用户名: 密码: 验证码:
高纯度戊烷系列产品生产工艺开发与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前利用轻烃原料生产高纯度戊烷系列产品的大部分生产工艺,能耗和投资都较大,并且产品纯度不够高。为此,本文将通过模拟优化与实验分析的方法,探索出生产高纯戊烷的优良工艺及其适宜的工艺参数,降低生产成本。
     对以某厂提供的6t/hr轻质烃类为原料,生产纯度均达到99.00%的异戊烷和正戊烷的五种常规塔序分别进行模拟计算。通过综合对比,确定分离序列二为优选常规塔序,即先脱C6+的重组分,再脱C4-的轻组分,最后进行异戊烷和正戊烷分离的流程。当优选分离序列产品塔塔顶分别产出iC5/C5为8:2和7:3的混合戊烷时,与产出纯异戊烷时相比,系统的总再沸负荷分别减少了21.33%和28.06%。可见,直接产出混合戊烷比用纯品调和更具优势。
     针对优选分离序列耗能仍然较大的问题,采用差压热集成技术,使脱重塔的冷凝器与产品塔的再沸器进行集成。通过模拟对比可知:当产品为纯异戊烷和纯正戊烷时,差压热集成前后分离系统的总冷凝负荷和总再沸负荷各减少了37.48%和38.80%;当产品为iC5/C5为8:2的混合戊烷和纯正戊烷时,各减少了22.12%和23.43%;当产品为iC5/C5为7:3的混合戊烷和纯正戊烷时,各减少了15.34%和16.17%。
     对用于精制高纯度戊烷系列产品的常规塔序流程和热偶精馏流程的工艺参数和节能效果进行了计算和比较。模拟结果表明:在异戊烷和正戊烷纯度均达到96.00%且各自达到一定收率的前提下,与常规精馏塔序列相比,采用热偶精馏塔省去了13块理论板、2个冷凝器和2个再沸器;8.57%的再沸负荷。主塔至副塔的气液回流量对热偶精馏体系的能耗和产品的纯度影响甚大。通过模拟可得,气相回流V'=23460kg/hr;液相回流L=23450kg/hr。
     以产品塔侧线采出的方式对优选分离序列及其差压热集成工艺进行适当的改进。改进的工艺具备节能、调控方便、能同时产出混合戊烷和纯戊烷等优点。
     通过对在某厂采集到的现场数据和模拟计算值的对比可知,二者吻合较好,证明了前述所选的热力学方程、所用的计算方法是合理的;得到的结果是正确的。以优选分离序列差压热集成工艺分离该厂轻质原料生产高纯度戊烷系列产品较原顺序分离工艺更具优势。
Most of current technologies to produce a series of high-purity pentane using light hydrocarbon as raw material have problem of high energy expenditure, high equipment investment and inadequate product purity. Therefore, via stimulant optimization and experimental analysis, we have quested for other excellent production technologies and their optimal process parameters in this paper to reduce costs of producing high-purity pentane.
     We have simulated five conventional separation sequences respectively which are used to produce i-pentane and n-pentane, both of which have purity of 99.00%, using light hydrocarbon whose flow is 6t/hr provided by some plant as raw material. Via synthetical comparison, we have determined that the second sequence is the optimal one. In the optimal sequence, heavy components C6+ and light components C4- are divested according to priority, and then the separation between iC5 and C5 is carried out. In the optimal sequence, compared with total heat quantity consumed in all the reboilers of the system when pure i-pentane is acquired in the top of the products column, it decreases by 21.33% and 28.06% respectively when the other two kinds of mixed pentane whose iC5/C5 is 8:2 and 7:3 are acquired in the top of the products column. It is thus clear that producing mixed pentane directly is better than acquiring it by mixing pure pentane.
     Aiming at the problem of high energy consumption in the optimal separation sequence, we have used technology of heat integration owing to differential pressure to save energy. Here, we have made the condenser of the column to divest heavy components integrate with the reboiler of the products column. Via simulation and comparison, we have known that the total cooling duty and the total heating duty of the separation system decrease by 37.48% and 38.80% respectively before and after heat integration when the products are pure i-pentane and pure pentane. Then, they decrease by 22.12% and 23.43% respectively before and after heat integration when the products are mixed pentane whose iC5/C5 is 8:2 and pure n-pentane. At last, they decrease by 15.34% and 16.17% respectively before and after heat integration when the products are mixed pentane whose iC5/C5 is 7:3 and pure n-pentane.
     We have computed and compared the process parameters of a conventional separation sequence and the process of thermally coupled distillation, both of which are used to refine a series of high-purity pentane. The stimulant outcome demonstrates that it can save thirteen trays, two condensers, two reboilers, and 8.57% of total heat quantity consumed in all the reboilers of the system using thermally coupled distillation, compared with using the conventional separation sequence on condition that the products are a certain amount of i-pentane and n-pentane, both of which have purity of 96.00%. Concerning thermally coupled distillation, the quantity of refluxes of vapor and liquid, both of which are from the main column to the assistant column, affects seriously the energy expenditure of the system and the purity of the products. Here, via simulation, we have known that the quantity of refluxes of vapor and liquid is 23460kg/hr and 23450kg/hr respectively.
     We have added sidetracks in the products column to improve properly the optimal separation sequence and the process of heat integration owing to differential pressure based on the optimal separation sequence. The improved processes are energy-saving and convenient in regulation and control. Mixed pentane and pure pentane can both be acquired from the improved processes at the same time.
     We have compared the data collected from the working site of some plant with the simulated value. Via comparison, we have known that they are corresponding. Therefore, the selected thermodynamic equation and the used computing method in foregoing process of computational simulations are reasonable and the obtained outcome is correct. In the case of refining a series of high-purity pentane using light hydrocarbon of this plant as raw material, the process of heat integration owing to differential pressure based on the optimal separation sequence is better than the original process in which C4-, iC5, C5 and C6+ are acquired in turn.
引文
[1]刘文涛.大庆建成国内最大的戊烷发泡剂生产基地.精细与专用化学品,2004,12(3):30~31
    [2]刘金斗,易明新,冯浩.中原油田轻烃综合利用及其深加工概况.石油与天然气化工,2000,29(2):64~67
    [3]郝修丽,万胜林.重整拔头油利用方案探讨.精细石油化工进展,2003,4(8):49~52
    [4]胡耀,于艳秋,史红伟.日本JGC公司B块轻烃分离装置转产改造研究.山东化工,2001,30(2):29~31
    [5]贾建军.乙烯装置混合碳五的综合利用.乙烯工业,2006,18(3):25~27
    [6]环戊烷产品分离工艺通过鉴定.化工科技市场,2003,26(3):39
    [7]李克见,马翠真,秦小青等.炼油厂碳五资源及其应用前景分析.内蒙古石油化工,2001,27:111~113
    [8]丁泉,张礼安,王健.戊烷的生产与市场分析.石油化工技术经济,2005,21(1):46~50
    [9]苏勇.利用抽余C_5加氢制戊烷.工业催化,1997,(1):20~24
    [10]唐旭东,张宪成,陈微明等.运用创新工艺实现节能增效——碳五精制装置改用“前两塔生产工艺方案”.广州石化科技论文选编(总第十一辑),2006,6~10
    [11]姜道华,冯和翠.炼厂轻烃分离制戊烷工艺模拟研究.现代化工,2008,28(1):149~152
    [12]Chiang T. P. , Luyben W. L. . Incentives for dual composition control in single and heat-integrated distillation configurations. Ind Eng Chem Proc Des Dev, 1985, 24: 352~355
    [13]Nikolaides I. P. , Malone M. F. . Approximate design of multiple-feed/ side-stream distillation systems. Ind Eng Chem Res, 1987, 26: 1839~1844
    [14]Triantafyllou C. , Simth R. . The design and optimisation of fully thermally coupled distillation columns. Trans. Ichem. E. , 1992, (3), 118~132
    [15]Hu Z. B. , He X. . Heuristic synthesis for multi-component products with simple and sharp separation. Computers and Chemical Engineering, 1993, 17: 379~397
    [16]Alatiqi I. M. Luyben W. L. . Alternative distillation configurations for separating ternary mixtures with small concentration of intermediate in the feed. Ind Eng ChemProcess Des Dev, 1985, 24: 500~508
    [17]王延敏,姚平经.碳五分离装置热偶精馏的操作特性.计算机与应用化学,2002,19(5):625~628
    [18]Petlyuk F. B. , Platonov V. M. Slavinskii D. M. . Thermodynamically optimal method for separating multicomponent mixtures. Int Chem Eng, 1965, 5: 555~562
    [19]Stupin W. J. , Lockhart F. J. . THERMALLY COUPLED DISTILLATION - A CASE HISTORY. Chem Eng Progr, 1972, 68(10): 71~72
    [20]Fidkowski Z. , Krolikowski L. . Thermally coupled system of distillation columns; Optimization procedure. AIChE J. , 1986, 32(4): 537~546
    [21]Xu Xien, Li Shouchun. Simulation of thermally coupled distillation processes with two liquid phases. Journal of Chemical Industry and Engineering(China), 1989, 40(1): 28~37
    [22]Yang Youqi. Simulation Study of Operational Performance of Thermally Coupled Distillation. Journal of Chemical Industry and Engineering(China), 1990, (4): 491~ 497
    [23]Qu Ping, Yan Rui, Yu Yuguo, Etc. Operational Performance of Thermally Coupled Distillation of the Butadiene Separation Unit. Journal of Chemical Engineering of Chinese University, 1996, 10(2): 145~151
    [24]Li Fenghua, Fan Xishan, Yao Pingjing. Study on the Feasibitity of Employing Thermally Coupled Distillation Tower to Save Energy. Petrochemical Technology, 1995, 24(11): 783~786
    [25]李红,李鑫钢,罗铭芳.差压热耦合蒸馏节能技术.化工进展,2008,27(7):1125~1128
    [26]Morari M. , Faith D. C. . The synthesis of distillation trains with heat integration. AIChE J, 1980, 26: 916~921
    [27]Cheng S. H. , Liu Y. A. . Studies in Chemical Process Design and Synthesis. Ind Eng Chem Res, 1988, 27(12), 2304~2322
    [28]Rathore R. N. S. , Kenneth A. . Synthesis Strategies for Multi-component Separation Systems with Energy Integration. AICHE J. , 1974, 20: 940~947
    [29]Andrecovich M. J. , Westerberg A. W. . An MILP Formulation of Heat-integrated Distillation Sequence Synthesis. AICHE J. , 1985, 31: 1461~1474
    [30]姚平经.全过程系统能量优化综合.大连:大连理工大学出版社,1995. 98~99
    [31]杨友麒.精馏过程节能.现代化工,1994,(5):9~15
    [32]杨友麒.过程流程模拟.计算机与化工,1995,12(1):1~6
    [33]朱开宏.化工过程流程模拟.北京:科学出版社,1993. 34~36
    [34]梁士峰.催化裂化吸收稳定系统的多目标优化:[硕士学位论文].天津;天津大学,2007
    [35]谭国民,杨志才.热敏物料的蒸馏及常用设备(Ⅰ)——蒸馏过程的特征.化学工程师,2001,(4):19~21
    [36]雷培德,李端阳,汪静.化工流程模拟及其应用.节能,1994,(3):6~8
    [37]于婷婷.乙烯装置急冷系统工艺模拟及改进研究:[硕士学位论文].天津;天津大学,2008
    [38]胥家瑞.化工模拟系统.天津化工,2002,7:42~43
    [39]PRO/ⅡKeyword Input Manual. Simulation Science Inc, 1992
    [40]Polyup. PROII培训讲义之软件入门.北京:北京中油奥特科技有限公司,2002. 9~10
    [41]魏奇业,高维平,华贲. C_5分离的间歇精馏过程模拟研究.石油化工,2003,32(8):686~689
    [42]马沛生.化工热力学(通用型).北京:化学工业出版社,2008. 12
    [43]Nikolaides I. P. Malone M. F. . Approximate design and optimization of thermally coupled distillation with prefractionation. Ind Eng Chem Res, 1988, 26: 1839~1844
    [44]Rev E. , Emtir M. , Szitkai Z. , Etc. Energy Savings of Integrated and Coupled Distillation Systems. Computers & Chemical Engneering, 2001, 25(1): 119~140
    [45]Wayburn Thomas L. , Chavez C. Rafael, Seader J. D. . Multiple Solution to Systems of Interlinked Distillation Columns by Differential Homotopy Continuation. Annu Meet Am Inst Chem Eng, 1984, 756~806
    [46]Rafael Chavea C. , Seader J. D. , Wayburn Thomas L. . Multiple Steady-state Solutions for Interlinked Separation Systems. Ind Eng Chem Fundam, 1986, 25: 566~576
    [47]Wen Jing Lin, Seader J. D. , Wayburn T. L. . Computing Multiple Solutions to Systems of Interlinked Separation Columns. AICHE J. , 1987, 33(6): 886~897
    [48]Robert H. Perry, Don W. , Green Perry. Chemical Engineers' Handbook Seventh Edition. McGraw-Hill, 2001: 13
    [49]Frey R. M. , Doherty M. F. , Douglas J. M. Malone M. F. . Controlling thermally linked distillation columns. Ind Eng Chem Proc Des Dev, 1984, 23: 483~490
    [50]Mizsey P. , Hau N. T. , Benko N. , Kalmar I. Fonyo Z. . Process control for energy integrated distillation schemes. Comp Chem Eng, 1998, 22: 427~431

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700