用户名: 密码: 验证码:
一氧化碳还原分解磷石膏的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷石膏是湿法磷酸生产磷酸过程中的副产品,磷石膏的大量产生和排放对环境造成了潜在危害,同时浪费了巨大的人力、物力和财力。面对经济上的损失和环境保护政策的压力,磷石膏的大规模资源化已成为磷化工行业实现持续发展的关键。磷石膏分解制酸是磷石膏最具潜力的资源化途径之一,但是磷石膏分解温度高能耗大,因此本文主要针对这一问题进行了一氧化碳还原分解磷石膏的研究,为磷石膏的资源化技术提供了基础数据和理论参考。
     采用化工热力学软件HSC Chemistry探讨了一氧化碳还原分解磷石膏的热力学行为。利用Reaction Equation模块计算了一氧化碳还原分解磷石膏过程中可能涉及的20个化学反应的摩尔Gibbs自由能变(△rGm)、摩尔焓变(△rHm)、摩尔熵变(△rSm),结果表明这些化学反应大部分为吸热型反应,这也是磷石膏还原分解高能耗的主要原因。利用Equilibrium Composition模块模拟了一氧化碳还原分解磷石膏的热力学平衡组分,认为反应过程中发生的反应大部分是两个甚至更多反应的耦合,而不是彼此独立的逐个发生,其中CaS04(s)+4CO(g)=CaS(s)+4C02(g)与CaS04(s)+1/3CaS(s)=4/3CaO(s)+4/3S02(g)以及CaS04(s)+1/3CaS(s)=4/3CaO(s)与CaS(s)+3C02(g)=CaO(s)+S02(g)+3CO(g)的耦合发生是整个反应过程的主线。
     通过扫描电镜(SEM)观察了磷石膏的微观形貌,结果表明磷石膏为不规则的片状颗粒,颗粒间有较强的团聚现象,团聚颗粒有大量的空隙。通过X射线能谱(EDS)分析了磷石膏的元素组成,结果表明磷石膏的主要元素成分为氧、硫、硅和钙4种,但是不同的微区成分也不尽相同。通过X射线粉末衍射(XRD)表征了磷石膏的物相组成,结果表明磷石膏的主要物相为CaS04·2H20,此外还有少量SiO2。通过激光粒度分析仪测定了磷石膏的颗粒粒度,结果表明磷石膏的颗粒粒度近似成正态分布。
     利用热分析技术进行了一氧化碳还原分解磷石膏的影响因素,结果表明还原性气氛有利于磷石膏的分解;在一氧化碳气氛中,磷石膏的分解包括两个阶段,第一阶段为磷石膏的脱水阶段,第二阶段为磷石膏的还原分解阶段,5wt.%CaCl2外加剂有利于磷石膏在一氧化碳中的还原分解。
     研究了一氧化碳气氛中磷石膏还原分解阶段的动力学行为,认为整个过程为化学反应所控制,动力学方程为动力学补偿效应为lnA=0.1115E+0.0211,反应活化能随磷石膏转化百分率的增大而减小。
Phosphogypsum is a by-product from wet-processes for phosphoric acid. It brings in environmental hazards for massive production and discharge, while wasting enormous human, materials and financial resources. Facing economic loss and environmental double pressure, it is large-scale resource utilization of phosphogypsum that has become the key of realizing sustainable development in phosphorous chemical industry. It is one of the best influential utilization approaches for phosphogypsum to product sulfuric acid through decomposition of it. However, it will need a high temperature and lots of energies for the process, so the decomposition of phosphogypsum under carbon monoxide atmosphere was studied concerning the problem in the paper. The results of the study could provide the basic data and theoretical reference for utilization technology about phosphogypsum.
     It was discussed with chemical thermodynamics software HSC Chemistry that thermodynamic behavior of the reductive decomposition of phosphogypsum under carbon monoxide atmosphere. Molar Gibbs free energy change (△,Gm), molar enthalpy change (△rHm) and molar enthalpy change (△rSm) of the twenty probable reactions were all calculated with the reaction equation module of HSC software, which were involved in the reductive decomposition of phosphogypsum under carbon monoxide atmosphere. It shows that these most reactions are endothermic, and that is why the reductive decomposition of phosphogypsum needs lots of energies. It was simulated with the equilibrium composition module of HSC software that the equilibrium composition of the reductive decomposition of phosphogypsum under carbon monoxide atmosphere. It shows that most reactions of the process are coupled with others, instead of one by one being unaided. and what is more, reaction coupled by CaSO4(s)+4CO(g)=CaS(s)+4CO2(g) and CaSO4(s)+1/3CaS(s)= 4/3CaO(s)+4/3SO2(g) and the reaction coupled by CaSO4(s)+1/3CaS(s)=4/3CaO(s) and CaS(s)+3CO2(g)=CaO(s)+SO2(g)+3CO(g) are the main lines.
     Microstructure of phosphogypsum was observed with scanning electron microscope (SEM), and it shows that phosphogypsum particles are erose sheets and there are lots of gaps between different particles which are sticked together. Elemental composition of phosphogypsum was achieved with help of Energy Dispersive Spectrometer (EDS), it shows that different regions have different elements with oxygen, Sulfur, silicon and calcium as main elements. Phase of phosphogypsum was characterized with X-ray powder diffractometer (XRD), and it shows CaSO4·2H2O is main and SiO2 is a little in it. Particle size of phosphogypsum was measured with particulate size description analyzer, and it shows that the particle size distribution of phosphogypsum is the approximate normal distribution.
     With the help of thermal Analysis, the influencing factors were investigated, and the result shows that reductive atmosphere is of advantage to the reductive decomposition of phosphogypsum; there are two stages in the process of the reductive decomposition of phosphogypsum under carbon monoxide atmosphere, one is the dehydration stage, and the other is the reductive decomposition stage; 5wt.% CaCl2 added is of advantage to the reductive decomposition of phosphogypsum under carbon monoxide atmosphere.
     It was investigated that the kinetics behaviors of the reductive decomposition of phosphogypsum under carbon monoxide atmosphere, and it shows that the process is under the control of chemical reaction, and kinetic equation of the reductive decomposition stage isand the kinetic compensation effect isIn,A= 0.1115E+0.0211, and the activation energy value increases the conversion percentage of phosphogypsum.
引文
[1]. Hanan Tayibi, Mohamed Choura, Felix A. Lopez et al.Environmental impact and management of phosphogypsum[J]. Journal of Environmental Management,2009, 90(8):2377-2386
    [2]. Nurhayat Degirmenci, Arzu Okucu, Ayse Turabi.Application of phosphogypsum in soil stabilization[J].Building and Environment,2007,42(9):3393-3398
    [3].杨沛浩.磷石膏的综合利用[J].中国资源综合利用,2009,27(1):13-15
    [4]. Moreira Cavalcanti Canut,Vanusa Maria Feliciano Jacomino et al. Micro structural analyses of phosphogypsum generated by Brazilian fertilizer industries[J].Materials Characterization,2008,59(4):365-373
    [5]. Manjit Singh. Treating waste phosphogypsum for cement and plaster manufacture [J].Cement and Concrete Research,2002,32(7):1033-1038
    [6]. E. M. van der Merwe, C. A. Strydom, J. H. Potgieter. Thermogravimetric analysis of the reaction between carbon and CaSO4·2H2O, gypsum and phosphogypsum in an inert atmosphere[J].Thermochimica Acta,1999,340-341:431-437
    [7].程治方.国内磷石膏制硫酸技术发展综述[J].石油和化工设备,2009,12(8):4-9
    [8].李建锡,唐霜露,曹盈盈等.非煅烧磷石膏制备墙体材料的研究.舒艺周[J].佛山陶瓷,2009(10):13-15
    [9].杨敏.杂质对不同相磷石膏性能的影响[D].重庆:重庆大学,2008
    [10].俞波;陈吉春.非锻烧磷石膏砖的研究[J].科技信息(学术版),2006(3):244-245
    [11].伏世军,缪正坤,赵世进等.磷石膏作水泥缓凝剂的应用研究[J].中国资源综合利用,2001(1):19-23
    [12].姜洪义,周环,吴青叶等.用磷石膏制备建筑胶结料[J].化工环保,2001,21(6):344-347
    [13].周志宏,刘孟兴,陈勋等.利用粉煤灰及其它工业废渣研制混凝土彩瓦[J].房材与应用,2001.29(1):32-36
    [14].周志宏,陈勋,崔天生等.利用高炉重矿渣及粉煤灰生产彩色混凝土瓦[J].砖瓦,2003(6):42-45
    [15].柳华实,葛曷一,张国辉等.磷石膏干粉抹面砂浆的研制[J].济南大学学报(自然科学 版),2005,19(4):59-61
    [16].马林转.循环流化床分解磷石膏及分解气体资源化研究[D].昆明:昆明理工大学,2006
    [17].Saloua Sebbahi, Mohamed Lemine Ould Chameikh, Fatima Sahban Thermal et al. behaviour of Moroccan phosphogypsum[J].Thermochimica Acta,1997,302:69-75
    [18].Manjit Singh.Treating waste phosphogypsum for cement and plaster manufacture[J]. Cement and Concrete Research,2002,32:1033-1038
    [19].Nurhayat Degirmenci,Arzu Okucub,AyseTurabi. Application of phosphogypsum in soil stabilization[J].2007,42:3393-3398
    [20].庞英,杨林,杨敏等.磷石膏中杂质的存在形态及其分布[J].贵州大学学报(自然科学版),2009,26(3):95-99
    [21].庞英,杨敏.磷石膏中杂质及其影响作用浅析[J].中国建材科技,2008,(1):67-68
    [22].Manjit Singh, Mridul Garg, S.S. Rehsi.Purifying phosphogypsum for cement manufacture [J]. Construction and Building Materials,1993,7(1):3-7
    [23]魏来.磷石膏与烟道气资源综合利用三相模拟反应体系的动力学探索研究[D].四川:四川大学.2006
    [24].C. D. Hull,W. C. Burnett.Radiochemistry of Florida phosphogypsum[J].Journal of Environmental Radioactivity,1996,32(3):213-238
    [25].B. Mazzilli,V. Palmiro,C. Saueia et al.Radiochemical characterization of Brazilian phosphogypsum[J]. Journal of Environmental Radioactivity,2000,49(1):113-122
    [26].杨瑞,邓跃全,张强等.川西磷石膏成分以及氡和放射性分析研究[J].非金属矿,2008,31(2):17-20
    [27].P. P. Haridasan, C. G. Maniyan, P. M. B. Pillai et al. Dissolution characteristics of 226Ra from phosphogypsum[J]. Journal of Environmental Radioactivity,2002,62(3): 287-294
    [28].陈和全.湿法磷酸生产中副产物磷石膏的综合利用[J].磷肥与复肥.2009.24(4):68-69
    [29].谢娟.从环保谈磷石膏的综合应用[J].广西轻工业,2008,24(7):93-95
    [30].邢华,陆树立,周奇等.中国磷石膏资源化管理分析[J].环境污染与防治,2008,30(4):90-93
    [31].中国化肥网.我国磷石膏综合利用世界领先[EB/OL]. http://www.ureanet.cn/third_ wenzhang.asp?lanmuid=61&wenzhangid=21523
    [32].Nurhayat Degirmenci, Arzu Okucu, Ayse Turabi. Application of phosphogypsum in soil stabilization[J].Building and Environment,2007,42(9):3393-3398
    [33].杨俊辉,李大祥,黄忠乾.硫肥的作用与磷石膏的应用前景[J].四川农业科技,2008,(1):55
    [34].Isabelo S. Alcordo, Jack E. Rechcigl. Phosphogypsum in Agriculture:A Review[J]. Advances in Agronomy,1993,49:55-118
    [35].王沁芳,张朝辉,杨江金.磷石膏的特性及其建材资源化利用[J].砖瓦,2008,(5):57-59
    [36].赵拉,解田,刘佳等.磷石膏的物化特征及其作为建筑材料的性能研究[J].西安建筑科技大学学报(自然科学版),2009,41(4):587-592
    [37].陈和全.湿法磷酸生产中副产物磷石膏的综合利用[J].磷肥与复肥,2009,24(4):68-69
    [38].杨兆娟,向兰.磷石膏综合利用现状评述[J].无机盐工业,2007,39(1):8-10
    [39].李滢.磷石膏的综合利用[J].云南化工,2007,34(6):74-80
    [40].余琼粉,宁平,杨月红.磷石膏的预处理及其资源化途径[J].江西农业学报,2008,20(2):109-111,114
    [41].马林转,宁平,杨月红等.磷石膏预处理工艺综述[J].磷肥与复肥,2007,22(3):62-63
    [42].肖海平,周俊虎,曹欣玉等.CaS04在不同气氛下分解特性的实验研究[J].动力工程,2004,24(6):889-892
    [43].肖海平,周俊虎,刘建忠等.CaS04与CaS在N2气氛下反应动力学[J].化工学报,2005,56(7):1322-1326
    [44].应国量.磷石膏分解特性的研究[D].武汉:武汉理工大学,2009
    [45].天津大学无机化学教研室.无机化学(第三版)[M].北京:高等教育出版社,2002
    [46].胡忠鲠,金继红,李盛华.现代化学基础.[M].北京:高等教育出版社,2000
    [47].吕国强,阳书文,马文会,王华.Li4Si04回收CO2的实验研究[J].热能动力工程,2009,(5):644-647
    [48].E. Jerndall, T. Mattisson, A.Lyngfelt. Thermal Analysis of Chemical-Looping Combustion [J].Chemical Engineering Research and Design,2006,84(9):795-806
    [49].Kikuo Nakanoa,Norihiko Fukatsua,Yoshinori Kanno.Thermodynamics of Zr/Hf-mixed silicates as a potential for environmental barrier coatings for Tyranno-hex materials[J]. Calphad,2009,33(2):343-352
    [50].C.A. Pickles.Thermodynamic analysis of the selective chlorination of electric arc furnace dust[J].Journal of Hazardous Materials,2009,166(2-3):1030-1042
    [51].P. Lohsoontorn, D.J.L. Brett, N.P. Brandon.Thermodynamic predictions of the impact of fuel composition on the propensity of sulphur to interact with Ni and ceria-based anodes for solid oxide fuel cells[J]. Journal of Power Sources,2008,175(1):60-67
    [52].卢海勇,沈来宏,肖军.置换燃烧新型载氧体CaS04的化学热力学性能分析[J].锅炉技术.2007,38(5):47-50
    [53].Marta Garcia-Calzada,Gregorio Marban,AntonioB.Fuertes. Decomposition of CaS particles at ambient conditions[J].Chemical Engineering Science,2000,55:1661-1674
    [54].Manjit Singh,Mridul Garg, C. L. Verma et al.An improved process for the purification of phosphogypsum[J]. Construction and Building Materials,1996,10(8):597-600
    [55].Sergey Vyazovkin. Kinetic concepts of thermally stimulated reactions in solids:a view from a historical perspective[J].International Reviews in Physical Chemistry,2000, 19(1):45-60
    [56].S. Vyazovkin. Alternative description of process kinetics[J].Thermochimica Acta,1992, 211(1):181-187
    [57].Jaroslav sestak, Gunnar Berggren. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures[J].Thermochimica Acta,1971,3(1):1-12
    [58].Joseph H. Flynn,Leo A. Wall. A quick, direct method for the determination of activation energy from thermogravimetric data[J].Journal of Polymer Science Part B: Polymer Letters1966,4(5):323-328
    [59].Coats A W, Redfern J P. Kinetic parameters from thermogravimetric data[J].Nature, 1964,201(4914):68-69.
    [60].沈兴.差热、热重分析与非等温固相反应动力学[M].北京:冶金工业出版社,1995
    [61].胡荣祖,高胜利,赵凤起等.热分析动力学(第二版)[M].北京:科学出版社,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700