用户名: 密码: 验证码:
白象山复杂富水铁矿突水风险综合分析与评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复杂富水铁矿在开发过程中,时常伴随着突水灾害的发生,如何有效防治日益突出的矿井突水灾害成为亟待解决的难题。本论文即依托国家“十一五”科技支撑项目“复杂富水矿床开采关键技术开发与研究”(编号:2006BAB02A01),在对典型复杂富水铁矿区一白象山铁矿的复杂水文地质条件进行深入系统剖析的基础上,运用模糊数学方法对矿区三个主要开拓水平(-495m、-450m和-390m)的突水风险进行了分区综合评价研究,并利用FLAC3D流固耦合数值模拟软件建立了渗流条件下矿山“采场围岩系统”的三维数值模型,探索和研究了采场结构参数的优化确定以及不同埋深、不同地应力和不同顶板厚度条件下的采场顶板稳定性和突水风险性的影响作用规律,得到了一些有益的结论和成果,为该类富水矿床的地下水灾害防治工作提供了理论和实践上的指导作用。主要研究内容及其成果如下:
     (1)在对白象山铁矿突水风险影响因素综合分析的基础上,运用模糊数学方法,建立了矿区突水风险评价的模型,对突水风险进行了分区综合分析与评价,确定了矿床-495m、-450m和-390m三个水平的突水风险变化规律,绘制了白象山铁矿矿区-495m、-450m和-390m三个水平的突水风险分区评价图。
     (2)基于三维有限差分多孔介质流固耦合理论,结合白象山铁矿具体情况,以下层局部疏干条件下的带压充填开采为背景,选取4线以北、7线以南的“天窗”下部矿体的开采作为评价地质模型,建立了渗流条件下矿山“采场围岩系统”的三维数值模型。并根据正交试验设计的方法制定了不同采场跨度、进路宽度、分层开采高度和充填体强度类型的四因素三水平9个采场结构参数开采模拟方案,选取顶板最大沉降量、顶板受到的最大拉应力和顶板塑性区最大破坏高度作为评价采场顶板稳定性的指标,通过对不同方案模拟结果的分析确定了最佳的采场结构参数开采方案。
     (3)基于优化确定的采场结构参数开采条件,通过对不同埋深、不同角岩化砂页岩顶板厚度和不同侧压力系数条件下的采场顶板稳定性数值模拟研究,探索和分析了不同埋深、顶板厚度和侧压力系数对采场顶板稳定性和突水风险性影响规律。
     (4)在突水风险评价和数值模拟研究所取得的成果基础上,结合白象山铁矿的具体情况,探讨了矿区主要水文地质问题的总体防治对策与措施,并针对白象山铁矿主要面临的具体水害,选取开拓巷道遇导水断层破碎带的突水防治问题、“天窗”下矿体带压开采顶板失稳与突水防治问题和不良封堵钻孔突水防治问题三个具体的水害问题进行分析和探讨了其危害现状与作用规律,并结合已有关于这些问题的研究成果与认识,探索和总结了适合白象山铁矿具体情况的有效防治手段与措施。
The construction and mining of a complicated water-rich iron mine is often endangered by water-inrush geologic hazards. So, the water-inrush is a difficult problem which desiderates to be solved effectively as soon as possible. Relying on the "the development and study on the crucial technology of exploring the complicated water-rich mine" (NO. 2006BAB02A01), one of the national "11th Five-Year" science and technology supporting projects, on the basis of systematical deep analysis of the geohydrologic conditions in the typical complicated iron mine of Baixiangshan, the thesis has applied the fuzzy mathematics method to the comprehensive evaluation research on the partition of inrush risk of the horizontal developing tunnels(-495m,-450m and-390m) of the mining area, and established "The system of surrounding strata in stope" of the the mining area by the numerical simulation software of fluid-solid coupling mode of FLAC3D. The system is a three dimensional numerical model under the condition of seepage conditions. The thesis has explored and studied the optimization methods of stope structure parameters, and the stope roof stability under the condition of different buried depth, different earth pressure and different roof thickness, as well as the influential action laws of inrush risk. The above research can provide the theoretical and practical help for prevention and control ground water of the water-rich deposit. The main works and contents are as fllowed:
     (1) On the basis of the comprehensive analysis of effect factors of the inrush risk, fuzzy mathematics methods are used to establish the model of water-inrush risk assessment,and the synthetical analysis and evaluation are performed. So,the variation laws of water-inrush risk of the three levels (-495m,-450m and-390m) has been ascertained, and subarea evolution maps have been completed.
     (2) Based on the fluid-solid coupling mode of 3D-dimensional finite-difference codes method for fluid flow in porous media, combining with the specific complexions, on the background of backfill.mining under pressure under the condition of local drainage in underlayer, orebody mining under the "scuttle", which is between north of the exploration line 4 and south of the exploration line 7, is abstracted as the geologic model, and "The system of surrounding strata in stope" of the the mining area, which is a three dimensional numerical model under the condition of seepage conditions, is set up. According to the orthogonal experimental design methods, the mining Simulation Solutions of nine stope structural parameters, which are confirmation of different mining spans, access widths, Layered mining heights and type of filling mass, are formulated. The valuation of the stability of the mining roof is marked by the largest settlement, the maximum tension stress and the failure height of the plastic zone. Finally, the best solution is confirmed by different simulated results.
     (3) Based on the mining conditions of the optimized and determined stope structure parameters, in different depth (head pressure and vertical stress), on different roof thickness of angular rock of sandstone and lateral pressure coefficient condition that numerical simulation study of stability of the stope, and quested and analyzed the influence of defferent burial depth, thickness of the stope and lateral pressure coefficient on stability and water risk.
     (4) Based on the achievement in the water-risk evaluation and numerical simulation study, combined with the particular case of Baixiangshan iron, discussion and proposed a mainly hydrogeological problems of general prevention measures and measures in mining area. And to direct at the Baixiangshan iron that mainly faced with specific flood, selected roadways and ore mining in water broken fault zone of gushing water cure problems, in the "scuttle " that the mining exploration under pressure, the roof instability, gushing water cure problems and adverse plugging holes of the water control on three specific water issues, analysis and discusses its role of current situation and discipline, and with regard to these problems of research results and knowledge, to explore and summarizes for the Baixiangshan iron ore to the specific situation of effective prevention methods and measures.
引文
[1]郑志军,张国强,赵团芝,白汉营.复杂大水矿床建设井巷过断层突水防治技术[J].金属矿山,2008(3):54-57
    [2]张金才,刘天泉.岩体渗流与煤层底板突水[M].北京:地质出版社,1997.
    [3]黎良杰,殷有泉等.评价矿井突水危险性的关键层方法[J].力学与实践,1998,(20):34-36.
    [4]王连国,宋扬.底板突水煤层的突变学特征[J].中国安全科学学报,1999,9(5):10-14.
    [5]Longqing Shi and R.N. Singh. Study of Mine Water Inrush from Floor Strata through Faults[J]. Journal of the International Mine Water Association,2001,20(3):140-147.
    [6]施龙青,曲有刚,徐望国.采场底板断层突水判别方法[J].矿山压力与底板管理,2000,(2):49-52.
    [7]王希良,郑世书,孙亚军等.GIS支持下的煤矿底板突水预报研究[J].中国矿业,2001,10(2):69-71.
    [8]武强.煤层底板突水评价的新型实用方法Ⅰ—主控指标体系的建设[J].煤炭学报.200732
    [9]武强.煤层底板突水评价的新型实用方法Ⅱ—脆弱性指数法[J].煤炭学报.200732(11)
    [10]武强.煤层底板突水评价的新型实用方法Ⅲ—基于GIS的ANN型脆弱性指数法应用[J].煤炭学报.200732(12)
    [11]安徽省冶金地质勘探公司八〇八队.安徽省当涂县白象山铁矿床详细勘探地质报告[R].1982
    [12]中国有色工程设计研究总院.白象山铁矿初步设计及补充修改说明[R],2005年2月.
    [13]长沙矿山研究院.白象山铁矿基建期与生产期防治水方案设计[R].长沙矿山研究院,2007
    [14]中国矿业大学.白象山铁矿建设工程安全防治水方案设计研究[R].中国矿业大学,2007
    [15]欧奕勤,张先迪.模糊数学原理及其应用[M].成都:成都电讯工程学院出版社.1988
    [16]殷春武,王秋萍,苏哲斌.AHP判断矩阵排序的一种新方法[J].西安理工大学学报.2006,22(4):431-434
    [17]杨泽平,李海兵,曾夏生.层次分析法在工程岩体分类中的应用[J].工程地质学报.2006,14(6):830-834
    [18]汪培庄.模糊集合论及其应用[M].上海:上海科学技术出版社.1984
    [19]张文修.模糊数学引论[M].西安:西安交通大学出版社.1991
    [20]DZ/T0097—1994*中华人民共和国工程地质调查规范[S].1994
    [21]水利电力部水利水电规划设计院.《水利水电工程地质手册》[M].水利电力出版社.1985
    [22]陆兆溱.工程地质学.[M].中国水利水电出版社.2001
    [23]SL279-2002.水工隧洞设计规范.[S].2002
    [24]国家安全生产监督管理总局.煤矿防治水规定.国家煤矿安全监察局(编).煤炭工业出版 社.2009
    [25]蔡美峰.岩石力学与工程[M].北京:科学出版社,2002.8.
    [26]吴金刚.高水压隧道渗流场的流固耦合研究[硕士学位论文][D].北京交通大学,2006.
    [27]苑莲菊,李振栓,武胜忠等.工程渗流力学及应用[M].中国建材工业出版社,2001.7.
    [28]张玉军,康永华.岩体渗流与应力耦合理论及在近水体采煤的应用[J].煤矿开采,2005,(5): 18-19,21.
    [29]陈崇希,林敏.地下水动力学[M].中国地质大学出版社,1999.10.
    [30]Itasca Consulting Group, Inc.. Fast Language Analysis of continua in 3 dimensions, wersion 3.0, user's manual[M]. Itasca Consulting Group, Inc.,2005.
    [31]刘波,韩彦辉.FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005.9
    [32]陈育民,徐鼎平.FLAC/FLAC3D基础与工程实例[M].中国水利水电出版社,2009.1.
    [33]宋建波张倬元于远忠刘汉超黄润秋岩体经验强度准则及其在地质工程中的应用.[M]地质出版社2002.12
    [34]水利水电科研究院等合编.岩石力学参数手册[M].水利电力出版社,1991.5.
    [35]常士骠,张苏民.工程地质手册[M].北京:中国建筑工业出版社,2007.
    [36]林宗元.岩土工程试验监测手册[M].沈阳:辽宁科学技术出版社,1994
    [37]宋晓梅,田彩霞,尹正柱等.芦岭矿810采区围岩岩体物理力学参数的修正[J].矿业安全与环保,2003,30(2)
    [38]刘汉东.岩体力学参数优选理论及应用[M].郑州:黄河水力出版社,2006
    [39]苏怀智,李季,吴中如.大坝及岩基物理力学参数优化反演分析研究[J].水利学报,2007,S1
    [40]左人宇,杜菊芬.有效岩体物理力学参数的确定方法探讨[J].矿业科学技术,1997,25(2)
    [41]蔡嗣经.充填采矿技术的应用现状及发展方向[J].地下开采,1998(6):25-32
    [42]黄苏锦.充填法开采矿床的不安全因素及对策[J].铜业工程,2002(2):23-24
    [43]李庆倩,郭景柱.高阳铁矿采矿方法优化研究[J].采矿技术,2008,8(2):7-9
    [44]毕永涛.厚大铁矿矿体防水治水技术探讨[J].科技咨询导报,2007(19):141-142
    [45]彭云奇.唐家湾矿区大型水体下矿床开采技术研究[J].采矿技术,2004,4(2):12-14
    [46]孙豁然,周伟,刘炜.我国金属矿采矿技术回顾与展望[J].金属矿山,2003(10):6-10
    [47]景锋,边智华,陈昊,刘元坤.不同岩性侧压系数分布规律的统计分析[J].长江科学院院报,2008,25(4):48-52
    [48]陈晓祥,韦四江.初始地应力场对煤矿巷道围岩稳定性的影响[J].矿冶工程,2008,28(6):1-4
    [49]王大伟,赵艳.初始地应力场分析方法探讨[J].水电站设计,2007,23(4):38-42
    [50]孙礼健,朱元清.初始地应力场分析方法的研究[J].地震地磁观测与研究,2008,29(3):14-21
    [51]王氏安.数理统计.北京理工大学出版社.1994:147179
    [52]向元斌.分析数据的线性回归统计.冶金分析,2003,23(6):62-65
    [53]董德元,杨节等.试验研究的数理统计方法.中国计量出版社,1987:173-272
    [54]汪谋.影响地质雷达探测效果因素的研究[J].西部探矿工程,2007,(1):177-180.
    [55]田 劫,韩 光,吴钰晶等.矿井独头巷道掘进超前探测技术现状[J].煤炭科学技术,2006,34(8):17-20.
    [56]余中明,丁强.地质雷达探测工程的几个问题[J].地质找矿论丛,2006,21增:182-184.
    [57]赵玉良,李建华.地质雷达探测溶洞等地质体机理研究及实例分析[J].隧道建设,2007,27(3):6-9.
    [58]张卫军.洞室开挖施工中地质超前预报的现状及其探测技术[J].西北水电,2007,(1):12-16,21.
    [59]苟小兵.超前地质预报在凉风垭隧道工程中的应用.建设机械技术与管理[J],2006,19(2): 91-94.
    [60]袁真秀.红外探测技术在圆梁山隧道的应用效果分析[J].隧道建设,2004,24(5):6-8,30.
    [61]宋先海,顾汉明,肖柏勋.我国隧道地质超前预报技术述评[J].地球物理学进展,2006,21(2):605-613.
    [62]曲海锋,刘志刚.隧道断层地质超前预报技术应用研究[J].国防交通工程与技术,2003,(3):56-59.
    [63]李 影.浅谈TSP超前地质预报在协荣隧道施工中的应用[J].石家庄铁路工程职业技术学院学报,2004,3(4):14-18.
    [64]柳杨春.HSP地质超前预报技术及其应用[J].西部探矿工程,1997,(5):34-36.
    [65]姜文富.白象山富水铁矿深埋巷道围岩稳定性数值模拟与突水防治优化[D],青岛理工大学,2009.
    [66]程金泉.勘探钻孔封孔质量分析及防突水措施[J].中州煤炭,2001,(2):24-25.
    [67]李耀军,索根喜.权家河矿奥灰岩承压放水钻孔的加固与封堵[J].陕西煤炭技术,1992,(3): 15-17.
    [68]葛江林.封闭不良钻孔的井下封堵技术与实践[J].中州煤炭2007,(1):5455.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700