用户名: 密码: 验证码:
单层网壳结构振动主动控制有限元分析与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的发展,网壳结构的应用越来越广泛,但是在地震和风荷载作用下大跨结构的振动控制问题越来越突出与紧迫。压电材料具有正逆压电效应,可作为传感器和驱动器。在大跨空间钢结构中如何充分利用压电材料的压电效应进行主动控制已成为重要的研究热点。本文以网壳结构压电主动控制为目的,以压电主动控制杆件为研究对象,采用数值分析和试验研究的方法,进行了单层网壳结构有限元分析和模拟地震振动台试验研究,其主要研究工作如下:
     (1)应用有限元软件ANSYS12.0对9种单层凯威特网壳结构(跨度分别为30m,40m,50m;矢跨比为1:3,1:4,1:5)进行了有限元分析,推导了地震波量化处理的傅里叶变换,建立了定量分析计算模型,分析了在EL-Centro波、Taft波和兰州波三种地震波水平作用方向下的54种工况,得到了在地震作用下结构的振动响应规律和动力特性。
     (2)设计制作了一种主动杆件压电驱动器,获得了相应发明型实用型专利。本文通过对8根主动杆件压电驱动进行动态和驱动性能试验,研究了压电驱动器振动频率,探讨了影响驱动器性能的主要因素,分析了驱动电压与驱动力之间的增益关系。试验分析结果表明,压电驱动器振动频率为5~50HZ,驱动电压与驱动力增益为线性关系,可应用于土木工程结构的地震响应主动控制。
     (3)对含压电主动杆件的网壳结构进行了主动控制策略分析,推导了压电主动杆件的有限元方程,建立了含有压电主动杆件的单层凯威特网壳结构的有限元方程,引入了独立模态控制算法。结果表明,模态控制方法适用于网壳结构的压电主动控制。
     (4)设计并制作了含有压电主动杆件的单层K6型凯威特网壳模型结构,并进行了58种有控和无控工况数值分析和模拟地震振动台试验研究,对比分析了单层网壳结构主动控制的数值模拟和试验研究结果,探讨了压电主动杆件控制效果的主要影响因素。结果表明,压电主动杆件驱动器能有效抑制网壳结构的振动响应。
     通过本文研究表明,在土木工程中,充分利用压电材料优越的材料性能,在空间钢结构中合理应用主动控制策略,并利用压电类驱动器进行振动主动控制,对于解决大跨空间钢结构的振动问题、动力失稳问题具有重要的理论意义,其应用具有广泛的应用前景和工程实用价值。
With the development of society, the latticed shell is applied more widely, so under the earthquake and wind loads, the vibration control problem of latticed shell has become more and more prominent and urgent.Piezoelectric material has the performance of the direct and converse piezoelectric effect ,. can be used as sensor and actuator. In long-span spacial steel structure how to make full use of piezoelectric materials active control of piezoelectric effect has already become an important research hotspot. In order to control vibration of the latticed shell by piezoelectric materials,a study is made on the finite element analysis and the shaking table test of the single layer latticed shell active vibration control by finite element analysis and vibrating table tests methods,the main research work is as follows:
     (1) The finite element analysis is done in the 9 kinds of single-layer kay witter latticed shell which has the span of 25m,35m,45m and the rise-to-span ratios of 1/3,1/4,1/5 by ANSYS12.0. Seismic wave is executed the quantifying analysis to seismic wave by fourier transformed in this paper and the model of quantitative analysis is also established. This paper analyzes the 54 species of conditions to horizontal earthquake effect of Lanzhou seismic waves, EL-Centro seismic waves and Taft seismic waves. Structure vibration response laws and dynamic characteristics are obtained.
     (2) Piezoelectric actuators active rods was designed and manufactured which has already obtained a invention practical patent.The dynamic and driving characteristic tests are carried on the 8 piezoelectric actuators , vibration frequency of piezoelectric actuators is analyzed,and the major factors of drive performance are discussed,and the relations between the driving voltage and the gain driving force are analyzed.The test results show that piezoelectric actuator has linear driving performance , with frequencies in the approximate range of 5 to 50 hertz,so it can applied to the active control in civil engineering structure
     (3) Piezoelectric active control strategies of single-layer spherical lattice shell is analyzed , and the finite element equations of Piezoelectric active rods are calculated.This paper establishes the finite element equations of the K8 single-layer spherical lattice shell which assemble piezoelectric active rods,and also introduces independent modal control algorithm. The results show that the modal control is applicable to the piezoelectric active control of the single-layer spherical lattice shell.
     (4) The K6 single-layer spherical lattice shell model which assemble piezoelectric active rods is designed and made. The numerical analysis and the earthquake simulating shaking table test are performed which contains 58 species conditions. The numerical simulation results and experimental results are analyzed,and the main influence factors on control effect of piezoelectric active rods is discussed. The results show that the piezoelectric drive can effectively restrain the vibration response of the single-layer kay witter latticed shell.
     This paper shows that making sufficiently used of piezoelectric materials superior properties, reasonable application of the active control strategies in the space steel and active vibration control by using piezoelectric class driver is important theoretical significance to resolve vibration and dynamic instability problems in long-span spacial steel structure. It is widly prospect of application and practical value.
引文
[1] Yongfeng Luo,Huijuan Liu,Qinghua Han. Analysis method of dynamic stability of suspended-dome structures[J].Xinan Jiaotong Daxue Xuebao/Journal of Southwest Jiaotong University,2008,43(6):729-735
    [2]王社良,田鹏刚.压电功能材料在智能桁架结构稳定控制中的应用[C].西安国际建筑大会,2006
    [3] Ishihara,Noda A.Stability of finite-dimensional nonlinear elastic systems with unilateral contact and friction [J].International Joumal of Solids&Structures,2000,37(18):226-231
    [4] Krizhevsky,G.,Stavsky,Y.,Refined dynamic stability theory of laminated isotropic circular plates[J].ASMEJ.Appl.Mech.,1998,65:334-340
    [5]王子昆,尚福林.压电层合板柱形屈曲[J].固体力学学报,1997,18(l):101-108
    [6] Bert C.W,Birman V.Dynamic instability of shear deformable antisymmetric angle-ply plates[J].Int.J.Solids Struct.,1987,23:1053-1061
    [7] Bodner V.A..Stability of plates under the action of periodic force[J].Prikladnaya Matematika I Mekhanika,1938,2:87-94(in Russian)
    [8] Tani J.,Doki.H.,Dynamic stability of orthotropic annular plate under pulsating radial loads[J].Acoustic. Soc.Am.,1982,72:845-850
    [9] Chen L.W.,Hwang J.R.,Axiymmetric dynamic stability of polar orthotropic thick circular plates[J].Sound Vib.,1988,125:555-5631
    [10]尚福林,王子昆,李中华.压电层合热屈曲问题的精确分析[J].固体力学学报,1997,18(l):1-101
    [11]田晓耕.支架的振动控制和压电板的屈曲及后屈曲研究[D].西安:西安交通大学,1998
    [12] Chen,C.Q.,Shen,YP.,Tian X.G Variational principles of non-liners piezothermo elastic media[J]. Acta Mech. Solida Sinica.1998,11:12-271
    [13] Shen , H.S.Postbuckling analysis of axially-loaded laminated cylindrical shells with piezoelectric actuators[J].Eur.J.Mech.A/Solids2001,20:1007-10221
    [14] Hwang W.S.,et al.Integration of Composite Structure Design with the Intelligent System Concept[J].AIAA1993,17(6):3534-35391
    [15] Ha S.K.,Keilers C.,and Chang F.K.,Finite Element analysis of Composite StructuresContaining Distributed Piezoceramic ensors and Actuators[J].AIAA,1992,30(3):772-7801
    [16] Chandrashekhara K.,and Agarwal A.N Active Vibration Control of laminated Composite Plate Using Piezoelectric Devices : A Finite Element Approach[J]. Journal of Intelligent Material Systems and Structures.1993,14(10):496-5051
    [17] Tzou H.S.,and Tseng C.I. Distributed Piezoelectric Sensor/Actuator Design for DynamicMeasurement/ Control of Distributed Parameter System :A Piezoelectric Finite Element Approach[J]. Sound &Vibration.1990,13(8):17-3411
    [18]李俊宝.智能桁架结构设计、建模与阻尼控制的理论和实验研究[D].南京:南京航空航天大学,1996
    [19] Allik,Hughes.Finite element method for piezoelectric vibration[J]Journal of Acoust Soc Am.,1994,(56):1782-17911
    [20]聂润兔.智能桁架结构静/动态分析与控制研究[D].哈尔滨:哈尔滨工业大学,1992
    [21] Smith M J,Grigoridis K M,Skelton R.E. Optimal mix of passive and active control in structures[J].J of Guidance,Control,and Dynamics,1992,15(4):912-919
    [22]唐永杰,晏砺堂,胡选利,张升陛.结构振动控制中压电阻尼技术研究;(三)机敏约束层阻尼技术[J].压电与声光,1996,18(2):92-95
    [23]唐永杰,胡选利,张升陛.采用压电机敏元件进行结构振动控制Ⅲ:控制系统设计与实验研究[J].应用力学学报,1997,14(1):24-28
    [24] Rongong J A,Wright J R,Wynne R J,Tomlinson G R. Modelling of a hybrid constrained layer / piezoceramic approach to active damping[J].J of Vibration and Acoustics,1997,119;120-130
    [25]何永超.直接力反馈控制原则下智能桁架结构的性能研究[D].上海:同济大学,2002
    [26]岳林,刘福强.柔性智能桁架结构的独立模态空间控制方法的实验研究[J].机械科学与技术,200120(3):456-459
    [27] Crawleya,Craig A .Intelligent Material System-The Dawn of a New Material Age[J]. Journal of Intelligent Material Systems and Structures.1993,4(1):4-12
    [28] Chen L.W.,Hwang J.R.,Axiymmetric dynamic stability of transversely isotropic mindlin circular Plates[J]. Sound Vib.,1988,12(l):307-315
    [29] P.F.Pai,A.H .Nayfei,K.Oh. A nonlinear theory of laminated piezoelectric plates[J] .AIAA Paper No.92-2407,Proceedings of the 33nd SDM Conference,Dallas:TX,577-585
    [30] E.F.Crawley , K.B.Lazarus.Induced strain actuation of isotropic and anisotropic plates[J] .AIAA Joural,1991,29(6):944-951
    [31]刘宏伟.大跨建筑混合结构设计研究[D].同济大学,2008
    [32]曹资,薛素铎.空间结构抗震理论与设计[M].北京.科学出版社,2005
    [33] M. D. Trifunac. Long period Fourier amplitude spectra of strong motion acceleration[J]. Soil Dynamics and Earthquake Engineering,1993,12(6):363-382
    [34] G. V. Narayanan,D. E. Beskos. Use of dynamic influence coefficients in forced vibration problems with the aid of fast fourier transform[J]. Computers & Structures,1978,9(2):145-150
    [35]美Albert Boggess,美FrancisJ.小波与傅里叶分析基础[M].北京:电子工业出版社,2004
    [36]曹资,张毅刚.单层球面地震反应特性分析[J].建筑结构,1998(8)
    [37]刘洪杰,朱继澄,肖炽.单层球面网壳地震反应分析研究[C].新型空间结构论文集,杭州:浙江大学出版社,1994:263-271
    [38]石钟慈,王鸣著.有限元方法[M].北京:科学出版社,2010:370
    [39]美克拉夫R.结构动力学[M].北京:科学出版社,1981:418
    [40] Kamada Takayoshi,Fujita Takafumi,Hatayama Takayoshi,et al.,Active vibration control of frame structures with smart structures using piezoelectric actuators (Vibration control by control of bending moments of columns)[J]. Smart Materials and Structures,1997,6(4):448
    [41] Kamada Takayoshi,Fujita Takafumi,Hatayama Takayoshi,et al.,Active vibration control of flexural-shear type frame structures with smart structures using piezoelectric actuators[J]. Smart Materials and Structures,1998,7(4):479
    [42] Lubitz K and Hellebrand H,1990.Properties of PTZ Multilayer Actuators[C]. Proceeding of 7th ISAF’90,Urbana,509-512
    [43] Vries De J W C,1999.Functional Behavior of Ceramic Muiltilayer Actuators with Inactive Parts[J].Sensors and Actuators,72:251-255
    [44]孙慷,张福学.现代压电学.上册[M].北京:科学出版社,2001
    [45]付博,王辉,孙杰.压电材料的研究与发展[J].科技创新导报,2007(35)
    [46]李传兵,廖昌荣,张玉璘,陈伟民,黄尚廉.2002.压电智能结构的研究进展[J].压电与声光,24(1):42-46
    [47]杨大智.2000.智能材料与智能系统[M].天津大学出版社,183-244
    [48]詹训慧.分布式压电智能结构的建模与振动控制[D]:中国科学技术大学,2007
    [49]王树和.压电层合板壳力—电耦合分析及主动振动控制研究[D]:天津大学,1997
    [50]李俊宝,吕刚.智能桁架结构振动控制中压电主动构件的研究:(一)压电主动构件设计[J].压电与声光,1998,20(2):89-94
    [51]李俊宝,吕刚.智能桁架结构振动控制中压电主动构件的研究:(三)压电主动构件动力学建模[J].压电与声光,1998,20(4):237-241
    [52]钱锋,王建国.压电智能结构振动控制的数值模拟[J].合肥工业大学学报(自然科学版),2010(01):76-80
    [53]杨世浩,郑明燕,瞿伟廉.弧形闸门优化模糊半主动减振控制[J].武汉理工大学学报,2006(04):67-70
    [54]欧进萍著.结构振动控制[M].北京:科学出版社,2003
    [55]黄晓红,滕立国,莫怀训.自动控制原理与技术[M].北京:中国科学技术出版社,2008
    [56]王子才,赵长安.应用最优控制[M].哈尔滨:哈尔滨工业大学出版社,1989:1522212
    [57]朱尔玉编著.土木工程结构试验高级教程[M].北京:中国科学技术出版社,2009:233
    [58]刘明主编.土木工程结构试验与检测[M].北京:高等教育出版社,2008:290
    [59]金芬.MATLAB遗传算法工具箱在函数优化中的应用[J].福建建设科技,2009(07):23-24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700