用户名: 密码: 验证码:
基于流感知网络的多业务区分管理关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三网融合是网络技术发展的方向,基于三网融合的未来网络将会是一个基于分组交换技术、综合开放的多业务网络。不同业务要求不同的服务质量,如何为多种业务提供差异化的服务质量保证成为构建未来网络亟待解决的问题。基于综合服务理念,并应用区分服务策略的流感知网络体系,通过对接纳控制和队列调度策略的整合,能够实现多业务流的区分服务保障。
     本文依托“十一五”国家863计划专项课题“可重构路由器构件组研制”,基于流感知网络理论,研究了多业务区分管理关键技术,提出了一种流感知多业务区分管理系统模型,并针对该系统提出的功能设计需求,提出了基于区分接纳概率的流感知接纳控制算法和基于流感知的动态优先差额轮询调度算法。
     本文的主要研究内容包括:
     1.建立了一种流感知多业务区分管理系统模型。给出了该系统的基本组成单元和功能描述,并分析了各组成单元的功能设计需求。该系统借鉴流感知网络基于流的流量控制与管理思路,分别由流感知组件、接纳控制组件和队列调度组件完成多业务流的业务区分、区分接入和区分转发。
     2.提出了一种基于区分接纳概率的流感知接纳控制算法(Differentiated Admission Probability based Flow-aware Admission Control, DAPFAC)。针对现有流感知接纳控制机制没有在输入端对业务流进行区分控制且容易引起链路随机拥塞的不足,DAPFAC算法在多业务流感知区分的基础上,根据各类业务流的拥塞状态指标,以区分的接纳概率接纳新业务流,实现多业务流的区分接入,接纳概率随链路负载情况动态调整,能够有效平滑和抑制链路的随机拥塞。仿真结果表明,DAPFAC算法能够保证进程中的既有业务流在链路重载情况下均能获得基本的吞吐性能。
     3.提出了一种动态优先差额轮询调度算法(Dynamic Priority Deficit Round Robin, DPDRR)。针对现有流感知队列调度机制存在的多业务流调度公平性问题以及影响链路效率的不足,DPDRR算法根据优先队列负载变化情况实现优先业务流的绝对优先转发权与相对优先转发权的动态交替。优先队列轻载时由调度机对各队列进行轮询,优先队列重载时系统赋予优先业务流绝对优先转发权以保证其时延性能。仿真结果表明,相比现有流感知优先公平调度算法,DPDRR算法能够有效提高多业务流之间的调度公平性和链路整体效率。
Triple Play is the goal of network technology development. The future network based on Triple Play will be an open integrated infrastructure based on packet switching technology. Different services require different quality of service, and it becomes a key challenge for the future network to provide different quality of service guarantee for different service. Flow-Aware Networking, based on integrated service concepts and differentiated service policies, can achieve differentiated service guarantee for multi-service flows by integrating the admission control and scheduling policy.
     This thesis includes all researching work relying on a National 863 special issue of the 11th Five-Year plan named―The Researching and Manufacture of Reconfigurable Router Components‖. Researching the key technologies of differentiated management for multi-services based on the theory of Flow-Aware Networking, the thesis proposes a differentiated service management system model for multi-services, and then presents a differentiated admission probability based flow-aware admission control algorithm and a dynamic priority deficit round robin scheduling algorithm for the system design requirements.
     The main work and contributions of this thesis are outlined as follows:
     1. A differentiated management model for multi-services is proposed. The component and function of system is described, and the functional design requirements are analyzed. By drawing on the experience of multi-service flow processing in Flow-Aware Networking, the system consists of components of flow-awareness, admission control and queue scheduling, achieves traffic differentiation, different access control and different forwarding for multi-services respectively.
     2. A differentiated admission probability based flow-aware admission control algorithm named DAPFAC is proposed to smooth and restrain the random congestion of link which might occur in the existing flow-aware admission control strategy. Based on the service differentiating, DAPFAC accepts a new traffic with different admission probability and adjusts the probability dynamically by associating the congestion state index of each kind of traffic. The analysis of performance and the results of simulation show that DAPFAC could guarantee the basic throughput for the ongoing traffic under the heavy load.
     3. A dynamic priority deficit round robin scheduling algorithm named DPDRR is proposed to solve the unfairness of multi-service flow scheduling which affected the link efficiency. DPDRR adjusts the forwarding priority of streaming flows dynamically between absolute priority and relative priority according to the priority load state. The algorithm emphasizes the relative fairness of scheduling under the light load, and gives streaming flows the absolute priority of forwarding under the heavy load for their delay performance. The results of simulation show that DPDRR could improve the fairness of multi-service flow scheduling and the link efficiency effectively.
引文
[1] Jeongyun K, Kyounghyu L, Sanggi. K. NGN architecture for supporting composite services[A]. In: Proceedings of 6th International Conference on Advanced Communication Technology (ICACT 2004)[C], Phoenix Park, Korea, 2004, 1: 524-527.
    [2] Braden R, Clark D, Shenker S. Integrated services in the internet architecture: an overview[S], RFC1633, 1994.
    [3] Carlon M, Wesis W, Blake S, et al. An architecture for differentiated services[S]. RFC 2475, 1998.
    [4] Roberts J, Oueslati S. Quality of service by Flow-Aware Networking[J]. Philosophical Transactions of Royal Society, 2000, 358(1773): 2197-2207.
    [5] Oueslati S, Roberts J. A new direction for quality of service: Flow-aware networking[A]. In: Proceedings of 1st Conference on Next Generation Internet Networks (NGI 2005)[C], Rome, Italy, 2005: 226-232.
    [6]汪斌强.可重构路由器构件组研制[R].国家高技术研究发展计划(863计划)项目课题申请书.郑州:国家数字交换系统工程技术研究中心, 2008.6.
    [7] Sato T, Masuda A, Kasahara. H. Network Resource Management with Distributed Database Systems for Scalable Admission Control[A].In: Proceedings of 6th Asia-Pacific Symposium on Information and Telecommunication Technologies (APSITT 2005)[C], Yangon, Myanmar, 2005:35-40.
    [8] Bouras C, Stamos K. An adaptive admission control algorithm for bandwidth brokers[A]. In: Proceedings of 3rd IEEE International Symposium on Network Computing and Applications (NCA 2004)[C], Cambridge, MA, USA, 2004:243-250.
    [9] Lakkakorpi J, Strandberg O, Salonen. J. Adaptive connection admission control for differentiated services access networks[J]. IEEE Journal on Selected Areas in Communications, 2005, 23(10):1963-1972.
    [10] Kelly F.P, Key P.B, Zachary.S. Distributed admission contro1[J]. IEEE Journal on Communications, 2000,18(12): 2617-2628.
    [11] Dumitrescu A. Efficient distributed admission control for core-stateless networks[A]. In: Proceedings of 24th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2005)[C], Miami, USA, 2005, 4: 2864-2869.
    [12] Naghshineh M, Schwartz.M. Distributed call admission control in mobile/wireless networks[J]. IEEE Journal on Selected Areas in Communications, 1996, 14(4):711-717.
    [13] Ahmed.M.H. Call admission control in wireless networks: a comprehensive survey[J]. IEEE Communications Surveys&Tutorials, 2005, 7(1): 49-68.
    [14] Yuming Jiang, Peder J E, Nicola V, et a1. Measurement-Based Admission Control: A Revisit [A]. In: Proceedings of 17th Nordic Teletraffic Seminar (NTS 17), Fornebu,Norway, 2004.
    [15] Jamin S,Shenker S, Danzig P B. Comparison of measurement-based admission control algorithms for controlled-load service[A]. In: Proceedings of 16th Annual Joint Conference of the IEEE Computer and Communications Societies[C], Kobe, Japan, 1997, 3: 973-980.
    [16] Matyas W. Egyhazy, Yao. Liang. Predicted Sum: A Robust Measurement-Based Admission Control with Online Traffic Prediction[J]. IEEE Communications Letters, 2007, 11(2): 204-206.
    [17] Guerin R, Ahrnadi H, Naghshineh M. Equivalent Capacity and Its Application to Bandwidth Allocation in High-speed Networks[J]. IEEE Journal on Selected Areas in Communications, 1991, 9: 968-981.
    [18] Srinivasan R, Talim. H. Fuzzy Connection Admission Control for Self-managed Networks[A]. In: Proceedings of IEEE Canadian Conference on Electrical&Computer Engineering (CCECE2002)[C], Winnipeg, Canada, 2002, 3: 1516-1521.
    [19] Tse D, Grossglauser. M. Measurement-based Call Admission Control: Analysis and Simulation[A]. In: Proceedings of 16th Annual Joint Conference of the IEEE Computer and Communications Societies[C], Kobe, Japan, 1997, 3: 981-989.
    [20] Gibbens R J, Kelly F P. A decision-theoretic approach to call admission control in ATM networks[J]. IEEE Journal on Selected Areas of communications, 1995, 13(6): 1101-1114.
    [21] Mortier R, Crosby S. Implicit Admission Control[J]. IEEE Journal on Selected Areas in Communications, 2000, 18(12): 2629-2638.
    [22] Yuming Jiang, Nevin A, Emstad.P.J. Implicit admission control for a differentiated services network[A]. In: Proceedings of 2nd Conference on Next Generation Interact Design and Engineering (NGI’06)[C], Valencia,Spain, 2006:8-15.
    [23] Ram A, DaSilva L.A, Varadarajan S. Admission control by implicit signaling in support of voice over IP over ADSL[J]. Computer Networks, 2004, 44(6):757-772.
    [24] Parekh A K, Gallager R G. A generalized processor sharing approach to flow control in integrated services networks: the single-node case[J]. IEEE/ACM Transactions on Networking. 1993, 1(3): 344-357.
    [25] Parekh A K, Gallager R G. A generalized processor sharing approach to flow control in integrated services networks: the multiple node case[J]. IEEE/ACM Transactions on Networking. 1994, 2(2): 137-150.
    [26] Bennett J, Zhang Hui. WF2Q: Worst-case fair weighted fair queueing[A]. In: Proceedings of the IEEE INFOCOM’96[C], 1996: 120-128.
    [27] Golestani S. A self-clocked fair queueing scheme for broadband applications[A]. In: Proceedings of the IEEE INFOCOM’94[C], 1994: 636-646.
    [28] Goyal P, Vin H-M, Chen H. Start-time fair queueing: a scheduling algorithm for Integrated Services in packet switching networks[J]. IEEE/ACM Transactions on Networking, 1997,5(5):690-704.
    [29] Stiliadis D. Traffic scheduling in packet-switched networks: Analysis, design and implementation[D]. Santa Cruz: University of California at Santa Cruz, 1996.
    [30] Stiliadis D, Varma A. Rate-proportional servers: A design methodology for fair queueing algorithms[J]. IEEE/ACM Transactions on Networking, 1998, 6(2):164-174.
    [31] Stiliadis D, Varma A.efficient fair queueing algorithms for packet-switched networks[J]. IEEE/ACM Transactions on Networking, 1998, 6(2):175-185.
    [32] M. Katevenis, S. SidiroPoulos, C.Courcoubetis. Weighted round-robin cell multiplexing in a general-purpose ATM switch chip[J]. IEEE Journal on Seleeted Areas in Communications, 1997, 9(8):1265-1279.
    [33] Shreedhar M, Varghese G. Efficient fair queueing using deficit round robin[A]. In: Proceedings of ACM SIGCOMM’95[C], 1995:231-242.
    [34] Kortebi A, Oueslati S, Roberts J. Cross-protect: implicit service differentiation and admission control[A]. In: Proceeding of High Performance Switching and Routing (HPSR 2004)[C], Phoenix, USA, 2004: 56-60.
    [35] Olivier P, Benameur. Flow level IP traffic characterization[A]. In: Proceedings of the 17th International Teletraffic Congress (ITC17)[C], Salvador da Bahia, Brazil, 2001: 25-36.
    [36] K. C. Claffy. Internet traffic characterization[D]. San Diego: USA Department of Computer Science and Engineering , University of California , 1994.
    [37] Roberts J. Traffic theory and Internet[J]. IEEE Communications Magazine, 2001, 39:94-99.
    [38] Floyd S, Jacobson V. Random early detection gateways for congestion avoidance[J]. IEEE/ACM Transactions on Networking, 1993, 1(4):397-413.
    [39] Bonald T, Oueslati S, Roberts J. IP traffic and QoS control: the need for a flow-aware architecture[A]. In: Proceedings of World Telecommunications Congress (WTC 2002)[C], Paris, France, 2002.
    [40] Parekh A K, Gallager R G. A generalized processor sharing approach to flow control in integrated services networks: the single-node case[J]. IEEE/ACM Transactions on Networking. 1993, 1(3): 344-357.
    [41] NS Inc. The Network Simulator-ns-2[EB/OL].: http://www.isi.edu/nsnam/ns/, 2009-09-20.
    [42] Jiang Y, Emstad P J, Nevin A, Nicola V, and Fidler M. Measurement-Based admission control for a Flow-Aware Network[A]. In: Proceedings of 1st Conference on Next Generation Internet Networks-Traffic Engineering (NGI 2005)[C], Rome, Italy, 2005: 318–325.
    [43] Kortebi A, Oueslati S, Roberts J. Implicit service differentiation using deficit round robin[A], In: Proceedings of 19th International Teletraffic Congress (ITC19)[C], Beijing, China, 2005.
    [44] Kortebi A, Muscariello L, Oueslati S, Roberts J. Minimizing the Overhead in Implementing Flow-aware Networking[A]. In: Proceedings of Symposium on Architectures for Networking and Communications Systems (ANCS’05)[C], Princeton, USA, 2005.
    [45]邱恭安,张顺颐,胡隽.基于模糊流感知的动态优先公平调度算法[J].电子与信息学报, 2009, 2(31): 467-471.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700