用户名: 密码: 验证码:
动载荷作用下混凝土剥落破裂的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土作为一种典型的人造工程材料,在国防建设和民用建筑中被广泛采用。在采矿工程中,混凝土的使用表现为喷射混凝土和混凝土衬砌等。在动态载荷作用时,载荷在短时间内发生剧烈的变化,与静载荷作用的情形相比,应力波传播及其诱发的破裂是必须要考虑的过程。动态剥落是由于压缩应力波在自由面反射成为拉伸应力波,并达到材料的动态抗拉强度后而引起的一种拉伸破裂。由于动态压缩应力波亦可以引起混凝土衬砌的剥落破裂。因此,剥落破裂的研究受到土木、水电、建筑以及矿业等专业人员的广泛重视。
     本文应用RFPA-Dynamics数值模拟软件,在考虑混凝土的细观非均匀性的基础上,研究了应力波在混凝土中的传播规律,模拟出混凝土在冲击载荷作用下的剥落破裂过程。主要内容如下:
     (1)在假定混凝土为三相复合材料的基础上,建立混凝土材料的二维细观材料模型;
     (2)通过开展不同波形下混凝土剥落过程的数值模拟,探讨混凝土非均匀性和应力波形对于剥落破裂的影响,揭示混凝土动态剥落强度应变率效应的机制。
     (3)模拟混凝土支护巷道在冲击载荷下的剥落破裂过程,探讨加载条件对破坏位置及破坏程度的影响,分析不同应力波波形对于巷道稳定性的影响。
Being a typical man-made engineering material, concrete is extensively used in the national defense engineering and civil engineering. In the mining engineering, for instance, the spray-concrete and lining are both the very important concrete structures. Compared with the mechanical responses of concrete under static loading, the stress wave propagation and the associated failure loading must be considered when the concrete is under the dynamics loading. Dynamics spalling is a kind of tensile failure when the compressive stress wave is reflected as the tensile stress and it attains the dynamics tensile strength of the materials. Since the dynamics spalling maybe one of the main mechanisms that lead to the failure of concrete lining, the dynamics spalling attracts the attentions of professionals from civil engineering, hydraulic engineering and mining engineering.
     RFPA-Dynamics, a professional numerical code that is capable of simulating the failure process of concrete under the dynamics loading, is used to study the stress wave propagation and the associated dynamics spalling when the heterogeneity of concrete at the mesoscopic level is incorporated. The main contents of the thesis are as follows:
     (1) At the mesoscopic level, a three-phase material model for characterizing the heterogeneity of the concrete is used to build the two-dimensional numerical model of concrete specimens.
     (2) After the numerical simulations on dynamics spalling of concrete, the influence of material heterogeneity and waveform of the applied stress waves on the dynamics spalling is discussed, and the mechanism related to the strain-rate dependency of tensile strength of concrete is clarified.
     (3) The concrete that are used as the supporting structure in underground opening are numerically simulated, the effect of stress waveforms on the failure positions and patterns is analyzed.
引文
1. Klepaczko, J.R., Brara, A. An experimental method for Dynamics tensile testing of concrete by spalling [J]. International Journal of Impact Engineering,2000, 25(2001):387-409.
    2. Schuler. H., Mayrhofer, C., Thoma, K. Spall experiments for the measurement of the tensile strength and fracture energy of concrete at high strain rates[J]. International Journal of Impact Engineering,2004; 32 (2006):1635-1650.
    3.闫东明.混凝土动力试验设备的发展现状与展望[J].北京:机械工业出版社水科学与工程技术,2007(1),1-4.
    4. Sparks P R, Menzies J B. The effect of rate of loading upon the static and fatigue strengths of plain concrete in compression[J].Magazine of Concrete Research,1973,25 (83):73-80.
    5.肖诗云,林皋,王哲等.应变率对混凝土抗拉特性影响[J].大连理工大学学报,2001,4(16):721-725.
    6.肖诗云,林皋,逯静洲,等.应变率对混凝土抗压特性的影响[J].哈尔滨建筑大学学报,2002,3(55):35-39.
    7.董毓利,谢和平,赵鹏.不同应变率下混凝土受压全过程的实验研究及其本构关系[J].水利学报,1997,7:72-77.
    8.王海龙,李庆斌.不同加载速率下饱和混凝土的劈拉试验研究及强度变化机理[J].工程力学,2007,24(2):105-109.
    9.肖建清,陈枫,徐根.加载速率与加载波形对混凝土抗拉强度的影响[J].土工基础,2005,19(4):70-72.
    10.李木国,张群,王静,等.大型液压伺服混凝土静动三轴试验机[J].大连理工大学学报,2003,4(36):812-817.
    11.闫东明,林皋,刘钧玉,袁颖.定侧压下混凝土的双轴动态抗压强度及破坏模式[J].水利学报,2006,37(2):200-204.
    12.闫东明,林皋.双向应力状态下混凝土的动态压缩试验研究[J].工程力学,2006,23(9):104-108.
    13.Grotes D L, Park S W, Zhou M. Dynamics behavior of concrete at high strain rates and pressures:I. experimental characterization[J].International Journal of Impact Engineering,2001, (25):869-886.
    14.Lamebert D L, Ross C A. Strain rate effects on Dynamics fracture and strength [J].International Journal of Impact Engineering,2000,24:985-998.
    15.Gomez JT, Shukla A, Sharma A. Static and Dynamics behavior of concrete and granite in tension with damage[J].Theoretical and Applied Fracture Mechanics,2001,36:37-49.
    16.Ross C A, David M J, Joseph W T, et al. Moisture and strain rate effects on concrete strength[J].ACI Materials Journal,1996,9 (33):293-300.
    17.Malvern L E, Jenkins D A, Tang T, et al. Dynamics compressive testing of concrete [C].Proceedings of 2nd Symposium on the Interaction of Non-nuclear Munititions with Structures,Folrida.194-199.
    18.Rossi P,Van Mier J G M,et al. Effect of loading rate on the strength of concrete subjected to uniaxial tension[J].Materials and Structures,1994,2 (7169) 260-264.
    19.胡功等,刘荣忠,齐爱东,李赞成.混凝土材料的SHPB试验及动态性能分析[J].南京理工大学学报,2005,29(4):420-424.
    20.黄政宇,王艳,肖岩,卢芳云.应用SHPB试验对活性粉末混凝土动力性能的研究[J].湘潭大学自然科学学报,2006,28(2):113-117.
    21.严少华,段吉祥,尹放林,钱七虎.高强混凝土SHPB试验研究[J].解放军理工大学学报,2000,1(3):6-9.
    22.牛卫晶,闫晓鹏,张立军,马宏伟.高应变率下混凝土动态拉伸性能的实验研究[J].太原理工大学学报,2006,37(2):238-241.
    23.Martin J S. High pressure and high strain rate behavior of cementitious materials:experiments and elastic viscoplastic modeling[D].University of Florida, USA,2003.
    24.商霖,宁建国.强冲击载荷下混凝土动态本构关系[J].工程力学,2005,22(2):116-119.
    25.Dancygier A N, Yankelevsky D Z. High strength concrete response to hard projectile impact [J].In J Impact Engng,1996,1 (86):583-599.
    26. Gran J K, Florence A L, Colton J D. Dynamics triaxial tests of high strength concrete [J].ASCE J Engineering Mechanics,1989,11 (55):891-904.
    27.Zhu, W.C., Tang, C.A. Numerical simulation on shear fracture process of concrete using mesoscopic mechanical model. Construction and Building Materials,2002,16(8):453-463.
    28.唐春安,朱万成.混凝土损伤与断裂——数值试验[M].北京:科学出版社2003.
    29.朱万成,唐春安,杨天鸿,梁正召.岩石破裂过程分析(RFPA2D)系统的细观单元本构关系及验证[J].岩石力学与工程学报,2003,22(1):24-29.
    30.Holmquist T J, Johnson G R. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures[A]. Michael J M, Joseph E B, ed.14th International Symposium on Ballistics[C]. Quebec, Canada: [s.n.],1993:591-600.
    31.陈书宇.一种混凝土损伤模型和数值方法[J].爆炸与冲击,1998,18(4):349-357.
    32.曹菊珍,李恩征,王政.高速碰撞中有关混凝土与沙岩的破损问题的数值研究[J].计算物理,2002,19(2):137-141.
    33.Forrestal M J, Luk V K, Watt s H A. Penetration of reinforced concrete with o give-nose penetrators [J]. International Journal of Solids & Structures,1988, 24 (1):77-87.
    34.孙宇新.凝土抗贯穿问题研究[D].合肥:中国科学技术大学,2002.
    35.李永池,袁福平,胡秀章等.卵形头部弹丸对混凝土靶板侵彻的二维数值模拟[J].弹道学报,2002,14(1):14-19.
    36.Riedel W. Beton unter dynamischen Lasten Meso-und makromechanische Modelle undihre Parameter [D].Freiburg,Germany:Phd Thesis,Ermst-Mach-Institut,2000.
    37.Heider N, Hiermaier S. Numerical simulation of tandem warheads [A]. Iris Rose Crewther, ed.19th Internation2al Symposium Ballistics[C]. Interlaken, Switzerland:Thun:IBS2001 Symposium office,2001:1493-1499.
    38.Malvar L J, Crawford J E, Wesevich J W, et al. A plasticity concrete material model for DYNA3D[J]. International Journal of Impact Engineering,1997,19 (9):847-873.
    39.Agardh L, Laine L,3D FE-simulation of high-velocity fragment perforation of reinforced concrete slabs [J]. International Journal of Impact Engineering, 1999,22:911-922.
    40.曹德青.钢筋混凝土侵彻问题数值计算[D].北京:北京理工大学,2001.
    41.陈大年,AlHassani, S. T. S.,尹志华,俞宇颖,沈雄伟.混凝土的冲击特性描述[J].爆炸与冲击,2001,21(2):89-96.
    42.金乾坤.混凝土动态损伤与失效模型[J].兵工学报,2006,27(1):10-14.
    43.刘小虎,杨文兵,王乘,程玲玲.大桥受船撞击灾害的计算机评价方法[J].工程力学,2000,17(4):124-131.
    44.张德海,朱浮生,刑纪波.冲击载荷下混凝土破坏过程数值模拟[J].沈阳:东北大学学报,2005,26(8):790-793.
    45.王政,倪玉山,曹菊珍,张文.冲击载荷下混凝土本构模型构建研究[J].高压物理学报,2006,20(4)337-344.
    46.刘庭金,朱合华,莫海鸿.非均质混凝土破坏过程的细观数值试验.[J]岩石力学与工程学报,2005,24(22):4120-4133.
    47. Berthelot, J. M. and Robert, J. L. (1990). "Damage evaluation of concrete test specimens related to failure analysis." Journal of Engineering Mechanics, ASCE, Vol.116, No.3, pp.587-604.
    48. Tang CA. Numerical simulation of progressive rock failure and associated seismicity. International Journal of Rock Mechanics and Mining Sciences 1997; 34:249-261.
    49. Tang CA, Liu H, Lee PKK, Tsui Y, Tham LG. Numerical tests on micro-macro relationship of rock failure under uniaxial compression, part I:effect of heterogeneity. Int J Rock Mech Min Sci 2000; 37:555-569.
    50.Chau KT, Zhu WC, Tang CA. Numerical simulation of failure of brittle solids under dynamic impact using a new computer program---DIFAR. Key Engineering Materials,2004,261-263:239-244.
    51.Zhu WC, Tang CA. Micromechanical model for simulating the fracture process of rock. Rock Mechanics and Rock Engineering,2004,37 (1):25-56.
    52.刘彩平,田鹭璐,宋振铎,徐锋.细骨料混凝土细观断裂试验研究[J].矿业研究与开发,2005,25(1):17-20.
    53.姬永生,袁广林,刘辉,高立磊,张雯雯.粉煤灰在水泥和混凝土中应用对改善混凝土细观结构的对比试验研究[J].四川建筑科学研究,2006,32(6)162-165.
    54.龙广成,谢友均,王培铭,蒋正武.活性粉末混凝土的性能与微细观结构[J].硅酸盐学报,2005,33(4):456-461.
    55.马怀发,陈厚群,黎保琨.细观结构不均匀性对混凝土动弯拉强度的影响[J].水利学报,2005,36(7):1-9.
    56. Van Mier J G M, Van Vliet M R A, Wang T K. Fracture mechanisms inparticle composites:statistical aspects in lattice type analysis[J].Mechanics of Materials,2002,34(11):705-724.
    57.张明,李仲奎,苏霞.准脆性材料弹性损伤分析中的概率体元建模[J].岩石力学与工程学报,2005,23(24):4282-4288.
    58.王士民,朱合华,冯夏庭,周辉.细观非均匀性对脆性岩石材料宏观破坏形式的影响[J].岩土力学,2006,27(2):224-227.
    59.逄铭璋.应力波诱致岩石破裂的数值试验[M].东北大学硕士学位论文,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700