characteristics and laws to some extent by means of a physical model. The main work and results are as follows:
     (1) Simulating the typical rock structures of slopes in the Wenchuan earthquake region, two conception models with combinational structures of hard rock overlying soft rock and soft rock overlying hark rock were designed to perform the large scale shaking table test with a geometric scale of 1:100. Through a secquence of preparation work on determing similitude relations , sensor arrangement, input motions and a loading scheme, a set of design plan has been established applicable to the horizontal layered combinational slopes.
     (2) Throgh exicating models at the bottom with input waves of different types, vibrating directions and intensities, the macro deformation and failure characteristics of models havd been observed, meanwhile, the characteristics related with the input parameters have been analyzed. The failure mechanism shows that, the hard material overlying soft material model failed in a collapse, while the other one failed in a landslide with the‘tension-shear’mechanical process.
     (3) A total of 101 loading conditions had been completed in this test. Through large amounts of accelerometers in the interior and on the surface of each model slope, about 6000 time history recordings in horizontal and vertical components had been obtained. Afterwords, the absolute peak acceleration (PGA) and its amplification relative to shaking table soleplate were calculated for each recording. By comparing these values, the dynamic response laws of two model slopes in horizontal and vertical components were analyzed, and the effect of input parameters on the response laws were also explored by the single factor analysis method.
     Results show well the nonlinear amplification effect along increasing elevations, and the differences in responses between two componts were also reflected obviousely. Futhermore, input waves having different spectrum features caused different response laws; excitation in a combination direction generated stronger response than in a single direction; when excitated in real waves, the response intensity in two components tended to decrease.
     (4) Finally, Fourior transformations are conducted on accerleration recordings. Then two Fourior spectrum ratios are calculated to explore the transfer features of models at different elevations for waves. The two ratios well indicate the foundamental frequencies of two models. Moreover, the spectrum ratios of horizontal components of the surface to the table soleplate (input motion) confirm the nonlinear seismic response of models in their upper parts as the input motion is intensified.
引文
[1]蔡学林,王绪本,朱介寿等.汶川8.0级特大地震震源断裂特征及其动力学分析[J].中国地质, 2010, 37(4): 0952-0966.
    [2] Xu Xiwei, Yu Guihua, Chen Guihua, et al. Parameters of coseismic reverse-and oblique-slip surface ruptures of the 2008 Wenchuan Earthquake, Eastern Tibetan Plateau[J]. Acta Geological SINICA, 2009, 83(4): 673-684.
    [3]黄润秋.汶川8.0级地震触发崩滑灾害机制及其地质力学模式[J].岩石力学与工程学报, 2009, 28(6): 1239-1250.
    [4] http://baike.baidu.com/view/1587399.htm/5.12汶川地震.
    [5]黄润秋,李为乐.“5.12”汶川大地震触发地质灾害的发育分布规律研究[J].岩石力学与工程学报, 2008, 27(12): 2585-2593.
    [6]周荣军,赖敏,余桦等.汶川Ms8.0地震四川及邻区数字强震台网记录[J].岩石力学与工程学报, 2010, 29(9): 1850-1859.
    [7]许强,黄润秋. 5.12汶川大地震诱发大型崩滑灾害动力特征初探[J].工程地质学报, 2008, 16(6): 721-730.
    [8]吴冲龙.中国西部及邻区大地震时空特征、地质背景及发展趋势分析[J].地学前缘, 2010, 17(5): 193-205.
    [9]史丹,陈蕴生,韩信,陈刚.岩质边坡地震动力稳定性研究进展[J].西北农林科技大学学报(自然科学版), 2006, 34(2): 147-152.
    [10]刘红帅,薄景山,刘德东.岩土边坡地震稳定性分析研究评述[J].地震工程与工程振动, 2005, 25(1): 164-171.
    [11] Seed H.B., and Martin G. R.. The Seismic Coefficient in Earth Dam Design [J]. J. Soil Mech. Found. Div., ASCE, 92(SM3): 25-58.
    [12] Jonathan D. Bray, F.ASCE, Thaleia Travasarou, M.ASCE. Pseudostatic Coefficient for Use in Simplified Seismic Slope Stability Evaluation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009: 1336-1340.
    [13]郑文棠,程小久.核电厂边坡地震影响系数研究[J].华南地震, 2010, 30(增刊): 36-44.
    [14]沈珠江,陆培炎.评当前岩土工程实践中的保守倾向[J].岩土工程学报, 1997, 19(4): 115-118.
    [15]徐则民,张倬元,许强等.九寨黄龙机场填方高边坡动力稳定性分析[J].岩石力学与工程学报, 2004, 23(11): 1883-1890.
    [16] Newmark N M. Effects of earthquakes on dams and embankments [J]. Geotechnique, 1965, 15(2) : 139-160.
    [17] Kramer S, Smith D. Modified newmark model for seismic displacement of compliant slopes[J]. Journal of geotechnical and geoenvironmental engineering, ASCE, 1997, 123(7):635-644
    [18] Ling H I. Recent applications of sliding block theory to geotechnical design[J]. Soil dynamics and earthquake engineering, 2001,21(3): 189-197.
    [19]王思敬,张菊明.边坡岩体滑动稳定的动力学分析[J].地质科学, 1982, (4): 162-170.
    [20]王思敬,薛守义.岩体边坡楔形体动力学分析[J].地质科学, 1992, (2): 177-182.
    [21]张菊明,王思敬.层状边坡岩体滑动稳定的三维动力学分析[J].工程地质学报, 1994, 2(3):1-12.
    [22]薛守义,王思敬,刘建中.块状岩体边坡地震滑动位移分析[J].工程地质学报, 1997, 5(2): 131-136.
    [23]刘红帅,薄景山,刘德东.岩土边坡地震稳定性评价方法研究进展[J].防灾科技学院学报, 2007, 9(3): 20-27。
    [24]刘汉龙,费康,高玉峰.边坡地震稳定性时程分析方法[J].岩土力学, 2003, 24(4): 553-560.
    [25]许名标,彭德红.某水电站边坡开挖爆破震动动力响应有限元分析[J].岩土工程学报, 2006, 28(6): 770-775.
    [26]方建瑞,许志雄,庄晓莹.三维边坡稳定弹塑性有限元分析与评价[J].岩土力学, 2008, 29(10): 2667-2672.
    [27]黄润秋,许强.显式拉格朗日差分法在岩石边坡工程中的应用[J].岩石力学与工程学报, 1995, 14(4): 346~354.
    [28]毛彦龙,胡广韬,毛新虎等.地震滑坡启程剧动的机理研究及离散元模拟[J].工程地质学报, 2001, 9(1): 74-80.
    [29]陶连金,苏生瑞,张悼元等.节理岩体边坡的动力稳定性分析[J].工程地质学报, 2001, 9(1): 32-38.
    [30]孙杰.复杂体型高层钢结构模拟地震振动台试验研究[D].北京科技大学硕士学位论文, 2007.
    [31]李永胜.边坡振动台模型试验及相关问题研究[D].大连理工大学硕士学位论文, 2009.
    [32] Hong Y. S., Chen R. H., Wu C. S., Chen J. R.. Shaking table tests and stability analysis of steep nailed slopes [J]. Canada Geotechnical Journal, 2005, 42: 1264-1279.
    [33] Lin M. L., Wang K. L.. Seismic slope behavior in a large-scale shaking table model test [J]. Engineering Geology , 2006, 86: 118–133.
    [34]徐光兴,姚令侃,高召宁,李朝红.边坡动力特性与动力响应的大型振动台模型试验研究[J].岩石力学与工程学报, 2008, 27(3):624-632.
    [35]徐光兴,姚令侃,李朝红,高召宁.边坡地震动力响应规律及地震动参数影响研究[J].岩土工程学报, 2008, 30(6): 918-924.
    [36] Fleur O. Strasser, Julian J. Bommer. Large-amplitude ground-motion recordings and their interpretations [J]. Soil Dynamics and Earthquake Engineering, 2009, 29: 1305–1329.
    [37] Chen Dasheng. A Survey of intensity Anomaly During Destructive Earthquakes.中美地震小区划讨论会会议录, 1981,哈尔滨.
    [38] Louis Geli, Pierre-Yves Bard, Béatrice Jullien. The effect of topography on earthquake ground motion-A review and new results[J]. Bulletin of the Seismological Society of America, 1988, 78(1): 42-63.
    [39]刘洪兵,朱晞.地震中地形放大效应的观测和研究进展[J].世界地震工程, 1999, 15(3): 20-25.
    [40] Chen Bingwu, Zhong Tingjiao, Zhao Shuanshou. Effects irregular topography with soil conditions on earthquake ground motion [J]. NORTH WESTERN SEISMOLOGICAL JOURNAL, 1983, 5(2): 81-89.
    [41]卓旭炀.复杂场地对地震波传播的影响[D].中国地震局工程力学研究所硕士学位论文2003.
    [42] Seed, H.B., I.M. Idriss. The influence of soil conditions on ground motions during earthquakes[J]. J. Soil Mech. Found. Div. ASCE , 1969, 94: 93-137.
    [43] Seed, H.B., I.M. Idriss. Soil moduli and damping factors for dynamic response analysis[J]. Report No. EERC 70-10, Earth-quake Engineering Research Center, University of California, Berkeley, 1970.
    [44] Iwasaki, T., K. Kawashima, F. Tatsuoka. Nonlinear seismic response analysis of soft soil deposits, in Proc. of the 7th European Conf. on Earthquake Engineering, Athens,Greece,1982.
    [45] Sun, J. I. , R. Golesorkhi, and H. B. Seed. Dynamic moduli and damping ratios for cohesive soils[J]. Report No.UCB/EERC 88/15, Department of Civil Engineering, University of California, Berkeley, 1988.
    [46] Aki. K.. Local site effects on weak and strong ground motions[J]. Tectonophysics, 1993, 218: 93-111.
    [47] Aki, K., K. Irikura. Characterization and mapping of earthquake shaking for seismic zonation[J] . In Proc. of the 4th Int. Conf. on Seismic Zonation, Stanford, California, 1993, Vol.1, 61-110.
    [48] Singh, S. K., J. Lermo, T. Dominguez, M. Ordaz, J. M. Espinosa, E. Mena, R. Quaas. The Mexico earthquake of September 19, 1985--a study of amplification of seismic waves in the Valley of Mexico with respect to a hill zone site[J]. Earthquake Spectra 4, 1988, 653-673.
    [49] E. Mena, R. Quaas. The Mexico earthquake of September 19, 1985--a study of amplification of seismic waves in the Valley of Mexico with respect to a hill zone site[J] . Earthquake Spectra 4, 1988: 653-673.
    [50] Darragh, R. B., A. F. Shakal. The site response of two rock and soil station pairs to strong and weak ground motion. Bull.Seism[J]. Soc.Am.81,1991: 1885-1899.
    [51] Chang, C. Y., M. S. Power, Y. K. Tang, C. M. Mok. Evidence of nonlinear soil response during a moderate earthquake[J]. In Proc. of the 12th Int. Conf. on Soil Mechanics and Foundation Engineering, Rio de Janeiro, Brazil, 1989, Vol.3,1-4.
    [52]陈学良.土体动力特性_复杂场地非线性地震反应及其方法研究[D].北京:中国地震局工程力学研究所博士论文, 2006.
    [53]陈建君.复杂山区斜坡的地震动力响应分析[D].成都理工大学硕士学位论文, 2006.
    [54]黄润秋.汶川大地震触发地质灾害的断层效应分析[J].工程地质学报, 2009,17(1): 19-28.
    [55]张有良主编.最新工程地质手册[M].北京:中国知识出版社,2006.
    [56]水利水电科学研究院,水利水电规划设计总院,水利电力情报研究所.岩石力学参数手册[M].北京:水利水电出版社,1991.
    [57]王栋.川藏公路黄草坪2#隧道地震动力响应的三维模型试验研究[D].成都理工大学硕士学位论文, 2008.
    [58]波形和频谱分析与随机数据处理.
    [59]梁庆国,韩文峰,马润勇,谌文武.强地震动作用下层状岩体破坏的物理模拟研究[J].岩土力学, 2005, 26(8): 1307-1311.
    [60]许强,刘汉香,邹威等.斜坡加速度动力响应特性的大型振动台试验研究[J].岩石力学与工程学报, 2010, 29(12): 2420-2428.
    [61]祁生文,伍法权.边坡动力响应规律研究[J].中国科学E辑技术科学,2003, 33(增刊): 28-40.
    [62] M. I. Todorovska , M. D. Trifunac. Amplitudes, polarity and time of peaks of strong ground motion during the 1994 Northridge, California, earthquake[J]. Soil Dynamic and Earthquake Engineering, 1997, 16: 235-258.
    [63] O. Pavlenko, K. Irikura. Nonlinearity in the response of soils in the 1995 Kobe earthquake in vertical components of records [J]. Soil Dynamics and Earthquake Engineering, 2002, 22: 967–975.
    [64] G.- Q. Wang, X.-Y. Zhou, P.-Z. Zhang et al. Characteristics of amplitude and duration for near fault strong ground motion from the 1999 Chi-Chi, Taiwan Earthquake[J]. Soil Dynamics and Earthquake Engineering, 2002, 22: 73-96.
    [65] A. J. Papazoglou, A. S. Elnashai. Analytical and field evidence of the damaging effect of vertical earthquake ground motion [J]. Earthquake Engineering and structural dynamics, 1997, 26:671-689.
    [66] Fumio Yamazaki, Mehedia A. Ansary. Horizontal–to-vertical spectrum ratio of earthquake ground motion for site characterization [J]. Earthquake Engineering and structural dynamics, 1996, 25:1109-1137.
    [67] J. Yang, T. Sato, S. Savidis, X .S. Li. Horizontal and vertical components of earthquakeground motions at liquefiable sites [J]. Soil Dynamics and Earthquake Engineering, 2002, 22: 229-240.
    [68] O. Pavlenko, K. Irikura. Nonlinearity in the response of soils in the 1995 Kobe earthquake in vertical components of records [J]. Soil Dynamics and Earthquake Engineering , 2002, 22: 967–975.
    [69]《建筑抗震设计规范》(GB50011–2001).
    [70]石崇,周家文,仁强,周先齐.单面边坡高程放大效应的射线理论解[J].河海大学学报(自然科学版),2008, 36(2): 238-241.
    [71]卢爱红,茅献彪,张连英.应力波在岩体中传播的叠加效应[J].徐州工程学院学报(自然科学版),2008, 23(3): 74-79.
    [72]王伟,王志亮,李振强.岩体软硬度对一维应力波演化影响研究[J].水文地质工程地质,2006, 1: 11-15.
    [73] Sheri Molnar, John F.Cassidy, Stan E. Dosso. Site Response in Victoria,British Columbia,from Spectral Ratios and 1D Modeling[J]. Bulletin of the Seismological Society of America, 2004, 94(3): 1109–1124.
    [74] JAVIER LERMO, RANCISCO J. CHAVEZ-GARCiA. Site effect evaluation using spectral ratios with only one station[J]. Bulletin of the Seismological Society of America, 1993, 83(5): 1574-1594.
    [75] Wen Kuo-Liang, Beresnev Igor A., Yeh Yeong Tein. Nonlinear soil amplification inferred from downhole strong seismic motion data[J]. Geophysical research letters, 1994, 21(24):2625-2628.
    [76] Lee Chien-Ping, Yi-Ben Tsai, Wen Kuo-Liang. Analysis of nonlinear site response using the LSST downhole accelerometer array data[J]. Soil Dynamics and Earthquake Engineering , 2006, 26: 435–460.
    [77] Theodulidis N, Bard PY. Horizontal to vertical ratio and geological conditions: an analysis of strong motion data from Greece and Taiwan(SMART-1) [J]. Soil Dynamic Earthquake Engineering, 1995, (14):177–197.
    [78] Lachet C, Hatzfeld D, Bard PY, Theodulidis N, Papaioannou Ch, Savvaidis A. Site effects and microzonation in the city of Thessaloniki (Greece):comparison of different approaches[J]. Bull Seism Soc Am , 1996, (86):1692–1703.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700