用户名: 密码: 验证码:
非开挖铺管竣工管道三维轨迹检测系统研发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非开挖铺管技术近年来在我国迅速发展,它以高效、污染小、交通影响小、对地层破坏小等特点被广泛的应用于电力电缆、通讯光缆、燃气、给排水管道、石油等各类管线建设中,正逐步取代传统的挖槽埋管的地下管线施工方法。
     在实际工程中,由于施工水平和工艺等因素,非开挖竣工管道的轨迹往往与导向孔的设计轨迹存在很大的差异,而准确地掌握竣工管道的地下空间位置又十分重要,它不但是评价工程质量的指标,而且也能为以后新建管道的轨迹设计提供依据,以避免管线相交。因此对竣工的地下管道必须测量其轨迹,研究非开挖竣工管道的轨迹测量技术有十分重要的现实意义。
     本文总结了四种常用的非开挖竣工管道轨迹计算模型,通过实验分析,得出最小曲率法应用于弯曲段时精度最高的结论,但由于最小曲率法不适合于非开挖管道的直接段轨迹计算,因此本文提出了最小曲率法与全角全距法组合的非开挖竣工管道的轨迹计算模型。本文总结了目前非开挖竣工管道轨迹测量技术并分析了各种技术的优缺点,对基于电子罗盘的非开挖竣工管道轨迹测量技术进行了实践,构建了一套基于电子罗盘的竣工管道轨迹检测仪。针对电子罗盘方位角受环境磁场干扰的影响,本文又提出了一种不受环境磁场影响的基于电子罗盘和单维光纤陀螺仪融合姿态测量的竣工管道轨迹测量方案,并推导建立了基于该方案的理论公式。
     通过对检测系统的机械结构设计,传感器遴选以及通讯传输设计完成了上述基于电子罗盘和单维光纤陀螺仪的竣工管道轨迹测量系统的硬件实现,最后以Lab VIEW图形化编程语言为软件平台,利用Lab VIEW关键编程技术编写了可以实时采集、相对实时显示和后续详细数据处理功能的上位机测控软件。本文研发的基于电子罗盘和单维陀螺联合姿态测量的非开挖竣工管道轨迹测量系统由牵引绳、管内探测头、管口计程器、数据传输缆线、缆线接口箱、上位机电脑和检测计算软件组成,测量系统在工作时,由牵引绳牵引管内探测头在被测管道中匀速行走,管口计程器固定在管口,管内探测头的数据传输缆带动管口计程器上的旋转编码器旋转,同时由上位机控制管内探测头中的姿态传感器(电子罗盘、陀螺仪)和管口计程器中的旋转编码器以一定的频率测量俯仰角、横滚角、管内探测头载体坐标系Z轴上的角速度和旋转编码器的脉冲数,并将这些数据通过数据传输线缆源源不断地传送给上位机,上位机程序再对这些数据进行实时处理,得出姿态角度和测点间距,进而计算出探测头的行走轨迹,也就是被测管道的轴线轨迹。
     该测量系统具有精度较高,成本较低、硬件稳定和软件操作方便友好等特点。为了检验本非开挖竣工管道轨迹测量系统的精度和实用性,分别对其进行了进行了场地模拟试验和现场实测,在场地模拟试验中,将研发的测量系统的测量数据与全站仪的数据进行对比,得出了测量系统在各个轴线上的最大误差。对该测量系统进行误差分析后认为测量系统的误差只要来自以机械结构误差、传感器误差和算法误差。
     研究非开挖铺管竣工管道轨迹检测具有很重要的意义,它是准确获取地下新建管道空间位置数据、建立地下管网数据库的途径,是评判管道工程质量的重要方式。通过进一步的完善,本文研发的竣工管道轨迹测量系统将具有更高的精度和实用性,其应用前景广阔。
Trenchless technology in China developed rapidly in recent years, it's widely used in pipeline constructions such as power line,communication line,gas line,water supply pipe and oil line because of its advantages of high efficiency, low pollution, little impact on traffic and low damage on formation etc. It is gradually replacing the traditional trench construction method of underground pipelines.
     In the actual project, due to the factors of construction conditions and skills, the completed trenchless pipeline's trajectory is often different with the design path of the pipeline's pilot hole. However, it's very important to accurately grasp the exact position of completed underground pipes because of two reasons:first, the exact position of completed underground pipes is the basis for final acceptance, from which we can determine the quality of the projects; second, the exact position of completed underground pipes provide the basis for the new underground pipes' path design, it can avoid the lines intersect. For the above reasons, we must test the completed underground pipes' trajectory, and it's very important to study the measuring techniques of the completed trenchless underground pipe.
     This paper summarized four commonly used calculation models of completed trenchless pipe's trajectory, and concluded that the minimum curvature method has the highest accuracy when it's used in the curved sections through the experimental analysis, but the minimum curvature method is not suitable for straight line sections, so this article proposed the combination trenchless pipe trajectory calculation model which was combined with the minimum curvature method and the full-width and full-distance method. This paper also summarized advantages and disadvantages of various measuring techniques of the completed trenchless underground pipe, and developed a completed trenchless pipe's trajectory measuring system which was based on the electronic compass, however, this system was very vulnerable to be affected by other magnetic field, so This paper proposed another measuring system which was based on an electronic compass and a fiber optic gyroscope,and established the theory based on the new measuring system.
     This article completed the new measuring system's development through the mechanical design, sensor selection, communication transmission design and the soft ware design. The soft was developed with LabVIEW based on Virtual Instruments (Ⅵ), it has the following features: real-time data acquisition, real-time display and the flow-up detailed data processing. The measuring system was composed by the traction rope, the tube probe, the meter, the data cable, the cable interface box, the software and the computer.
     When the measuring system is at work, the tube probe will be pulling by the traction rope then the tube probe will walk uniform in the pipe, the meter is fixed in the nozzle of pipe, the dada cable following the tube probes will drive the rotary encoder. At the same time the PC will make the posture sensor (electronic compass and FOG) in tube probe and the meter test the pitch angle, roll angle, the Z axis angular velocity of the tube probes vector's relative coordinate system and rotary encoder's. The data will be sent to the computer by the data cable, the computer will process the data, and get the attitude angle and the adjacent test points'distance, and then we can get the tube probe's walking path, which also is the pipe's trajectory.
     The measuring system has many features such as high accuracy, low cost, stable hardware and, friendly software and easy operation. The measuring system was test in the simulation pipe and the actual pipe in the field to get the system's accuracy and usefulness, in the simulation test, the trajectory data measured by the system was compared with the Total Station's measuring data and then obtained he maximum error in each axis. The paper argued that the error in the measuring system was composed by the mechanical structure error, the sensor error and the calculation model error.
     It's very important to study the measuring techniques of the completed trenchless underground pipe. It's the very important way to get the location data of the underground pipeline, form the database of the underground pipeline, and also is the very important way to evaluate the pipe project's quality. The trenchless pipeline trajectory measuring system R&D by this paper will have higher accuracy and practicality through further improvement, and it will have good market prospects.
引文
[1]乌效鸣,胡郁乐,李粮纲,等.导向钻进与非开挖铺管技术[M].武汉:中国地质大学出版社,2004;
    [2]Baosong Ma, M. Najafi. Developm en t and app licat ion s of trench less technology in Ch-ina[J]. Tunn elling and Und erground Space Technology,2008,23(4):476-480;
    [3]李均瑶,章亚男,沈林勇,等,电子罗盘在非开挖地下管线三维探测中的应用[J].上海大学学报(自然科学版),2008,14(2):136~147;
    [4]张明威,钱晋武,章亚男,等.地下管线形状检测中的缆线收放新机构设计[J].机电工程,2006,23(6):1~4;
    [5]金洪日,沈林勇,章亚男,等.基于方位传感的地下管线探测系统的研制[J].上海大学学报(自然科学版),2008,14(1):26~30;
    [6]袁少杰,沈林勇,钱晋武,等.一种新型地下管线方位测量与重建方法.上海大学学报(自然科学版),2006,12(6):551~556;
    [7]刘刚,柯映林.管道机器人全程定位理论和方法研究—基于光纤光栅空间曲率传感器[J].浙江大学学报(工学版),2004,(06);
    [8]金成柱,李江雄,柯映林.潜人式微细管道机器人的全程定位方法[J].中国机械工程,2004,15(16):1418~1421;
    [9]DR-HDD-4.2 User Manual v0409 lowresfotos_SimplifiedChinese Version;
    [10]徐涛.水平定向钻进随钻测量方法及定位技术研究.[博士学位论文].国防科学技术学:2006;
    [11]吴翔,杨凯华,蒋国胜.定向钻井原理与应用[M].武汉:中国地质大学出版社,2006;
    [12]史晓亮,蒋国胜,段隆臣.导向钻进中的轨迹计算及其应注意的事项[J].地质装奋,2001,2(1):24~25;
    [13]鄢泰宁.岩土钻掘工程学[M].武汉:中国地质大学出版社,2009;
    [14]方敏,鲁港,王立波.三维圆弧型井眼轨道模型的完全解[J].同济大学学报(自然科学版),2009,(03).
    [15]刘修善,石在虹.一种测斜计算新方法——自然参数法[J].石油学报,1998,(04).
    [16]白冬青.最小曲率法计算中的几个问题[J].断块油气田,2007,(05)
    [17]陈炜卿,管志川.井眼轨迹测斜计算方法误差分析[J].中国石油大学学报(自然科学版),2006,(06);
    [18]LUEKE J S, AR1ARATNAM S T, ABOURIZK S M.Application of simulation in trenchless renewal of underground urban infrastructure [C].Proceedings of the 1999 Winter Simulation Conference.1999:929-939;
    [19]PUTTIPIPATKAJORN A. A new method of pipeline detection in sonar imagery using self-organize maps[C].IEEE Conference on Intelligent Robotics and System.2003: 541-546;
    [20]张学草,陆怡良.磁通门技术.北京:国防工业出版社,1995;
    [21]秦葆瑚,吴天彪.磁通门式磁力梯度仪与磁场梯度测量.北京:地质出版社,1985;
    [22]刘春.水平定向钻进钻头信息的测量与传输.[硕士学位论文].中国地质大学(北京):2009;
    [23]路桂英,乌效鸣,沈璟璟,王院生.可实时显示的非开挖竣工管线轨迹探测仪[J],仪表技术与传感器,2010,12:35~37;
    [24]丁衡高.惯性技术文集[M].国防工业出版社.1994:10-29;
    [25]杨艳娟.捷联惯性导航系统关键技术研究.[博士学位论文].哈尔滨工程大学:2001;
    [26]李迪.基于光纤陀螺船用捷联导航系统研究.[博士学位论文].哈尔滨工程大学:2005;
    [27]赵林.捷联惯导及其组合导航研究.[硕士学位论文].南京理工大学:2002;
    [28]江树生.捷联惯性导航系统中陀螺仪信号的数据采集及处理技术研究.[硕士学位论文].哈尔滨工程大学:2002;
    [29]杨金显.微惯性测量系统关键技术研究[D].哈尔滨工程大学,2008;
    [30]李荣冰,刘建业,曾庆化,等.基于MEMS技术的微惯性导航系统的发展现状[J].中国惯性技术学报,2004,6(12):88-94;
    [31]秦永元.惯性导航[M].北京:科学出版社,2006;
    [32]Bernstein J.An overview ofMEMS inertial sensing technology [J]. Sensors,2003,20(2): 14-21;
    [33]张汉春,曹震峰.RIS-K2探地雷达在地下管线竣工测量中的应用[J].工程地球物理学报,2007,(05);
    [34]张建勋,孙海东,付慧娟.地下管线现状测量的数学模型[J].安阳工学院学报,2008,(04);
    [35]柳贵福,张树侠.光纤陀螺零漂数据滤波方法的研究[J].中国惯性技术学报,2001,9(4);
    [36]汪芳,朱少华,雷宏杰.基于卡尔曼滤波器的数字式捷联航姿系统算法设计[J].中国惯性技术学报,2008,(02);
    [37]王维,张英堂,任国全.一种新型高精度地磁定向方法研究与系统设计[J].传感技术学报,2009,(01).
    [38]臧荣春,崔平远.陀螺随机漂移时间序列建模方法研究[J].系统仿真学报,2005,(08).
    [39]国防科学技术工业委员会,GJB2426-95,光纤陀螺仪测试方法,北京,1995;
    [40]刘君华,员惠芹,丁晖等.虚拟仪器图形化编程语言LabVIEW教程[M].西安:电子科技大学出版社,2001;
    [41]张小牛,侯国屏,赵伟.虚拟仪器技术回顾与展望[J].测控技术,2000,19(9):22~24:
    [42]曾璐,陆荣双.基于LabVIEW的数据采集系统设计[J].电子技术,2004(12):15~17;
    [43]刘刚,王立香,张连俊LabVIEW 8.20中文版编程及应用[M].北京:电子工业出版社, 2008:
    [44]杨乐平,李海涛,肖相生等Lab VIEW程序设计与应用[M].北京:电子工业出版社,2001;
    [45]郭洁,王召巴.基于LabVIEW的串行通讯接口设计与实现[J].机械工程与自动化,2008,5:57~59:
    [46]Aboelmaged Noureldin.New measurement-while-drilling surveying technique utilizing sets of fiber optic rotation sensors [D].University of Calgary, Calgary Alberta, March,2002;
    [47]Noy K A,Leonard J G.A new rate gyroscopic wellbore survey system achieves the accuracy and operational flexibility needed for today's complex drilling challenges[A].Proceedings of SPE/IADC Drilling Conference[C].Amsterdam,Netherlands,Mar.4-6,1997:773-783;
    [48]郭志强,王雪峰,富伟平.陀螺测井技术在吉林油田的应用及研究[J].石油仪器,2007,(06);
    [49]J.E.Mercer.Locating systems for horizontal directional drilling Part 1.No-Dig Engineering, 1998,4(5);
    [50]J.E.Mercer.Locating systems for horizontal directional drilling Part 2.No-Dig Engineering, 1999,5(1);
    [51]汪雪莲.电子罗盘的方位测量误差及其补偿校正[J].声学与电子工程,2005,(04)
    [52]张建勋,孙海东,付慧娟.地下管线现状测量的数学模型[J].安阳工学院学报,2008,(04);
    [53]赵永辉,吴健生,万明浩.探地雷达与管线探测仪的联合反演解释[J].工程地球物理学报,2005,(01).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700