用户名: 密码: 验证码:
B对电解加Zr耐热电工铝合金组织及性能影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
适量Zr的加入能明显改善铝合金的耐热性能,但是Zr的加入会对合金的导电性产生负面影响。目前的研究结果认为:在耐热导电合金中加入B能削弱Zr对合金导电性的不良影响。不同的研究者认为B对耐热导电铝合金导电性能的影响机理不尽相同;有报道称耐热导电铝合金中B的加入对Zr的相组成和存在形态产生影响,从而削弱Zr对合金导电性产生的不良作用。
     本文主要研究了添加不同含量的B对含Zr耐热导电铝合金微观组织与性能的影响。研究结果对含Zr耐热导电铝合金的推广应用具有重要的理论意义和实际意义。研究表明:
     1.合金中添加的B不过量时,即控制含Zr耐热铝合金导线中加入的B在Zr∶B=1∶2的范围内,添加的B与合金中的Zr形成ZrB_2化合物,ZrB_2不能作为Al原子的形核中心,因此它不会对合金产生晶粒细化作用,不会增加晶界,从而对合金的导电性不会产生负面影响。过量B的加入对含Zr铝合金有一定的晶粒细化效果,但它可能会对合金的耐热性和导电性产生负面影响。
     2.铝合金浸蚀后的粉状残余物的XRD测试及SEM分析结果表明,在不含B合金试样的粉状残余物中的Zr大多是以细小弥散的絮状Al_3Zr相存在的;而在含B合金试样中则出现了ZrB_2粒子,说明B的加入与合金中的部分Zr发生反应,形成片状的ZrB_2,以第二相粒子的形态析出。
     3.铝合金铸态试样的SEM分析结果表明,在不含B试样中没有发现含Zr的第二相粒子析出,合金中的Zr主要是以固溶态存在于Al基体中,基本不以第二相粒子的形态存在。而在含B的合金试样中,在晶粒内部和晶界处均出现了含Zr第二相粒子,大量含Zr的第二相粒子以细小板片状团聚在晶界处。
     4.在含Zr耐热铝合金导线中加入适量的B能提高导线的抗拉强度,同时能够消弱Zr对导线导电性产生的负面影响;但过量B的加入会使导线的导电性降低,要控制含Zr耐热铝合金导线中加入的B在Zr∶B=1∶2的范围内,此时铝合金导线达到最佳的使用性能。
     5.适量B的加入与合金中的Zr反应,生成ZrB_2析出,增加了合金中的第二相粒子,使合金的高温强度提高,改善了合金的耐热性;但添加B的不宜过量,要控制在Zr∶B=1∶2的范围内,当合金中加入的B过量,超过Zr∶B=1∶2时,会使合金的高温强度降低,使合金的耐热性变差。
The heat resistance of the aluminum alloy can be improved by adding appropriate amount of Zr,However,the addition of Zr alloy has a negative effect on the conductivity of the alloy.Studies shows that the adverse effects of Zr on electrical conductivity can be weakened by adding B into the alloy.It is believed that the mechanism of the influence of B addition on the heat conductive properties is different from that of Zr addition.It had been reported that the addition of B in heat-conductive aluminum alloy affects the phase composition and the morphology of Zr,thus weakens the adverse effects on alloy conductivity by the addition of Zr.
     The effects on microstructure and properties of conductive heat-resistant aluminum alloy containing Zr by adding different content of B were studied in this paper.The results provide useful information for the design and application of the heat-conductive aluminum alloy with Zr both in theoretical and practical aspects.The experimental results are as follows:
     (1) Controling the addition of B to the heat-resistant aluminum alloy containing Zr below the ratio of B:Zr=2:1,the B and Zr in the alloys form the compound of ZrB_2,ZrB_2 can not be used as the nucleation centers of Al atoms.Therefore it will not play a role in grain refinement,nor increasing the grain boundary.Thus it doesn't have a negative effect on the conductivity of the alloy.Excessive addition of B to alloy containing Zr refine the grain to some extent.However,it might have a negative influence on the conductivity and heat resistance of the alloy.
     (2) The XRD and SEM results of etching residues of aluminum alloy show that, most Zr exists in a small dispersed floccus phase of Al_3Zr in residue powder sample of non-B alloy,while ZrB_2 particles appear in the samples of alloy containing B.It indicates the addition of B and part of the Zr in the alloy react,form flake-like ZrB_2, existing in the form of second-phase particles.
     (3) The analysis on the SEM results of as cast aluminum alloy shows that there is no second phase particles containing Zr in the non-B samples.Zr mainly exists as solid solution in the Al matrix,not in the form of second-phase particles.While in the alloy containing B,the second-phase particles containing Zr were observed both in side the grain and at grain boundaries.A large number of second-phase particles containing Zr reunite as a small sheet at grain boundaries.
     (4) Adding an appropriate amount of B to the heat-resistant aluminum alloy wire containing Zr can increase the tensile strength of the wire,and weaken the negative effect on the conductivity due to Zr addition.However,excessive addition of B would lead to lower conductivity.Hence,the addition of B to the heat-resistant aluminum alloy should be arranged under the ratio of B:Zr=2:1.The aluminum alloy wire achieves the best performance at this specific ratio.
     (5)The appropriate amount of B,can react with Zr in the alloy,precipitated in the form of ZrB_2,as the second-phase particles,improving the high temperature strength,and the heat-resistant of the alloys.However,the addition of B should be controlled below the ratio of B:Zr=2:1,because the excessive B reduces the high-temperature strength,and the heat resistance of the alloy.
引文
[1]邱竹贤,孙淑萍,李冰等.中国铝电解工业迈入21世纪的新发展[J],淄博学院报,1999,1(1):3-7.
    [2]Paoilo Fioriai,Wire Industry,1979,4:265-268.
    [3]王祝堂.导电铝材的进展[J],有色金属加工,1988,1:1-8.
    [4]中国电线电缆网,我国电力建设对电力电缆和钢芯铝绞线的需求预测与发展,2007.
    [5]二宅宝彦.铝线的进步技术[J],轻金属,1986,1:36-40.
    [6]刘士璋.钢绞线、钢芯铝绞线交直流电阻及载流量的计算[J],电线电缆,1988,6:6-12.
    [7]水利电力部华东电力设计院.特轻型导线在800KV线路上的应用[J],1986.
    [8]王桂芹,刘顺华,高洪吾等.硼对工业纯铝导电性的影响[J],金属学报,2000,136:598-601.
    [9]浦奇志,徐绍贤.超高压500KV架空导线的研制[J],电线电缆,2000,6:15-20.
    [10]薄通.500 kV线路采用铝合金导线的探讨[J],电力建设,2001,22(1):8-12.
    [11]吴迈生.浅析国产铝合金导线发展前景[J],湖南电力,2004,24(6):55-58.
    [12]姚耀明,俞成彪.全铝合金绞线与钢芯铝绞线载流能力研究[J],浙江电力,2003,(6):25-28.
    [13]何桂明,汤涛,李如振.高强度铝合金导线在输电线路中的应用[J],山东电力技术,2004(3):56-64.
    [14]方浩.铝包钢绞线、铝合金导线的性能介绍[J],华东电力,2003(9):63-66.
    [15]尤传永.耐热铝合金的导线的耐热机理及其在输电线路中的应用[J],电线电缆,2004(4):3-8.
    [16]G.Mier,Singen/Hohentwiel,徐文艳译.铝半成品在电器工业上的应用[J],轻合金加工技术,1990,6:40-46.
    [17]王汶兰.铝基稀土铝合金的生产和应用[J],轻合金加工技术,1987,(1):45-49.
    [18]孙伟成等,稀土在铝合金中的行为[M],北京,兵器工业出版社,1992,274-278.
    [19]Hirschbom I S.Recent applications of the rare earth metals on nonferrous metallurgy[J],Metals,1970,22(10):40-43.
    [20]V enkatesan P S and Buzash S.Effect ofmisch metal and ferrocerium additions on the properties of 24 Gage[J],Aluminum W ires Metal Trans,1970,1(9):2338-2641.
    [21]李文超等,稀土元素添加剂在导电铝中的作用机理[J],中国稀土学报,1992,10(10):316-320.
    [22]上海电缆研究所.导电用稀土铝合金研究成果简介[J],电线电缆,1900,1:27-34.
    [23]陈戍生,戈东方,钟大文.电力工程电气设计手册(电气一次部分)[M],北京,水利水电出版社,1989.
    [24]谢优华,杨守杰.锆元素在铝合金中的应用[J],航空材料学报,2002,12:56-61.
    [25]NESE,Precipitation of the metastable cubic Al_3Zr-phase in subperitectic Al-Zr alloys[J],Acta Metallurgic,1972,20(4):499-506.
    [26]Hideo Yoshida,Y.B.The role of zirconium to improve strength and stress-corrosion resistance of Al-Zn-Mg and Al-Zn-Mg-Cu alloys[J],Transactions of the Japan Institute of Metals,1982,23(10):620-630.
    [27]Ryum.N.Precipitation and recrystallization in an Al-0.Swt%Zr-alloy[J],Acta Metallurgica,1969,17(3):269-278.
    [28]王礼堂.世界各地区原铝产量及逐年总产能利用率[J],轻金属,2000,8:16.
    [29]余馄,李松瑞,黎文献等.微量Sc和zr对2618铝合金再结晶行为的影响[J],中国有色金属学报,1999,9(4):709-713.
    [30]杜晓东.锆对输电铝合金蠕变行为的影响[[J],机械工程材料,1997,10:28-29.
    [31]杜晓东.架空铝导线性能提高途径及机理研究[J],电线电缆,1998,6:2-6.
    [32]杜晓东,刘永忻.微量锆对导电铝合金耐热性的影响[[J],热加工工艺,1995,2:20-21.
    [33]岳怡雁.应用耐热铝合金导线提高输送容量[J],吉林电力,2001,12:36-39.
    [34]陈冠荣等编.化工百科全书第12卷[M],北京,化学工业出版社,567-571.
    [35]北京师范大学等编.无机化学下册(第二版)[M],北京,高等教育出版社,1986年10月第二版,564-568.
    [36]车云霞,申浮文编.化学元素周期表[M],天津,南开大学出版社,1990年10月第一版,69-71.
    [37]杜晓东,刘永忻,李合琴.微量锆对架空铝合金导线耐热性和导电性的影[J],金属热处理,1995,16(4):21-22.
    [38]王桂芹等.硼对工业纯铝导电性的影响[J],金属学报,2000,36(6):598-601.
    [39]黄崇棋,储成著,丁关森,沈建华.稀土优化处理在电工铝导体生产中的应用[J],电线电缆,1986,6:31-35.
    [40]滦宝贵,陶学礼,黄崇棋.用铝液硼化处理提高电工铝杆导电率[J],电线电缆,1984,2:38-42.
    [41]吴克义.铝线材中的杂质及其影响[J],轻合金加工技术,1989,6:13-20.
    [42]L.F.蒙多尔福著,王祝堂等译.铝合金的组织与性能[M],北京,冶金工业出版社,1988年7月第一版,61-66.
    [43]Mohan S.Devgun等.加入少量钛和硼对铝合金导体的电器和机械性能的影响[J],电线电缆,1989,4:29-32.
    [44]张士林,任松赞主编.简明铝合金手册[M],上海,上海科学技术文献出版社,2001年2月第一版,17-19.
    [45]汪良宣.稀土铝合金材料在电线电缆中的应用概况[J],中国稀土学报,1995,7(13):404-407.
    [46]黄崇棋.提高铝导体导电率是节能的重要课题,一机部上海电缆研究所内部资料.
    [47]毛庆传.西部电力资源的开发基对架空线缆的需要[J],电线电缆,2001,12:3-9.
    [48]Abbruzzese,G,et al.,Acta Metall.,40(1992),519.
    [49]Haasen,P.,Physikalische 2nd Ed.,Springer-Verlag,Berlin,1984,44.
    [50]赵品,谢辅洲,孙振国主编.材料科学基础教程[M],哈尔滨,哈尔滨工业大学出版社,2003年8月第二版,153-154.
    [51]毛卫民,赵新兵著.金属的再结晶与晶粒长大[M],北京,冶金工业出版社,1994年6月第一版,223-224.
    [52]刘操.AlTiC、AlTiB晶粒细化剂对变形铝合金的细化效果评定[D],兰州理工大学,硕士学位论文,2006.
    [53]王永海,张发明,高革译.变形铝合金的细化处理[M],冶金工业出版社,1988,79(80):131-134.
    [54]康积行,付高升.铝熔体中夹杂物和气体的行为[J],特种铸造及有色合,1995,(5):5-12.
    [55]胡庚祥,蔡珣.材料科学基础[M],上海,上海交通大学出版社,2000:205-219.
    [56]刘京勋,耿庆森.Al-Ti-B细化剂在生长6063型材中的应用[J],轻合金加工技术,1996,24(5):25-28.
    [57]张作贵,刘相法,边秀房等.Al-Ti-B中间合金的遗传性研究与推广应用[J],铸造,2000,49(10):758-761.
    [58]杨平.电子背散射衍射技术及其应用[M],北京,冶金工业出版社,2007:41-44.
    [59]孙瑜,廖恒成,孙国雄.Zr对Sr变质近共晶Al-Si铸造合金组织的影响[J],东南大学学报(自然版),2000,30(6):47-51.
    [60]Bob Irving.Scandium places aluminum welding on a new plateau[J],Welding Journal,2003,(7):53-57.
    [61]谢优华,杨守杰,戴胜龙等.锆元素在铝合金中的应用[J],航空材料学报,2002,22(4):56-61.
    [62]A365合金力学性能的工艺研究[J],湖南有色金属,2004,20(1):23-25.
    [63]周惦武,刘金水,杨峰等.Al-Mg合金晶粒细化及电子机制研究[J],特种铸造及有色合金,2006,26(2):115-118.
    [64]柳秉毅.改善铝硅铸造合金组织与性能研究的若干进展[J],南京工程学院学报(自然科学版),2004,2(1):1-7.
    [65]W C Setzer and G W Boone.The use of aluminium/boron muster alloys to improve electrical conductivity[J],Light Metal,1992,837-343,Edited by Euel R Cutshall,The Minerals,Metals&Materials Society,1991.
    [66]Schumacher P,Greer AL,New studied of nucleation mechanisms in aluminum alloys,implications for grain refinement practice[J],Material Science and Technology,1998,14:394-398.
    [67]Ibrahim I A.Mohamed F A and Laveria E J.Particulate reinforced metal matrix composites A review[J],Mater Sci,1991,26:1137.
    [68]Crowson A.US Anny Research Office Materials Science Program Rescent elopments and Trends.In:Proc Advanced Materials and Mechanics,Beijing,PekingUniversity Press 1996.
    [69]Nes E.Precipitation of theMetastable Cubic Al_3Zr-Phase in Subperitectic Al-Zr Alloys[J],Acta.Metall,1972,20:499-503.
    [70]Guiqin Wang et al,Reaction of boron to the transition metal impurities and its effect on the conductivity of aluminium[J],Transactions of Nonferrous Metals Society of China,2002,20(4):1112-1116.
    [71]P S Cooper and M A Kearns.Removed of transition metal impurities in aluminium melts by boron additives[J],Proceedings of the 1996 5~(th) ternational conference,Materials Science ForumV_(217-222),part1,1996,196:141-146.
    [72]栗万仲,高性能导电铝合金的研制[D],郑州大学,硕士学位论文,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700