用户名: 密码: 验证码:
小麦条锈菌PsMAPK1,PsCdc2,PsFuz7基因的克隆及PsMAPK1基因功能验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究了在小麦与条锈菌互作过程中,条锈菌催分裂原活化蛋白激酶基因PsMAPK1、细胞分裂周期基因PsCdc2及催分裂原活化蛋白激酶的激酶基因PsFuz7的转录表达情况;分析了PsMAPK1和PsFuz7基因在小麦条锈菌不同的生理小种中氨基酸序列的差异;另外,借助小麦赤霉病菌和稻瘟病菌突变体对PsMAPK1基因进行基因功能的验证。
     本论文首次从已构建的文库中筛选出小麦条锈菌催分裂原活化蛋白激酶基因PsMAPK1、细胞周期分裂基因PsCdc2和催分裂原活化蛋白激酶的激酶基因PsFuz7。分别克隆得到三个基因的cDNA和基因组DNA的全长,其中PsMAPK1基因组DNA全长2343bp,cDNA序列全长1834 bp,ORF编码408个氨基酸,由8个外显子和7个内含子组成;PsCdc2基因组DNA长2279bp ,cDNA序列全长1395 bp,编码294个氨基酸,由11个外显子和10个内含子组成;PsFuz7基因组DNA全长2661bp,cDNA序列全长2093 bp,编码419个氨基酸,含由8个外显子和7个内含子组成。
     定量表达分析表明,PsMAPK1在条锈菌侵染小麦前期呈上调表达,其中24h时表达量最高约为夏孢子中表达量的5.32倍,侵染36 h后表达量明显下降。PsCdc2在条锈菌夏孢子及病菌侵染后各个时间点均有表达,其中侵染12 h之前表达量称上升趋势,侵染12 h时表达量最高,约为夏孢子中表达量的1.62倍,侵染18 h之后表达量呈下降趋势,侵染36 h之后表达量均低于夏孢子中的表达量。PsFuz7在条锈菌侵染小麦后12 h前呈上调表达趋势,侵染后12 h时的表达量最高,约为夏孢子中表达量的1.95倍,侵染后6 h时表达量约为夏孢子中表达量的1.79倍,侵染18 h后表达量下降,表达量均低于夏孢子中的表达量。小麦条锈菌不同生理小种间序列分析发现,PsMAPK1和PsFuz7在条锈菌生理小种CYR23、CYR25、CYR29、CYR31、CYR32、CYR33中均非常保守,核苷酸序列间无大的差异,PsMAPK1有9个氨基酸位点可能为易变位点,PsMAPK1有12个位点可能为易变位点。
     功能互补分析表明,PsMAPK1基因能够部分恢复小麦赤霉病菌△map1突变体的生长特性和致病性,能够部分恢复稻瘟菌突变体附着孢的形成和致病性,结合定量分析推测PsMAPK1基因具有与其他真菌MAPK基因功能上的一致性和保守性,为条锈病菌上一个致病相关基因。同时,通过对生物信息学分析及定量分析,推测PsFuz7、PsCdc2均为小麦条锈菌上重要的致病相关基因。PsFuz7可能通过催分裂原活化蛋白激酶级联反应,在将细胞外信号传递到细胞内,最终导致转录因子的激活从而调控致病性;而PsCdc2可能通过调节条锈菌的细胞周期,参与条锈菌侵染小麦前期菌丝的生长。
In this paper, some explanations have been given about the transcriptional profilings of mitogen-activated protein kinase (PsMAPK1), cell division cycle 2 (PsCdc2) and mitogen-activated protein kinase kinase PsFUZ7. The differentiation of PsMAPK1 and PsFUZ7 amino acid sequences in stripe rust CYR23, CYR25, CYR29, CYR31 CYR32 and CYR33 were also reported. In addition, we described the gene potential function of PsMAPK1 by complementation of the Fusarium graminearum mutant and Magnaporthe grisea mutant.
     Mitogen-activated protein kinase MAPK1, cell division cycle Cdc2 and mitogen-activated protein kinase kinase FUZ7 from Puccinia striiformis f.sp. tritici (Pst) were firstly isolated through screeming the DNA library. We tentatively designated these three gene as PsMAPK1, PsCdc2 and PsFUZ7. The cDNA sequence of PsMAPK1 is 1834 bp contain a 1227 bp open reading frame and encoded a putative protein composed of 408 amino acids. The DNA sequence of PsMAPK1 is 2343 bp, comprised of 8 extrons and 7 introns. The cDNA sequence of PsCdc2 is 1395 bp contain a 885 bp open reading frame and encoded a putative protein composed of 294 amino acids. The DNA sequence of PsMAPK1 is 2279 bp, comprised of 8 extrons and 7 introns.
     The cDNA sequence of PsFuz7 is 2093 bp contain a 1260 bp open reading frame and encoded a putative protein composed of 419 amino acids. The DNA sequence of PsMAPK1 is 2661 bp, comprised of 8 extrons and 7 introns. Real time RT-PCR analysis showed that PsMAPK1 was up-regulated at early stage of infection, the maximum induction occurred at 24 hpi, at which transcripts were 5.32 fold over that in urediniospore. The accumulation of transcripts decreased obviously after 36 hpi. The maximum induction of PsCdc2 occurred at 12 hpi, the transcripts were 1.62 fold over that in urediniospore. The accumulation of transcripts decreased steadily after 12 hpi. PsFuz7 was up-regulated at early infection(before 12 hpi), The maximum induction were 1.95 fold over that in urediniospore., which occurred at 12 hpi. The induction at 6 hpi was 1.79 fold over that in urediniospore, and after 18 hpi, the induction were all lower than that in urediniospore. Sequences analysis of PsMAPK in different stripe rust race, CYR23, CYR25, CYR29, CYR31, CYR32 and CYR33, showed that there was no obvious differentiations, but there might be 9 changeable mutant locations. PsFuz7 also had no obvious differentiations, but there might be 12 changeable mutant locations. In addition, PsMAPK1 can complement the the Fusarium graminearum mutant and Magnaporthe grisea mutant. PsMAPK1 might be essennntial for pathogenicity and infectious growth in stripe rust fungi.
引文
陈鸿琪. 2000.蛋白质定量分析的进展[J].理化检验-化学分册, 36(7): 333~336 解涛,梁卫平,丁达夫. 2000.后基因组时代的基因组功能注释[J].生物化学与生物物理进展, 27: 166~170
    康振生.1996.植物病原真菌的超微结构[M] .北京:中国科技出版社
    康振生,李振岐. 1984.洛夫林10常温致病菌系的发现[J].西北农学院学报, 12 (4): 18-28.
    李振岐,商鸿生. 1989.小麦锈病及其防治[A].上海:上海科技出版社
    李振岐. 1998.我国小麦品种抗条锈性丧失原因及其控制策略[J].大自然探索, 17 (66): 21~25
    梁慎.2008.一个新的稻瘟菌致病相关基因MgLDB1的鉴定与功能分析.[博士论文].杭州:浙江大学
    李振岐.1999.李振岐院士论文选集[M].西安:西北农林科技大学出版社
    李振岐,曾士迈. 2002.中国小麦条锈病[M].北京:中国农业出版社
    兰蕾,赫荣乔. 2001.细胞周期分子机制的成功探索.生物化学与生物物理进展, 28(6): 773~777
    马渐新.1999.小麦抗条锈病基因定位及分子标记进展[J].生物技术通报, 1: 1~6
    马金彪,王晓杰,于秀梅. 2007.条锈菌诱导的小麦叶片cDNA文库构建及表达序列标签分析[J]. 植物病理学报, 2007, 37 (3): 265~270
    牛永春,刘红彦,吴立人. 1998.小麦品种“Lee”中抗条锈病基因的PAPD标记[J].高技术通讯, 12: 11~13
    万安民,赵中华,吴立人. 2003. 2002年我国小麦条锈病发生回顾[J].植物保护, 29 (2): 5~8.
    王艳飞. 2008.小麦与条锈菌非亲和互作的cDNA文库构建及表达序列标签分析[D]. [硕士学位论文].杨凌:西北农林科技大学
    许喜堂,赵惠青. 1999.控制小麦条锈病的现状与设想[J].北京农学院学报, 14(2): 8-12.
    于秀梅,喻修道,屈志鹏.2007.条锈菌诱导的小麦抑制差减杂交文库构建及其表达序列标签研究[J].植物病理学报, 37: 50~55
    张宏昌,韩青梅,王晨芳等.2008.小麦新抗源一粒葡抗条锈病的组织学和超微结构研究[J] .植物病理学报, 38 (2): 153~164
    郑国清,张瑞玲,段韶芬. 2002.生物信息学的形成和发展[J].河南农业科学, 11: 4~7
    Banuett F. 1998. Signalling in the yeasts : an informational cascade with links to the filamentous fungi . Microbiol Mol Biol Rev , 62 :249 ~ 274
    Basse CW, Steinberg G. 2004. Ustilago maydis, model system for analysis of the molecular basis of fungal pathogenicity. Mol. Plant Pathol, 5:83~ 92.
    Brachmann A, Schirawski J, Muller P, Kahmann R. 2003. An unusual MAP kinase is required for efficient penetration of the plant surface by Ustilago maydis. EMBO J. 22:2199~2210.
    Bruno KS, Tenjo F, Li L, Hamer JE, Xu JR. 2004. Cellular localization and role of kinase activity of PMK1 in Magnaporthe grisea.Eukaryot. Cell 3:1525~1532.
    Chen XM. 2005. Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Can. J. Plant Pathol, 27: 314~337
    Chen XM. 2005. Epidemiology and control of stripe rust Puccinia striiformis f. sp. tritici on wheat[J] . Plant Pathol, 27: 314~337.
    Chen JY, Zhou S, Wang Q. 2000. Crk1, a novel Cdc2-related protein kinase, is required for hyphal development and virulence in Candida albicans. Molecular and Cellular Biology, 23(20): 8696~8708
    Chen JY, Zhou S, Wang Q. 2000. Crk1, a novel Cdc2-related protein kinase, is required for hyphal development and virulence in Candida albicans. Molecular and Cellular Biology, 23(20): 8696-8708.
    Castillo-Lluva S, Alvarez-Tabares I, Weber Isabella. 2007. Sustained cell polarity and virulence in the phytopathogenic fungus Ustilago maydis depends on an essential cyclin-dependent kinase from the Cdk5/Pho85 family. Journal of Cell Science, 120: 1584~1595
    Davis R. 2000. Signal transduction by the JNK group of MAP kinase. Cell. 103:239~252 Flora B, Ira H. 1994. Ide tification of Fuz7, a Ustilago rnaydis MEK/MAPKK homolog required for a-locus-dependent and-independent steps in the fungal life cycle, Genes Dev, 8: 1367~ 1378
    Dixon KP, Xu JR, Smirnoff N, Talbot NJ. 1999. Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea. Plant Cell, 11:2045~2058.
    Dickman MB,Yarden O. 1999. Serine/threonine protein kinases and phosphatases in filamentious fungi. Fungal Genetics and Biology, 16: 99-117
    Garcia-Muse T, Steinberg G, Perez-Martin J. 2003. Characterization of B-type cyclins in the smut fungus Ustilago maydis: roles in morphogenesis and pathogenicity. Journal of Cell Science, 117(3): 487~506
    Gandhi M, Golding S, Yaron S. 2001. Use of green fluorescent protein expressing Salmonella Stanley to investigate survival, spatial location, and control on alfalfa sprouts[J]. J Food Prot, 64(12): 1891~1898
    Hou Z, Xue C, Peng Y, Katan T, Kistler HC, Xu JR. 2002. A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection. Mol. Plant-Microbe Interact, 15:1119~1127.
    Hartwell ET, ALtwell LH, Culotti J, Reid B. 1970. Genetic control of the cell-division cycle in Yeast. I. Detection of mutants. Proceedings of the National Academy of Sciences, 66(2): 352~359
    Kang ZS, Huang LL, Buchenauer H. 2002. Ultrastructural changes and localization of lignin and callose in compatible and incompatible interactions between wheat and Puccinia striiformis[J] .Journal of Plant Diseases and Protection, 109 (1): 25~37
    Kang ZS, huang LL, Buchenauer H. 2003. Subcellular localization of chitinase andβ-1,3-glucanase in compatible and incompatible interactions between wheat and puccinia striiformis f.sp.tritici[J] .Plant Diseases and Protection, 110 (2): 170~183
    Kahmann,R, Kamper J. 2004. Ustilago maydis: how its biology relates to pathogenic development. New Phytol, 164:31~42
    Kahmann R, Kamper J. 2004. Ustilago maydis: how its biology relates to pathogenic development. New Phytol. 164:31~ 42
    Kojima K, Kikuchi T, Takano Y, Oshiro E, Okuno T. 2002. The mitogen-activated protein kinase gene MAF1 is essential for the early differentiation phase of appressorium formation in Colletotrichum lagenarium. Mol. Plant-Microbe Interact, 15:1268~1276
    Kojima K, Takano Y, Yoshimi A, Tanaka C, Kikuchi T, Okuno T. 2004. Fungicide activity through activation of a fungal signaling pathway. Mol. Microbiol, 53:1785~1796.
    Ling P, Wang MN, Chen XM, and Campbell KG. 2007. Construction and characterization of a full-length cDNA library for the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici). BMC Genomics, 8:145
    Lev S , Sharon A , Hadar R .1999. A mitogen-activated protein kinase of the corn leaf pathogen Cochliobolus heterostrophus is involved in conidiation , appressorium formation , and pathogenicity : Diverse roles for mitogen-activated protein kinase homologues in foliar pathogens. Proc Natl Acad Sci USA , 96 : 13542 ~13547
    Liu E, Page JE. 2008. Optimized cDNA libraries for virus-induced gene silencing (VIGS) using tobacco rattle virus[J]. Plant Methods, 4: 5 Madhani HD, Fink GR. 1998. The fiddle of MAP kinase signaling specificity. Trends Genet, 14:151~155
    Mey G, Held K, Scheffer J, Tenberge KB, Tudzynski P. 2002. CPMK2, an SLT2-homologous mitogen-activated protein (MAP) kinase, is essential for pathogenesis of Claviceps purpurea on rye: evidence for a second conserved pathogenesis-related MAP kinase cascade in phytopathogenicfungi. Mol. Microbiol, 46:305~318.
    Mehrabi R, T. van der Lee, Waalwijk C, Kema J. 2006. MgSlt2, a cellular integrity MAP kinase gene of the fungal wheat pathogen Mycosphaerella graminicola, is dispensable for penetration but essential for invasive growth. Mol. Plant-Microbe Interact, 19:389~398.
    Motoyama T, Kadokura K, Ohira T, Ichiishi A, Fujimura M, Yamaguchi I, Kudo T. 2005. A two-component histidine kinase of the rice blast fungus is involved in osmotic stress response and fungicide action. Fungal Genet. Biol. 42:200~212.
    Mehrabi R, Zwiers LH, M. A. de Waard, G. H. J. Kema. 2006. MgHog1 regulates dimorphism and pathogenicity in the fungal wheat pathogen Mycosphaerella graminicola. Mol. Plant-Microbe Interact. 19:1262~1269.
    Moriwaki A, Kubo E, Arase S, Kihara J. 2006. Disruption of SRM1, a mitogen-activated protein kinase gene, affects sensitivity to osmotic and ultraviolet stressors in the phytopathogenic fungus Bipolaris oryzae. FEMS Microbiol. Lett, 257:253~261.
    Peng JH. 1999. Microsatellite tagging of the stripe rust resistance gene YrH52 derived from wild emmer wheat and suggestive negative cross over interference on chromosome1 B[J]. Theory on Application of Genetics, 97: 567~572
    Peng JH. 2000. High-density molecular map of chromosome region harboring stripe-rust resistance gene YrH52 and Yr15 derived from wild emmer wheat[J]. Genetica, 2000, 109: 199~210
    Park G, Xue C, Zhao X, Kim Y, Orbach M, Xu JR. 2006. Multiple upstream signals converge on an adaptor protein Mst50 to activate the PMK1 pathway in Magnaporthe grisea. Plant Cell, 18:2822~2835
    Park SH, Choi ES, Kim MJ, Cha BJ, Yang MS, Kim DH. 2004. Characterization of HOG1 homologue, CpMK1, from Cryphonectria parasitica and evidence for hypovirus-mediated perturbation of its phosphorylation in response to hypertonic stress. Mol. Microbiol, 51:1267~1277
    Ruiz-Rold n MC , Maier FJ , Schfer W. 2001. PTK1 , a mitogen-activated-protein kinase gene , is required for conidiation , appressorium formation , and pathogenicity for Pyrenophora teres on barley. MolPlant-Microbe Interact , 14 : 116~125
    Rui O, Hahn M. 2007. The Slt2-type MAP kinase Bmp3 of Botrytis cinerea is required for normal saprotrophic growth, conidiation, plant surface sensing and host tissue colonization. Mol. Plant Pathol. 8:173–184.
    Ramamoorthy V, Zhao X, Snyder A,. Xu JR, Shah DM. 2007. Two mitogen-activated protein kinase signalling cascades mediate basal resistance to antifungal plant defensins in Fusarium graminearum. Cell. Microbiol. 9:1491–1506.
    Sells MA, Chernoff J. 1997. Emerging from the Pak: the mitogen-activeted protein kinase family[J].Trends Cell Bioi. 7: 162~167
    Tateno Y, Miyazaki S, Ota M. 2000. DNA data bank of Japan (DDBJ) in collaboration with mass sequencing teams[J]. Nucleic Acids Res, 28: 24~26
    Thomas CF, Anders RA, Gustafson MP. 1998. Pneumocystis carinii contains a functional cell-division-cycle Cdc2 homologue. American Journal of Respiratory Cell and Molecular Biology, 18: 297~306
    Wang CF, Huang LL, Buchenauer H. 2007. Histochemical studies on the accumulation of reactive oxygen species(O2- and H2O2) in the incompatible and compatible interaction of wheat-Puccinia striiformis f. sp. tritici. Physiological and Molecular Plant Pathology, 71: 230-239.
    Wormley FL, Heinrich G, Miller JL, Perfect JR, Cox GM. 2005.Identification and characterization of an SKN7 homologue in Cryptococcus neoformans. Infect. Immun, 73:5022~5030
    Wheeler DL, Church DM, Lash AE. 2001. Databasere sources of the national center for biotechnology information[J]. Nucleic Acids Res, 29: 11~16
    Wege S, Scholz A, Gleissberg S. 2007. Highly efficient virus-induced gene silencing (VIGS) in California poppy (Eschscholzia californica): an evaluation of VIGS as a strategy to obtain functional data from non-model plants[J]. Ann Bot (Lond), 100(3): 641~649
    Xu JR , Staiger CJ , Hamer JE. 1998. Inactivation of the mitogen-activated protein kinase MPS1 from the rice blast fungus prevents penetration of host cells but allows activation of plant defense responses. Proc Natl Acad Sci USA , 95 : 12713~12718
    Zhao XH, Mehrabi R, Xu JR. 2007. Mitogen-Activated Protein Kinase Pathways and Fungal Pathogenesis. Eukaryotic Cell, p. 1701 ~1714
    Zhao X, Kim Y, Park G, Xu JR. 2005. A mitogen-activated protein kinase cascade regulating infection-related morphogenesis in Magnaporthe grisea. Plant Cell, 17:1317~1329

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700