用户名: 密码: 验证码:
冷季母牛舍空气中CH_4、CO_2和NH_3等气体浓度的变化及影响因素的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
试验Ⅰ试验研究了不同日粮组成对冷季青年母牛舍空气中甲烷、二氧化碳、氨气和硫化氢浓度的影响。选取一栋有100头青年母牛(其中荷斯坦牛71头,瑞士褐牛29头)的牛舍,依次饲喂精粗比为A组(23:77玉米青贮和苜蓿干草)、B组(10:90玉米青贮)、C组(10:90苜蓿干草)、D组(60:40苜蓿干草)的日粮,采集测定甲烷、二氧化碳、氨气和硫化氢4种气体的浓度。结果表明:随着日粮中精料比例的增加,舍内甲烷浓度呈降低趋势,各组平均浓度依次为73.58、115.83、93.60和50.18mg/m3,各组之间差异显著(P<0.05),其中A组与B组、B组与D组、C组与D组之间差异极显著(P<0.01);二氧化碳的各组平均浓度依次为3696、4061、5847和3162 mg/m3,C组与A组、D组之间差异显著(P<0.05);氨气的平均浓度分别为2.63、2.62、5.38和4.09 mg/m3,除了A组与B组之间差异不显著外(P>0.05),其余各组之间均差异显著(P<0.05);硫化氢的各组平均浓度分别为0.0481、0.0396、0.0352和0.0402mg/m3,各组之间差异均不显著(P>0.05)。4种气体在同一高度的浓度变化与牛舍内总浓度的变化呈现显著的相关性。研究表明:高精料日粮可使舍内甲烷和二氧化碳浓度降低;日粮蛋白质水平升高,则舍内氨气的浓度增加。
     试验Ⅱ试验比较了冷季高产和中产奶牛牛舍空气中甲烷、二氧化碳、氨气和硫化氢的浓度。选取高产和中产奶牛牛舍各一栋,采集测定甲烷、二氧化碳、氨气和硫化氢4种气体的浓度。结果表明:高产奶牛牛舍中甲烷、二氧化碳、氨气和硫化氢4种气体的浓度比中产奶牛牛舍中的各气体浓度分别多2.69%、66.95%、32.65%和3.58%。每头高产奶牛每天排放CH4296.15g,摄入1NND能量排放CH45.97g,每产lkg标准乳排放CH411.43g,每采食lkg干物质排放CH412.18g。每头中产奶牛每天排放CH4210.54g,摄入1NND能量排放CH46.27g每产lkg标准乳排放CH412.08g,每采食lkg干物质排放CH412.54g。研究表明:采食量增加,牛舍中甲烷、二氧化碳、氨气和硫化氢的浓度也会增加。高产奶牛摄入1NND能量的CH4排放量比中产奶牛低4.72%,每产lkg标准乳的CH4排放量比中产奶牛低5.42%,每采食1kg干物质的CH4排放量比中产奶牛低2.81%。
     试验Ⅲ试验研究了不同日粮组成对荷斯坦青年母牛粪便含水量、粪尿中总氮(TN)、氨态氮(AN)浓度和粪中NH3、H2S散发量的影响。选取71头荷斯坦青年母牛作为试验对象,依次饲喂精粗比为A组(23:77玉米青贮和苜蓿干草)、B组(10:90玉米青贮)、C组(10:90苜蓿干草)、D组(60:40苜蓿干草)的日粮,测定粪便含水量、粪尿中总氮(TN)氨态氮(TN)浓度以及粪中NH3和H2S气体散发量。结果表明:B组的粪便含水量显著高于D组(P<0.05);C组的NH3散发量显著高于A组和B组(P<0.05),D组显著高于B组(P<0.05);D组的H2S散发量显著高于B组(P<0.05);C组和D组的粪中总氮含量极显著高于A组和B组(P<0.01);D组尿中的总氮含量极显著高于其它三组(P<0.01);C组与D组的粪中氨态氮浓度差异显著(P<0.05);C组的尿中氨态氮浓度极显著高于D组(P<0.01),D组极显著高于A组和B组(P<0.01)。研究表明:日粮鲜重中水分的巨大差别,导致了其粪便含水量的不同。随着日粮中粗蛋白水平的增加,粪中NH3和H2S的散发量以及粪尿中总氮和氨态氮的浓度也会增加。
     试验Ⅳ试验比较了荷斯坦高产和中产奶牛粪便含水量、粪尿中总氮(TN)、氨态氮(AN)浓度和粪中NH3、H2S的散发量。选取高产和中产奶牛牛舍各一栋,测定粪便含水量、粪尿中总氮(TN)氨态氮(TN)浓度以及粪中NH3和H2S气体的散发量。结果表明:高产荷斯坦奶牛的粪便含水量比中产荷斯坦奶牛低0.32%,粪中NH3散发量比中产荷斯坦奶牛高2.83%,粪中H2S散发量比中产荷斯坦奶牛高3.09%,鲜粪中TN含量比中产荷斯坦奶牛高4.04%,尿中TN含量比中产荷斯坦奶牛高12.53%,鲜粪中AN浓度比中产荷斯坦奶牛高3.48%,尿中AN浓度比中产荷斯坦奶牛高22.72%。研究表明:粗蛋白的摄入与需求比增加,奶牛粪尿中氮和硫的含量也会增加。超过动物蛋白质需要量的几乎所有的氮都是通过尿液排出体外,尿氮增加的幅度大于粪氮增加的幅度。减少粪氮不是降低氮污染的有效途径。
ExperimentⅠTest to study the impact of methane、carbon dioxide、ammonia & hydrogen sulfidewith different types of forage in young cows cowshed air in cold season. Selected one cowshed with 100 young cows (of which 71 Holstein, Brown Swiss cattle 29), followed by feeding forage to concentrate ratio of group A (23:77 corn silage and alfalfa hay), group B (10:90 corn silage), group C (10:90 alfalfa hay), group D (60:40 alfalfa hay) of the diet, analyze concentration of CH4,CO2,NH3,H2S in cowshed. Results showed that:with the proportion of dietary concentrate increased, CH4 concentrations decreased, the average concentration of each group were 73.58,115.83,93.60 and 50.18 mg/m3, significant differences among the groups (P<0.05), where group A & B, group B & D, group C & D were highly significant different (P<0.01);there was no significant difference between the groups (P>0.05); average concentrations of CO2 each group was 3696,4061,5847 and 3162 mg/m3, group C with group A & D were significant different (P<0.05); average concentration of NH3 were 2.63,2.62,5.38 and 4.09 mg/m3, except group A & B was no significant difference (P>0.05), the other groups were significantly different (P<0.05); average concentration of H2S in each group was 0.0481,0.0396,0.0352 and 0.0402 mg/m3. It was significant correlation between concentration of four kinds of gas at the same layer and total concentration of the cowshed. Test showed that high-concentrate diets reduce the concentration of CH4 and CO2; diets protein level increased, then the concentration of NH3 increased.
     ExperimentⅡTest to compare methane、carbon dioxide、ammonia & hydrogen sulfidewith between high-yield and middle-yield dairy cows in the cowshed in cold season.Selected a high-yield and a middle-yield cowshed, analyzed concentration of CH4,CO2,NH3 and H2S in cowshed. Results showed that: high-yield dairy cows in the cowshed of each gas concentration increased by 2.69%,66.95%,32.65%and 3.58% with middle-yield dairy cows. Each high-yield dairy cow emissions CH4 296.15g per day, intake 1NND energy emissions CH4 5.97g, production lkg standard milk emissions CH4 11.43g, intake lkg of dry matter emissions CH4 12.18g. Each middle-yield dairy cow emissions CH4 210.54g per day, energy intake 1NND emissions CH4 6.27g, production lkg standard milk emissions CH4 12.08g, intake lkg of dry matter emissions CH4 12.54g. Test showed that concentrations of CH4, NH3, H2S and CO2 will increase by feed intake. Intake 1NND energy, high-yield dairy cow emissions CH4 lower 4.72% than middle-yield dairy cow, production lkg standard milk emissions CH4 lower 5.42% than middle-yield dairy cow, intake 1kg of dry matter emissions CH4 lower 2.81% than middle-yield dairy cow.
     ExperimentⅢTest to study the effects of different types of forage diets on young Holstein cows' dung water content, total nitrogen (TN), ammonia nitrogen (AN) concentration from fecal and urine and emission of NH3, H2S from fecal. Selected 71 young Holstein cows for the trial, followed by feeding forage to concentrate ratio of group A (23:77 corn silage and alfalfa hay), group B (10:90 corn silage), group C (10:90 alfalfa hay), group D (60:40 alfalfa hay) of the diet, fecal water content, urine total nitrogen (TN) ammonia nitrogen (TN) concentrations and fecal emission of NH3 and H2S gas. The results showed that: Group B of fecal water content was significantly higher than Group D (P<0.05); NH3 emission of group C was significantly higher than group A & B (P<0.05), group D was significantly higher than group B (P<0.05); H2S emission of group D was significantly higher than group B (P<0.05); TN content of feces of group C & D was significantly higher than the group A & B (P<0.01); TN content in urine of group D was significantly higher than the other three groups (P<0.01); group C and group D in the fecal concentration of AN significantly different (P<0.05); concentration of group C of AN in the urine of most significantly higher than group D (P<0.01), group D was significantly higher than group A & B (P<0.01). Test showed that water content in fresh diet with huge differences, lead water content in fecal a little different. As the level of dietary crude protein increased, emission of NH3, H2S from fecal, fecal and urine in the concentration of TN and AN will increase.
     ExperimentⅣTest to compare the high-yield and middle-yield Holstein dairy cows in feces water content, the total nitrogen (TN), ammonia nitrogen (AN) concentration in feces and urine, NH3 and H2S emission content in feces. Selected a high-yield and a middle-yield cowshed, determination the feces water content, the total nitrogen (TN), ammonia nitrogen (AN) concentration and NH3, H2S emission content in feces. The results showed that:high-yield Holstein dairy cows in the fecal water content was lower 0.32% than the middle-yield Holstein dairy cows, NH3 and H2S emission content in feces was higher 2.83% and 3.09% than the middle-yield Holstein dairy cows, TN concentration in fresh feces and urine was higher 4.04% and 12.53% than the middle-yield Holstein dairy cows, AN concentration in fresh feces and urine was higher 3.48% and 22.72% than the middle-yield Holstein dairy cows. Test showed that the ratio of crude protein intake and demand increase, the nitrogen and sulfur content in feces and urine will increase. Protein, which more than demand will almost all be excreted through urine, the rate of increase urine nitrogen is greater than the rate of increase fecal nitrogen. Reduce the fecal nitrogen is not an effective way to reduce nitrogen pollution.
引文
[1]Sowers K R.Cold Spring Harbor Laboratory Press,Methanogenic Archaea,1995:3-13.
    [2]郭嫣秋,胡伟莲,刘建新.瘤胃甲烷菌及甲烷生成的调控[J].微生物学报,2005,45(1):145.
    [3]单丽伟,冯贵颖,范三红.产甲烷菌的研究进展[J].微生物学杂志,2003,23(6):42-46.
    [4]Ferry,G G Biochemistry of methanogenesis.Crit.Rev Biochen[J].Molecule Biology,1992,27:473-503.
    [5]娜仁花,董红敏.营养因素对反刍动物甲烷排放影响的研究现状[J].安徽农业科学,2009,37(6):2534-2536.
    [6]Vander H K W.Estimating ammonia emission factors in Europe summary of the work of the UNECE ammonia expert panel[J].Atmospheric Environment,1998,32(3):315-316.
    [7]Anderson N,Strader R,Davidson C.Airborne reduced nitrogen:ammonia emissions from agriculture and other sources[J].Environment International,2002,(1011):1-10.
    [8]Arogo J,Westerman P W.Proposed methed for determining ammonia emission factors from confined swine feeding operations[A].2002, ASAE Meeting Paper No.02-4085.
    [9]孔源,韩鲁佳.我国畜牧业粪便废弃物的污染及其治理对策的探讨[J].中国农业大学学报,2002,7(6):92-96.
    [10]王丽凤,卢德勋,武文斌.反刍动物消化道甲烷阻抗技术[J].黑龙江畜牧兽医,2004,5:65.
    [11]王庚辰,温玉璞.温室气体浓度的排放监测及相关过程[M].北京:中国环境科学出版社,1996.
    [12]游玉波,廖新佛.广东省反自动物甲烷排放量的估算[J].家畜生态,2004,25(3):27-31.
    [13]李胜利,金鑫,范学珊,等.反刍动物生产与碳减排措施[J].动物营养学报,2010,22(1):2-9.
    [14]贺永惠,王清华,李杰.降低反刍动物甲烷排放的研究进展[J].黄牛杂志,2001,27(5):47-50.
    [15]张仁健,王明星,李晶,等.中国甲烷排放现状[J].气候与环境研究,1999,4(2),197.
    [16]Khalil M A K,Rasmussen R A.The global sources of nitrous oxide [J] .Journal of Geophysical Research,1992,97:14561-14660.
    [17]刘红,张运涛,方德罗,等.反刍动物甲烷排放及其对全球变暖的影响[J].山东环境,1997,1:36-37.
    [18]赵玉华,杨瑞红,王加启.反刍动物甲烷生成的调控[J].中国饲料,2005(3):18-20.
    [19]Food and Agriculture Organization of the United Nations.Livestock's Long Shadow:Environmental Issues and Options[R].Rome,2007:97-99.
    [20]王永康译.减少反刍动物甲烷产生量的饲喂策略[J].中国奶牛,2010,4:54-56.
    [21]腾讯公益.大气中温室气体浓度已达历史最高值[EB/OL].[2009-12-13]. http://news.qq.com/a/ 20091213/001688.html.
    [22]Sedorovich D M,Rotz C A,Richard T L.Greenhouse Gas Emissions on Dairy Farms[M].Michigan: American Society of Agricultural and Biological Engineers,2008.
    [23]Capper J L,Cady R A,Bauman D E.Dairy's environmental impact[J].Hoard's Dairyman,2009,9:547.
    [24]翟少伟.日粮蛋白质摄入量对泌乳奶牛氮排泄量的影响[J].中国奶牛,2999,8:56-59.
    [25]刘卫东,黄炎昆.鸡场粪污的综合治理.畜牧兽医杂志,2000,19(1):25.
    [26]王红宁.禽呼吸系统疾病[M].北京:农业出版社,2001,334.
    [27]PINARES-PATINO C S.Methane emission by alpaca fed on Lucerne hay or grazed on pastures of perennial ryegrass white clover or birdsfoot trefoil [J].Journal of Agricultural Science,2003,14 215-226.
    [28]ESTEMANN B L. Effect of calfage and dam breed on intake energy expenditure and excretion of nitrogen phosphorus and methane of beef cows with calves [J] .Journal of Animal Science,2002,80: 1124-1134.
    [29]张晓庆,金艳梅,那日苏:反刍动物甲烷生成量的调控[J].家畜生态学报,2006,27(6):1-2.
    [30]冯仰廉.反刍动物能量代谢[M].北京:农业大学出版社.
    [31]Blaxter K L.1962.The Energy Metabolism of Rumimants[J].Hutchimson Scientific and Technical, 179-203.
    [32]Holter, Yang J.Methane production in dry and lactating Holstein cows [J] .Journal of Dairy Science, 1992,75:2165.
    [33]Johnson K.A. Johnson D.E.Methane emissions from cattle[J].Journal of Animal Science,1995,73 (8):2483-2492.
    [34]杨在宾.反刍动物碳水化合物代谢及瘤胃调控技术研究进展[EB/OL].(2006-04-12)http://www. sdfeedste.com/yingyangyanjiushuo/xsjl/200604/45.html.
    [35]McCaughey,W.P, K.Wittenberg and D.Corrigan.Impact of pasture type on methane production by lactating beef cows[J] Journal of Animal Science,1999,79:221-226.
    [36]韩继福,冯仰廉,张晓明,等.阉牛不同日粮的纤维消化、瘤胃内VFA对甲烷产生量的影响[J].中国兽医学报,1997,17(3):278-280.
    [37]萧宗法,刘秀州,陈吉斌,等.饲料精粗比对荷兰种干乳牛消化道甲烷产量的影响[J].中国畜牧学会会志,1998(27):166.
    [38]张爱忠,卢德勋,王立志,等.不同精粗比日粮条件下绒山羊瘤胃内环境和发酵指标动态变化的研究[J].黑龙江畜牧兽医,2005(12):23-25.
    [39]Sommer S G,Petersen S O,Sogaard H T. Greenhouse gas emission from stored livestock slurry [J] .Jou-rnal of Environmental Quality,2000,29:744-751.
    [40]冯仰廉.反刍动物营养学[M].北京:科学出版社,2004.
    [41]王丽凤.日粮中添加甲烷抑制剂对绵羊瘤胃中甲烷产量影响的研究[M].呼和浩特:内蒙古农业大学,2004.
    [42]李建新,高腾云.影响瘤胃甲烷气产量的因素及其控制措施[J].家畜生态,2002,23(4):67-69.
    [43]张运涛,方德罗.反刍动物甲烷排放及其对全球变暖的影响[J].中国畜牧杂志,1999,35(1):47-48.
    [44]李长皓,王加启,张思维,等.饲喂秸秆型日粮和青贮型日粮对青年奶牛瘤胃发酵及氮代谢的影响[J].中国奶牛,2007(7):17-20.
    [45]Ferry G G.Biochemistry of methanogenesis[J].Molecule Biology,1992,27:473-503.
    [46]于震,张永根.反刍动物瘤胃甲烷的产生及调控措施[J].黑龙江畜牧兽医,2007,9:35-36.
    [47]Suhanda N,Bird S,Thwaites J.The efficacy of anti-ptotozoan molasses blocks in sheep[J].Animal Pro-ducture,1998,22:390.
    [48]Newbold C J,Hassan E,Wang S M,et al. Influence of foliage from African multipurpose trees on activity of rumen protozoa and bacteria[J].British Journal of nutrition,1997,78:237-249.
    [49]Mclnerney S M.Toxicological and structural studies of the antiprotozoal agent found in Enterolobium cyclocarpus[D].BSc(Hons) Thesis, University of New England, Armidale,1995.
    [50]Puchala R,Min B R,Goetsch A L,et al.The effect of a condensed tannin-containing forage on methane emission by goats [J]. Journal of Animal Science,2005,83:182-186.
    [51]Mathieu F,Jouany J P,Senaud J,et al.The effect of Saccharomyces cerevisiae and Aspergillus oryzae on fermentations in the rumen of faunated and defaunated sheep; protozoal and probiotic interactions[J].Reproduction Nutrition and Developmemt,1996,36:271-287.
    [52]McGinn S M,Beauchemin K A,Coates T,et al.Methane emissions from beef cattle:Effects of monen-sin,sunflower oil,enzymes,yeast,and fumaric acid[J].Journal of Animal Science,2004,82:3346-3356.
    [53]Tedeschi,L. O.,D. G. Fox.Potential environmental benefits of ionophores in ruminant diets[J].Journal of Environmental Quality,2003,32:1591-1602.
    [54]林雪彦,谢幼梅.莫能菌素在畜牧生产中的应用[J].黄牛杂志,2000,26(3):62-65.
    [55]Rumpler W V,Johnson D E and Bates D B.The effect of hinge dietary cation concentration on methanogenesis by steers fed diets with and without ionophores[J].Journal of Animal Science, 1986,62:1737-1741.
    [56]Schonheit P and Beimborn D B.ATP synthesis in Methanobacterium thermoautotrophicum coupled to CH4 formation from H2-CO2 in the apparent absence of an electrochemical proton potential across the cytoplasmic membrane[J].European Journal Biochem,1985,148:545-550.
    [57]Deceyer D.I,Veil C.J,Teller E,et al.Manipulation of rumen digestion in relation to the level of produc-tion in ruminants [J] .Journal of Animal Nutrual,1986,36:132-143.
    [58]Davies A,Nwaonu H.N,Stainler G,et al.Properties of a novel series off inhibitors of rumen methan-ogenesis; in vitro and in vivo experiments including growth trials on 2,4-bis(teichloromethy)benzo [1,3]dioxin-6-carboxylic acid[J].British Journal of Nutrition,1982,47:565-567.
    [59]May C,Payne A L,Stewart P L,et al.A delivery system for agents,International Patent Application, 1995.
    [60]Asanuma,Hino.Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro[J].Journal of Dairy Science,1997,82:780.
    [61]Frumholtz,P.P.,C.J.Newbold and R.T.Wallace.Influence of Asergillus oryzae fermentation extracts on the basal ration in rumensimulation technology[J].Journal Agriculture Science.1989,113:169.
    [62]Mutsvangwa, T., I. E. Edwards. The effect of dietary inclusion of yeast culture on patterns of rumen fermentation,food intake and growth of intensively fed bulls[J].Animal Production.1992,55:35.
    [63]Garcia-Lopez PM,J Kung L,Odom JM.In vitro inhibition of microbial methane production by 9, 10-anthraquinone[J].Journal of Animal Science,1996,74:2276-2284.
    [64]Dumitru R,Palencia H,Schroeder S D,et al. Targeting methanpterin biosynthesis to inhibit methano-genesis[J].Applied Enviroment Microbiology,2003,69:7236-7241.
    [65]Mohammed N,Ajisaka N,Lila Z A,et al. Effect of Japanese horseradish oil on methane production and ruminal fermentation in vitro and in steers[J].Journal of Animal Science,2004,82:1839-1846.
    [66]Sar C,Mwenya B,Santoso B,et al.Effect of Escherichia coli W3110 on ruminal methanogensis and nitrate reduction in vitro[J].Anim Feed Sci Technol,2005,118:295-306.
    [67]Holloway P E,Baker S K.Development of antibodies to rumen methanogens in sheep[J].Asian Austr-alian Journal of Animal Science,2000,13:264.
    [68]Wright A D G,Kennedy P,O Neill C J,et al.Reducing methane emissions in sheep by immunization against rumen methanogens[J].Vaccine,2004,22:3976-3985.
    [69]农村家用沼气发酵工艺规程[P].GB9958-88.
    [70]刘德江,高桂丽,朱妍梅,等.猪粪、牛粪、羊粪沼气发酵比较试验[J].塔里木大学学报,2005,17(2):10-12.
    [71]刘树民,韩靖玉,岳海军.中国北方寒冷地区沼气的综合开利用[J].内蒙古农牧大学学报,2002,24(4):83-86.
    [72]IPCC.2006 IPCC Guidelines for National Greenhouse Gas Inventories,Volume 4:AgricultureForestry and Other Land Use[M].Kanagawa,Japan:IPCC National Greenhouse Gas Inventories Program,2006.
    [73]陆日东,李玉娥,石锋,等.不同堆放方式对牛粪温室气体排放的影响[J].农业环境科学学报,2008,27(3):1235-1241.
    [74]Khan R Z,Miiller C,Sommer S G.Micrometeorogical mass balance technique for measuring CH4 emi-ssions from stored cattle slurry [J].Biology and Fertility of Soils,1997,24:442-444.
    [75]陆日东,李玉娥,万运帆;等.堆放奶牛粪便温室气体排放及影响因子研究[J].农业工程学报,2007,23(8):198-204.
    [76]沈跃.黄牛品种改良与减排甲烷潜力的研究[J].农业环境保护,1995,14(1):15-17.
    [77]Mulligan,F.J.,P.Dillon,J.J.Callan,M.Rath and F.P.O'Mara.Supplementary concentrate type affects nitrogen excretion of grazing dairy cows[J].Joural Dairy Science,2004,87:3451-3460.
    [78]向涛.家畜生理学生化学(下)[M].南昌:江西科学技术出版社,1989,249.
    [79]Tamminga,S.Nutrition management of dairy cows as a contribution to pollution control[J] Journal of Dairy Science.1992,75:345-357.
    [80]Van Soest,P.J.Nutritional Ecology of the ruminant.Second Edition[M].Ithaca:Cornell University Press,1994.
    [81]屈健.丝兰属提取物降低动物体内外有害气体浓度作用机制[J].饲料研究,2004,9:26-28.
    [82]安永义,王新谋.牧场恶臭的控制与对策[J].畜牧生态,1995,3:16.
    [83]汪莉,蒲德伦,淡治国,等.复合除臭剂处理鲜鸡粪对氨和硫化氢逸出的影响[[J].四川畜牧兽医学院学报,1997,11(3):43-48.
    [84]Jounary A R,Newbold J.Methane product by ruminants:its contribution to global warming. Journal of Dairy Science,2000,49:231-253.
    [85]Johnson K A,Huyler M T,West berg H H,et al.Measurment of methane emission from ruminant livestock using SF6 tracer technique[J].Envirnmental Science Technology,1994,28:359-362.
    [86]中国标准出版社.动物防疫标准汇编[S].畜禽场环境质量标准NY/T388-1999.北京:中国标准出版社,2003.
    [87]孙德成,赵智力,魏曼林,等.不同精粗料比全混合日粮对奶牛瘤胃指标的影响[J].饲料研究,2008,10:47.
    [88]MCCARTY P L,SMITH D P.Anaerobic Wastewater Treatment [J].Envirnmental Science Technology, 1986,20(12):1200-1206.
    [89]HARPER S R,POHLAND F GRecent developments in hydrogen management during anaerobic biological wastewater treatment[J].Biotech Bioeng,1986,28:585-602.
    [90]史海山,丁学智,龙瑞军,等.舍饲绵羊甲烷和二氧化碳的日排放动态[J].生态学报,2008,28(2):879.
    [91]中国标准出版社.中华人民共和国农业行业标准[S].奶牛饲养标准NY/T34-2004.北京:中国标准出版社,2004.
    [92]Frskov, E. R.,McDonald, I.,The estimation of protein degradation in the rumen from incubation measurements weighted according to rate of passage,[J].Agriculture Science.1979,92:499-503.
    [93]邵伟,郑春霞,欧阳宏飞,等.新疆冬季奶牛舍的空气环境状况的分析[J].新疆农业科学,2008,45(2):364.
    [94]李庆康,吴雷,刘海琴,等.我国集约化畜禽养殖场粪便处理利用现状及展望[J].农业环境保护.2000,19(4):251
    [95]张美莉,张立岗.泌乳奶牛向环境中氮排泄量的预测[J].长江大学学报(自然版,农学卷),2006,3(4):162.
    [96]Wattiaux M A,Karg K L.Protein level for alfalfa and corn silage-based diets Ⅱ.Nitrogen balance and manure characteristics [J].Journal of Dairy Science,2004,81:3492-3502.
    [97]Petit H V,Ivan M,Mir P S.Effects of flaxseed on protein requirements and N excretion of dairy cows fed diets with two protein concentration[J].Journal of Dairy Science,2005,88:1755-1764.
    [98]刘杰孟,庆婵,马百顺.控制奶牛养殖环境氮污染的粪尿管理技术[J].山东畜牧兽医,2007,28:19.
    [99]Garcia J L,Patel K C,Ollivier B.Taxonomic,phylogenetic and ecological diversity of methanogenic Archaea.Anaerobe,2000,6:205-226.
    [100]Castillo,A.R.,E.Kebread,D.E.Beever and J.A.France.A review of efficiency of nitrogen utilization in lactating dairy cows and its relationship with the environmental pollution[J].Journal of Animal Feed Science,2000,9:1-32.
    [101]Jonker,J.S.,R.A.Kohn and J.High.Dairy herd management practices that impact nitrogen utilization efficiency[J].Journal of Dairy Science,2002,85:1218-1226.
    [102]Gressley,T.F. and L.E.Armentano.Effect of abomasal pectin infusion on digestion and nutrition balance in lactating dairy cows[J].Journal of Dairy Science,2005,88:4028-4044.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700