用户名: 密码: 验证码:
弃耕砂田植被恢复条件试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
砂田是我国西北干旱、半干旱地区独特的、传统的抗旱耕作形式之一。传统的砂田耕作过程实际上是砂田衰老的过程。砂田衰老退化以后若不能更新改造,就无法继续种植粮食作物和经济作物,便形成了大面积的弃耕砂田。本研究采用野外试验、调查观测与室内分析相结合的方法,从弃耕砂田的土壤水分条件入手,通过灌木造林试验和对已有弃耕砂田灌木林地的观测,分析研究弃耕砂田的植被恢复条件和再利用的可能性。其主要研究结论如下:
     (1)弃耕砂田人工造林恢复植被可行性试验结果表明,沙枣、多枝柽柳、柠条、花棒、沙拐枣等抗旱树种在弃耕砂田的造林成活率可分别达到93%、88%、72%、64%、48%;弃耕砂田造林后2年,5种灌木株高年生长量从大到小依次为:多枝柽柳>沙拐枣>花棒>柠条>沙枣,地径年生长量从大到小依次为:多枝柽柳>花棒>沙拐枣>柠条>沙枣,根系总生物量大小依次为:多枝柽柳>花棒>沙枣>柠条>沙拐枣,表明在弃耕砂田环境下,5种灌木不仅可以存活且能保持有一定生长能力。
     (2)对5种灌木地下与地上生长关系的观测表明,5种灌木幼林阶段根系主要分布在0~40cm土层中,而且随着土层的深入,灌木根系生物量分布呈下降趋势。0~20cm土层中根系分布最多,说明5种灌木幼林阶段在该土层中利用水分养分的能力最强;5种灌木的根深/株高、根幅/冠幅均大于1,5种灌木地下与地上生物量的比值分别为:1.62、1.4、1.05、1.15、1.3,也均大于1。5种灌木地下与地上生物量生长分配均有利于其在弃耕砂田干旱环境条件下对有限土壤水分的吸收和利用,这也是5种灌木适应弃耕砂田干旱立地环境的表现。由此可见,弃耕砂田通过选择具有较强抗旱能力的灌木树种进行人工造林以实现植被恢复具有一定的可行性。
     (3)弃耕砂田造林地水分动态变化观测结果表明:在整个观测期内,弃耕砂田造林地0~40cm层的土壤水分平均为12.6%,比旱作土田含水量高40.7%,说明虽然弃耕砂田的保水效果较新砂田有所下降,但较旱作土田仍具有较好的水分保持能力。研究认为,弃耕砂田具有植被恢复与利用必要的水分基础条件;在整个生长期内,弃耕砂田造林地土壤水分变化虽有波动,但总体呈下降趋势,7月份达到最低。而经过8~9月雨季后,土壤含水量得到补充而快速增加。这些土壤水分的良好保持就为来年弃耕砂田造林地的树木生长创造了基本条件。
     (4)对弃耕砂田人工造林后土壤水分条件的变化及对灌木生长影响的观测研究表明:4年生多枝柽柳株高年生长量最大,而6年生多枝柽柳地径年生长量最大,到12年生时,其株高、地径年生长量均较低。可见,随着树龄的增加,多枝柽柳在树龄达到12年以后,由于多枝柽柳生长所需水分等方面因素的限制,其地径和株高生长均变缓慢。4年生多枝柽柳根系主要分布在土壤浅层(0~150cm),其生长主要利用土壤浅层水分,这部分水分主要靠降雨补给,而随着树龄增加,多枝柽柳生长需要的水分也越多,到6年生时土壤浅层水分已不能满足其生长需要,多枝柽柳根系生长通过更多的向土壤下层延伸,以更多的吸收和利用土壤深层的地下水分。整个生长季内,3种不同林龄多枝柽柳林地土壤含水量普遍较低,但灌木的生长并没有因为较低的土壤含水量而受到明显的影响,也就是说在弃耕砂地环境条件下,人工多枝柽柳灌木林仍能基本正常生长,随着林龄增长尚未表现出显著的衰退迹象。
     (5)干旱区植被恢复成功与否的最关键因素是水分。试验研究结果初步表明,弃耕砂田的土壤水分条件基本上可以满足抗旱类灌木树种的生长需要。因此认为,通过营造人工灌木林来促进弃耕砂田的植被恢复具有一定的可行性。
Sand field is one of the unique forms of traditional farming method against drought in northwest arid or semi-arid regions. The traditional farming process on Sand field is practically an aging process. Degrading sand field without renovation would make it impossible to grow food crops and cash crops any longer, thus the formation of large areas of abandoned sand fields. The study was made by combining field experiments, investigative observation and indoor analysis on basis of the soil moisture condition of sand fields. And the conditions for restoring vegetation and the possibility of re-utilization on abandoned sand fields were then analysed through shrub-planting experiments and observations on existing shrub lands within abandoned sand fields. Main conclusions are as following:
     (1) The results of the feasibility experiment of restoring-afforestation on abandoned sand fields show that,the survival rate of anti-drought trees planted on abandoned sand fields were respectively 93%,88%,72%,64%,48%,in line with Elaeagnus angustifolia, Tamarix ramosissima ramosissima, Caragana intermedia, Hedysarum scoparium and Calligonum mongolicum;Two years after planting on abandoned sand fields, the height growth of shrubs were: Tamarix ramosissima ramosissima> Calligonum intermedia >Hedysarum scoparium> Caragana mongolicum >Elaeagnus angustifolia; Diameter growth were: Tamarix ramosissima>Hedysarum scoparium> Calligonum mongolicum > Caragana intermedia > Elaeagnus angustifolia; Total root biomass of five shrubs is: Tamarix ramosissima> Hedysarum scoparium > Elaeagnus angustifolia> Caragana intermedia > Calligonum mongolicum. It showed that the five kinds of shrubs could survive with certain growth abilities.
     (2)Observations on the relationship between above ground and under ground growth of five kinds of shrubs show that, within five shrubs' infancy, root distribution mainly located in 0~40cm soil layer, and with deepening of soil, the root distribution of biomass decreases. The root distribution of biomass in 0~20cm soil layer are richest, noting the strongest ability on the use of soil moisture and nutrients in 0~ 20cm soil layer; Depth/Height and Root-range/Crown-diameter all surpassed 1; and below-/above-ground biomass valued also more than 1 except Calligonum. In dry conditions, the rate of plants' root growth rate is faster than the ground parts in certain circumstances so as to survive. It is necessary for plants to expand its root length and root range, extending horizontally and deeply, in order to absorb more moisture from soil for the growth of aerial parts. Hereby it was to some extent feasible to restore vegetation on abandoned sand fields through selecting shrubs with relatively strong viability against drought.
     (3) Observations over dynamic changes of soil moisture in abandoned sand field afforestation show that, in the whole observatory period, the soil moisture of 0 ~ 40cm layer averaged 12.6% in the abandoned sand field afforestation, higher than dry earth field 40.7%, indicating that the moisture retention capacity of abandoned sand fields was lower than new sand fields, but still better over dry earth field. We can infer that abandoned sand fields have the basic water condition necessary for using and restoring vegetation; within the whole growth period, the soil moisture of abandoned sand field afforestation fluctuated with overall downward trend, and the lowest turned up in July. And after the rainy season in October and September, the soil moisture was supplemented with a rapid increase, by which the conservation of water created basic conditions for tree growth upon abandoned sand fields in the coming year.
     (4) Through observations over the variation of soil moisture and its effect on the growth of shrubs after afforestation on abandoned sand fields, it can be indicated that: the highest height growth could occur in 4-year old tamarisk plants, the largest diameter growth in 6-year olds, whereas the annual growth of 12-year old plants was low. It is obvious that as age increases, the diameter and height growth of Tamarix ramosissima begins to slow at the age of 12 years, due to water restrictions and other factors required for its growth; 4-year old Tamarisk roots mainly exist in shallow soil (0~150cm), which provides the main soil moisture and depends on rainfall for its water supply. While the age increases, more water is needed for the growth of Tamarix ramosissima and the shallow layer water can not meet its needs when the plant's age reaches 6 years, hence the root growth toward deeper soil layer for more absorption and utilization of deep water; Throughout the growing season, the soil moisture was generally low in three Tamarisk afforestation of different age, of which the growth have not been significantly affected by low soil moisture content; it means that planted Tamarix ramosissima shrubs can still grow normally in sandy conditions without showing evident signs of recession as the age increases.
     (5) The most critical factor for successful vegetative restoration in arid areas is the water. Results of the experiment preliminary showed that the soil moisture of abandoned sand fields could meet the basic needs of shrub afforestation. So to some extent feasible to plant shrub to promote vegetation on abandoned sand fields.
引文
[1]王微妙.洮沙县志[M].油印本.1930年.
    [2]张维.兰州古今注[M].油印本.1943年.
    [3]田健生.砂田之初步研究.现代西北[J]. 1944, (7):1.
    [4]吕忠恕,陈邦瑜.甘肃砂田的研究[J].农业学报,1955,6(3):299~312.
    [5]刘迪疆.甘肃省砂田调查报告[C]. 1956年.
    [6]兰州市农科所.兰州的砂田.试验研究资料汇编(第一集),1959, 1~5
    [7]兰州市农林局甘肃省兰州市农业统计资料汇编(1949~1975). 19 76
    [8]中国科学院南京土壤研究所.土壤理化分析〔M〕上海:上海科学技术出版社,1978
    [9]胡恒觉.我国砂田免耕法.耕作制度论文集[C].北京:农业出版社,1981:206~477
    [10]黄培荣.甘肃的砂田[J].农业科技情报,1981,(6):38~42
    [11]林成谷.土壤学[M].北京:农业出版社,1983.
    [12]甘肃省农科院情报研究所等.甘肃的砂田[C],1984.
    [13]李凤歧等.陇中砂田之探讨[J]农业考古,1984,(2):130
    [14]辛秀先.论甘肃砂田的形成及其起源[J].甘肃农业科技,1993 (5) :5~71
    [15]王殿武.褚达华.少免耕对旱地土壤物理性质的影响[J].河北农业大学学报,1992 (2):23~26
    [16]火高炎,等.兰州市农业志[M].兰州:兰州大学出版社, 20001
    [17]金如龙.西瓜地膜覆盖规范化栽培技术的研究与应用[J].中国西瓜甜瓜,1990 (2):32~33
    [18]盛家廉.从甘肃的砂田来看铺砂防旱的作用[N ] .人民日报,1952-03-06 (03) .
    [19]王天送,苏贺昌.兰州地区砂田土壤的水分特征[J].干旱地区农业研究,1991 (1) :66~691
    [20]刘谦和,李志强.砂田土壤的水蒸发特征和温度变化.甘肃农业科技,1993 (8) :26~281
    [21]杨来胜,席正英,李玲等.砂田的发展及其应用研究(综述) [J].甘肃农业, 2005, ( 7) : 72.
    [22]锥焕析.白银地区砂田的防旱作用及其耕作[J].干早地区农业研究, 1991(1):37~45
    [23]王天送,苏贺昌.兰州地区砂田土壤的水分特征[J].干旱地区农业研究,1991(1):66~69
    [24]羊小琴,魏至春,刘学申等.兰州“三膜一砂”栽培技术[J].中国瓜菜, 2005, ( 6) : 39- 40.
    [25]吴建义,郑新瑞.砂田地膜塑料大棚覆盖白兰瓜优质丰产栽培技术[J].中国西瓜甜瓜, 1995, ( 4) : 18- 19.
    [26]杨来胜.砂田及其不同覆盖方式的水热效应对白兰瓜生长发育的影响[D].西北农林科技大学,2004.
    [27]杨国强,杨敬青.砂田在干旱山区农业持续发展中的作用与效益[J].中国水土保持,1995(5):31~33
    [28]杜延珍.砂田在干旱区的水土保持作用[J].中国水土保持,1993(4):36~38
    [29]戈敢.中国压砂田的发展与意义.农业科学研究[J].2009(12):52~54
    [30]赵燕,李成军,康建宏等.砂田的发展及其在宁夏的应用研究.农业科学研究[J].2009(6):35~37
    [31]王廷华,刘自祥等.山荒地压砂造林试验研究.宁夏农林科技[J],2006(5):18~19
    [32]陈年来,刘东顺,王晓巍,等.甘肃砂田的研究与发展[J ] .中国瓜菜,2008 (2) :29~31.
    [33]鲁长才.中卫香山压砂西瓜[M] .北京:中国经济出版社,2007.
    [34]刑天均,左荣生等.中卫压砂造林初探[J ].宁夏农林科技.2004(6):18~19
    [35]李晓明,于淑贤.谈废弃地造林[J].林业勘查设计.2004(6):16~17
    [36]田媛,李晓玲,李凤民,等.砂田集雨补灌对西瓜产量和土壤水分的影响[J].中国沙漠,2003,23 (4) :459~463.
    [37]王亚军,谢忠奎,张志山,等.甘肃砂田西瓜覆盖补灌效应研究[J] .中国沙漠,2003 ,23 (3) :300~304
    [38]陈士辉谢忠奎王亚军等.砂田西瓜不同粒径砂砾石覆盖的水分效应研究[J].中国沙漠, 2005,25(3) :433~436
    [39]林农,秉乾.砂田枣业大有所为—皋兰县涝池村砂田定植枣园的启示[J].甘肃林业, 2003,5:12.
    [40]常亚丽,邢天钧,潘钺,等.中卫香山压砂地枣树造林密度及造林技术探讨[J].宁夏农林科技,2006(5) :41.
    [41]高炳生.甘肃的砂田[J] .中国水土保持,1984 (1) :10~12.
    [42]杨敬青.铺压砂田是干旱山区脱贫致富的有效途径[J] .甘肃农业,2004 (12) :62.
    [43]宋维峰.甘肃砂田[J] .甘肃水利水电技术,1994 (2) :56~58.
    [44]王永慧,张秀芳.中卫市香山地区压砂地红枣适应性试验研究[J] .宁夏农林科技,2006 (4) :20.
    [45]韩东锋,孙德祥等.半荒漠风沙区5种优良沙生灌木造林效果比较[J].西北农业学报, 2009.18(5) :312~315.
    [46]许强,吴宏亮等.旱区砂田肥力演变特征研究[J ].干旱地区农业研究,2009.27(1) :37~41.
    [47]张继光.干旱半干旱区植被恢复技术途径探讨[J ].甘肃科技,2006.22(9) :213~215.
    [48]郭忠升,邵明安.人工柠条林地土壤水分补给和消耗动态变化规律[J].水土保学报,2007.21(2) :41.
    [49]王孟本,李洪建,晋西北黄土区人工林土壤水分动态的定量研究[J]生态学报, 1995, 15 (2) : 178~184
    [50]贾志清,卢琦,青海大通县退耕地抗旱造林技术研究[J ],水土保持通报2008, 28(3) : 85~87
    [51]陈小红,段争虎等,兰州市南北两山人工灌木林地土壤水分动态[J],中国沙漠.2006, 26(4) : 532~535
    [52]阮成江,李代琼.半干旱黄土丘陵区沙棘林地土壤水分及其对沙棘生长影响研究[J].水土保持通报,1999,19(3):27~30.
    [53]许喜明,陈海滨等.黄土高原半干旱区人工林地土壤水分环境的研究[J].西北林学院学32报,2006,21(5):60~64.
    [54]杨新民,杨文治.黄土丘陵区人工林土壤水分平衡初探[J] .林业科学, 1989 ,25 (6) : 5492553.
    [55]王孟本,李洪建.晋西北地区人工林土壤水分动态的定量研究[J] .生态学报,1995 ,15 (2) : 1782184.
    [56]李玲芬,延军平等.干旱—半干旱地区不同植被条件下土壤含水量变化及植被建设土建分析[J] .生态学报,1995 ,15 (2) : 178~184.
    [57]单长卷,梁宗锁等.黄土高原刺槐人工林根系分布于土壤水分的关系[J] .中南林学院学报,2006 ,26 (1) : 19~21.
    [58]张宇清,齐实等.两种立地条件梯田埂坎红柳根系特征研究[J] .北京林业大学学报,2002 ,24 (2) : 44~46.
    [59]赵忠,李鹏等.渭北黄土高原主要造林树种根系分布特征的研究[J].应用生态学报, 2000 ,11 (1) : 37~39.
    [60]徐贵青,李彦等.共生条件下三种荒漠灌木的根系分布特征及其对降水的响应[J] .生态学报,2009 ,29 (1) : 130~133.
    [61]赵思金,韩烈保等.不同人工灌木与草混播群落中4中灌木根系分布的研究[J].西北植物学报,2008 ,28(4) : 799~804.
    [62]丁军,王兆骞,陈欣等.红壤丘陵区林地根系对土壤抗冲增强效应的研究[J].水土保持学报,2002,16(4):9~12
    [63]张娜,梁一民.黄土丘陵区天然草地地下/地上生物量的研究[J].业学报, 2002, 11(2):72~78.
    [64]孙长忠,黄宝龙,陈海滨,等.黄土高原人工植被与其水分环境相互作用关系研究[J].北京林业大学学报,1998 ,20 (3) :7 ~14.
    [66]阮成江,李代琼.半干旱黄土丘陵区沙棘林地土壤水分及其对沙棘生长影响研究[J].水土保持通报,1999,19(3):27~30.
    [67]何其华,何永华,包维楷.干旱半干旱山地土壤水分动态变化[J].山地学报, 2003, 2(2):149~156.
    [68]马祥华,白文娟,焦菊英,等.黄土丘陵沟壑区退耕地植被恢复中的土壤水分变化研究[J] .水土保持通报,2004 ,24 (5) :19~23.
    [69]阿拉木萨,蒋德明等.沙地人工小叶锦鸡儿植被根系分布与土壤水分的关系研究[J] .水土保持通报,2004 ,24 (5) :19~23.
    [70]王进鑫,王迪海等.刺槐和侧柏人工林有效根系密度分布规律研究[J].西北植物学报, 2004 ,24 (12) :2208~2214.
    [71]马增旺,顾新庆,贺登飞,等.柠条生长量与生物量调查研究[J].河北林业科技, 1998 (4) : 25~27.
    [72]程积民,万惠娥,王静,等.半干旱区柠条生长与土壤水分消耗过程研究[J].林业科学, 2005, 41 (2) : 37~41.
    [73]徐炳成,山仑.半干旱黄土丘陵区沙棘和柠条水分利用与适应性特征比较[J].应用生态学报, 2004, 15 (11) : 2025~2028.
    [74]山仑,徐炳成,杜峰,等.陕北地区不同类型植物生产力及生态适应性研究[J].水土保持通报, 2004, 24 (1) : 1~7.
    [75]吴钦孝,丁汉福,刘克俭,等.黄土丘陵半干旱地区柠条根系的研究[J].水土保持通报, 1989, 9 (3) : 45~49.
    [76]薄颖生,韩恩贤,罗伟祥.侧柏人工幼林生长动态及其水热关系研究初报[J].林业科学,1998 ,34 (5) :120~125.
    [77]张绒君,王斌,袁晨等.黄土高原沟壑沙棘造林生长适应性调查研究[J].沙棘,2008 ,21 (1) :27~30.
    [78]魏良民,李康等.沙拐枣幼苗生长规律及与其抗旱性关系研究[J].干旱区研究,1994 ,11 (3) :47~50.
    [79]程积民,万惠娥等.半干旱区柠条生长与土壤水分消耗过程研究[J] .林业科学,2005 ,41(2) :37~41.
    [80]肖生春,肖洪浪等.干旱区多枝多枝柽柳的生长特性[J] .西北植物学报,2005 ,25 (5) :1012~1016.
    [81]牛西午,丁玉川等.柠条根系发育特征及有关生理特性研究[J] .西北植物学报,2003,23(5):860~865.
    [82]魏疆,张希明等.甘蒙多枝柽柳幼苗生长动态及其对沙漠腹地生境条件的适应策略[J] .干旱区地理,2007 ,30(5) :669~673.
    [83]毕建琦,杜峰等.黄土高原丘陵区不同立地条件下柠条根系研究[J] .林业科学研究,2006,19(2):225~230.
    [84]马增旺等.柠条生长量与生物量调查研究[J] .河北林业科技,1998 ,12(4) :25~27.
    [85]杨振江,周更生等.宁夏河东沙地飞机播种沙拐枣生长情况调查[J] .陕西林业科技,2003,1 :35~36.
    [86]Choriki R T , Hide J C , Drall L L , et al . Rock and gravelmulch aid in moisture storage [J] . Crops and Soils ,1964 , 16~24.
    [87]Paul W. Unger Soil profile gravel layerП. Effect on growth and water use by a hybrid forage sorghum [J]. Soil Science Society of America Proceeding , 1978,21~23.1, 35: 631~ 634.
    [88]Abdullah Saad Modaihsh, Robert Horton, and Don Kirkham. Soil water evaporation suppression by sand mulches [J]. Soil Science, 1985, 139: 357~361.
    [89]Hu H J , Gu X Y, L iX P. The method of non-tillage sandy field in China. The Symposium on Farming System [J]. Beijing Agriculture Press, 1981. 206~217.
    [90]NACHTERGAEL E J , POESEN J W , VAN WESE2MAEL B. Gravel mulching in vineyardsof southern Switzerland [J]. Soil & Tillage Research , 1998 , 46 :51~59.
    [91] POESEN J , INGELMO K2SANCHEZ F. Run off andsediment yield f rom top soils with different porosity as affected by rock f ragment cover and position[J]. Catena, 1992 , 19 :451~474.
    [92]CERDA A. Effect s of rock f ragment cover on soil in filtration, inter rill run off and erosion [J]. European Journal of Soil Science, 2001, 52 :59~68.
    [93]WILCOX B P , WOOD M K. Factors influencing in2ter rill erosion f rom semiarid slopes in New Mexico[J] . Journal of Range Management, 1988, 42 :66~70.
    [94]POESEN J, INGELMO2SANCHEZ F, MUCHERH. The hydrological response of soil surface to rainfall as affected by cover and position of rock f rag2ment s in the to player [J] . Earth Surf ProcessesLand Forms, 1990, 15:6532671.
    [95]刘斌,刘彤,李磊,赵新俊,韩志全,马大伟.古尔班通古特沙漠西部梭梭大面积退化原因[J].生态学杂志, 2010,(04) .
    [96]王继和,马全林等.民勤绿洲人工梭梭林退化现状、特征及恢复对策[J].西北植物学报,2003;(1):1~9.
    [97]马全林,王继和,赵明,詹科杰,刘虎俊.退化人工梭梭林的恢复技术研究[J].林业科学研究, 2006,(02) .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700