用户名: 密码: 验证码:
考虑液固耦合储液罐非线性地震反应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
储液罐是石油、石化及相关企业存贮易燃、易爆、有毒介质的重要工业设施。一旦在地震中产生破坏,其灾害后果十分严重。自从20世纪30年代以来国内外学者针对立式储液罐进行了大量的研究,但主要是在线弹性方面的工作,并取得了一些有益于工程设计的研究成果。但是,对能够反映其地震作用下真实情况及揭示其破坏机理的非线性反应的研究却很少。本文给出了考虑液固耦合的立式圆筒形锚固储液罐非线性地震反应的分析方法,并研究了储液罐的非线性地震反应和破坏机理,为保证其地震安全,减少地震灾害具有重要意义。
     本文主要研究内容如下:
     1、系统地总结了储液罐的类型、储液罐在地震作用下的破坏形式。简要介绍了储液罐的经典理论,包括Housner刚性罐壁理论与Veletsos柔性罐壁理论,论述了国内外立式储罐抗震研究成果及需要进一步解决的问题。
     2、本文利用大型有限元分析件ADINA实现考虑液固耦合储液罐系统非线性地震反应分析的研究。介绍了储液罐罐体和液体单元的选取、界面单元的定义、材料非线性本构关系、网格大小的划分、储液罐与液体之间的液固耦合作用等。
     3、采用上述方法研究了1000m3和10000m3两个不同尺寸的储液罐在五条不同场地条件地震波作用下的非线性地震反应,通过分析计算储液罐自振特性,储液罐的加速度峰值沿罐壁高度变化趋势,罐壁的应力和应变分布等反应,研究了储液罐的尺寸、液面高度、场地条件以及加速度峰值对储液罐地震反应的影响,初步揭示其破坏机理,分析结果为储液罐的抗震设计提供重要的参考依据。
Liquid storage tanks are important industrial facilities for petroleum enterprises, petrochemical enterprises and other related enterprises to store the mediums with inflammable, explosive and toxic characteristics. Once destroyed under earthquake, the consequence of the disaster is very serious. Since the 1930s, extensive research has been conducted on cylindrical liquid storage tanks, however, these researches pays primary attention on the linear elastic behaviors and worldwide achievements are obtained, which could contribute to tanks engineering design. But the study on the real behavior of liquid storage tanks under earthquake and the nonlinear seismic response revealing the failure mechanism of tanks is very rare. In this paper, nonlinear seismic analysis method of cylinder type anchorage tanks considering the liquid-solid coupling is given. Furthermore, nonlinear seismic response of tanks and failure mechanism are studied. All these studies to guarantee the safety of liquid storage tanks and to reduce of earthquake disasters are of great importance.
     The main research and achievement are given as follows:
     1. The types of liquid storage tanks, failure modes of liquid storage tanks under earthquake are summarized systematically. The classical theory of storage tank which includes Housner theory for rigid liquid tank wall and Veletsos theory for flexible liquid tank wall is introduced briefly, the achievements in domestic and foreign on liquid storage tanks study and its developing trend is discussed.
     2. Using large finite element soft ADINA, nonlinear seismic response analysis of liquid-solid coupling tanks is realized. The liquid storage tanks wall elements and liquid elements are chosen, the interface elements are defined, the size of grid mesh requirement is discussed, the constitutive relationship of elastic-plastic material is determined, the liquid-solid coupling between liquid storage tank and liquid is implicated.
     3. The behaviors of non-linear seismic response of 1000m3 and 10000m3 liquid storage tanks under five different ground motions with different site conditions are researched. Through calculating the natural vibration characteristic of liquid storage tanks, change tendency of acceleration peak along tank wall, stress and strain distribution of tank wall, the influence on seismic response of liquid storage tanks from the size of liquid storage tanks, liquid height, site condition, acceleration peak are obtained. These results preliminarily reveal the failure mechanism and could provide the scientific references in engineering design.
引文
[1]田黎.储油罐震害预测方法研究[D].西南石油大学.2006:1-2,21-22.
    [2]汤爱平,欧进萍,董莹.生命线系统的震害特征及其对震后应急反应的影响[J]世界地震工程.2000, 16 (1): 84-88.
    [3]高田至郎.生命线系统的震害与对策[J].特种结构.1997,14 (4) :25-30.
    [4]罗奇峰.日本兵库县南部地震中生命线系统的震害及其震后恢复[J].灾害学.1997,12 (1):43-48.
    [5]李梁峰.储油罐模糊抗震可靠度及其震害预测[D].华侨大学.2004:9-10.
    [6]徐英,杨一凡,朱萍等.球罐和大型储罐[M].北京:化学工业出版社,2004.11.
    [7]王彤彤,抗震金属管在储油砖进出口管段的选用与安装[J].有色冶金设计与研究2002,23(1):19-21.
    [8]田石,邬瑞峰等,内浮顶油罐的地震反应分析[J].地震工程与工程振动.1986,6(3).
    [9]唐有刚.储液罐翘离实验研究及液—固—土耦合非线性振动分析[R].博士研究生报告.天津大学力学与工程测试系.1996.7.
    [10]蔡国琐,曲乃泗,赖国璋.储液罐结构水弹性抗震分析[J].大连工学院报.1979,(3):85-100 .
    [11]仇伟德,蔡强康.地震作用下刚性旋转壳储液罐液体的动力响应[J].地震工程与工程振动.1983,3(1):72-87.
    [12]甘文水,邬瑞风,曲乃泗.地震作用下储油罐的动力和稳定分析.地震工程与工程振动.1985,5(4):73-79.
    [13]孙健刚,郝进锋,张云峰.储油罐液—固耦联振动固有特性有限元分析[J].大庆石油学院学报.1998.22(3):96-112.
    [14]温得超.储液罐提离的实验研究和多重非线性耦合的三维静、动力分析[D].大连理工大学.1992年元旦
    [15]龚晓南,叶黔元,徐日庆.工程材料本构方程[M].北京:中国建筑工业出版社.1995.
    [16]周利剑.水平地震激励下立式储罐与地基相互作用动力响应分析[D].哈尔滨工程大学.2006.
    [17]王仁,熊祝华,黄文彬.塑性力学基础[M].科学出版社.1998.
    [18]曲圣年,殷有泉.塑性力学的Drucker公设和IrrbiowuH公设[J].力学学报.1981, 13(5):465-473.
    [19]殷有泉,曲圣年.弹塑性耦合和广义正交法则[J].力学学报.1982, 14(1):63-70.
    [20]殷有泉.奇异屈服面的加一卸载准则.固体力学学报.1984,4 (2):282-285.
    [21]陈生水,沈珠江,丽防旨惠.复杂应力路径下无粘性上的弹塑性数值模拟[J].岩土程学报.1995,17(2):20-28.
    [22]姜洪伟,赵锡宏.主应力轴旋转对土塑性变形影响分析[J].上海力学.1997,18(2):140-146.
    [23]张启辉,赵锡宏.主应力轴旋转对剪切带形成的影响分析[J].岩土力学2000, 21(1):32-35.
    [24]赵锡宏.张启辉等.土的剪切带试验与数值分析[M].北京:机械工业出版社.2003.
    [25]郑颖人.土的多重屈服面理论与模型.塑性力学和细观力学文集[M].北京:北京大学出版社.1993:75-84.
    [26]孔亮,郑颖人,王燕昌.一个基于广义塑性力学的土体三屈服面模型[J].岩土力学.2000,21(2):108-112.
    [27]杨光华.岩土类材料的多重势面弹塑性本构模型理论[J].岩土工程学报,1991,13(5):99-107.
    [28]杨光华.21世纪应建立岩土材料的本构理论[J].岩土工程学报.1997.19(3):116-118.
    [29]项忠权.孙家孔.石油化工设备抗震[M].北京:地震出版社.1995:201-217.
    [30]邢景棠,周盛,崔尔杰.流固耦合力学概述[J].力学进展,1997,27(1):19-38.
    [31]居荣初,曾心传编著.弹性结构与液体的耦联振动理论[M],地震出版社,北京:1983.
    [32]周敏.储液罐容器非线性动力分析[D].北京:清华大学工程力学系,1989.
    [33]王永学.任意容器液体晃动问题的数值模拟[D].大连:大连理工大学,1989.
    [34]胡聿贤.地震工程学[M].北京:地震出版社.2006.
    [35] Anestis S.Veletsos and so on,Dynamic response of flexibly supported liquid-storage tanks[J].Struc.Eng. 1992,118(1)
    [36] Housner G W. Dynamic Pressures on acce1erated fluid containers[J]. Bulletin of the Seismological Society of America.1957,47(1):15-35
    [37] Edwards H W.A Procedure for dynamic analysis of thin walled liquid storage tanks Subjected to lateral ground moments[D]. Ph.D Dissertatlion University of Michigan,1969.
    [38] Shaaban S H and Nash W A. Finite Element Analysis of a Seismically Excited Cylindrical storage tank. Ground Supported and Partially Filled with Liquid[R]. Report To Nation Science Foundation University of Massachusetts,Amherst,Massachusetts.1976(7).
    [39] Daysal H and Nash W A. Soil structure interaction effects on the seismic behavior of Cylindrical liquid storage tanks[C].Proc.8th WCEE. San Francisco.Calif.1984.(5) :223-229.
    [40] Veletsos A S.Seismic effects inf lexible liquid storage tanks[C]. Proceedings of 5th Word Conference on Earthquake Engineering. Rome,Italy,1974,(1):630-639.
    [41] Haroun M A. Vibration studies and tests of 1iquid storage tanks [J].Earthq.Eng.Struct.Dyn.1983,(11):179-206.
    [42] Haroun, M. A.,and Abdel-Hafiz, E.A..A Simplified seismic analysis of rigid base liquide storage tanks under vertical excitations with soil-structure interaction[J]. Journal of Soil Dynamics and Earthquake Engineering. 1986.10,5(4): 217-225.
    [43] ADINA R&D, Inc. (2002). ADINA Theory and Modeling Guide[M]. VolumesⅠ,Ⅱ,Ⅲ,Watertown, MA.
    [44] Wsetergaard H M. Water pressures on dams during earthquakes. Trans.Amer [J].Soc.Civ.Eng.98 (1993):418-433.
    [45] A K Chopra. Earthquake response of concrete gravity dams[J]. California Unive- rsity,Berkeley,California,January,1970,AD 709640.
    [46] Hoskins L M & Jacobsen L S. Water pressure in a tank caused by a simulated earthquake[J],Bull.Seism.Soc.Am.1934,24:1-32.
    [47] Housner G M. The dynamic behavior of water tanks[J].Bull.Seism.Soc.Am.1963,53:381-387.
    [48] Veletsos A S,Yang J Y.Earthquake response of liquid storage tanks[C].Proc 2nd Adv Civil Eng through Eng Mech Conf ASCE,North Cardina,1977,1-24.
    [49] Haroun M A.Dynamic characteristic of liquid storage tanks[J]. J Eng Mech Div ASCE,1982,108:783-800.
    [50] Haroun M A.Complication in free vibration analysis of tanks[J]. J Eng Mech Div ASCE,1982,108:801-828.
    [51] Tedesco J W,Kostem C N & Kalnins A. Free vibration analysis of Cylindrical liquid storage tanks[J].Comput Struct,1987,26(5):957-964.
    [52] Tedesco J W.Landis D W & Kostem C N. Seismic analysis of cylindrical Liquid storage tanks[J].Comput Struct,1989,32(5):1165-1174.
    [53] Nash W A. Response of liquid storage tanks to seismic motion[J].in:Keiter W T et al.Theory of shells,North-Holland Publishing Company,1980:393-403.
    [54] Liu W K. Finite element procedure for fluid-structure interactions and application to liquid storage tanks[J].Nucl Eng Des,1981,65:211-238.
    [55] Ma D C. Liu W K. Seismic behavior of liquid-filled shell[J].Nucl Eng Des,1982,70:437-455.
    [56] Veletsos A S & Tang Y. Soil-interaction effects for laterally excited liquid storage tanks[J].Earthq Eng Struct Dyn.1990,19:473-496.
    [57] Belytschko T. A fluid-structure finite element method for the analysis of reactor safty problem[J].Nucl Engrg Des,1976,38:71-81.
    [58] Belytschko T. Computer models for subassembly simulation[J].Nucl Engrg Des,1978,49:17-38.
    [59] Belytschko T.structure interaction[J]. Comput Struct 1980,12: 459-469.
    [60] Olson L G,Bathe K J. A study of displacement-based fluid finite elements for calculating frequencies of fluid and fluid-structuresystems[J].Nuclear Engineering and Design,1983,76:137-151.
    [61] Bathe K J. On transient analysis of fluid-structure system[J].Comput Struct.1979,10:383-391.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700