用户名: 密码: 验证码:
锂离子电池正极材料LiFePO_4前驱体的制备及合成LiFePO_4/C的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
橄榄石型LiFePO4作为锂离子电池正极材料因其理论容量高、平台特性好、原料丰富、价格低廉、环境友好、安全性能好等优点而受到人们的广泛关注。但是该材料倍率性能差,以及振实密度小,严重限制了LiFePO4的实际应用。本文采用均匀沉淀法和氧化沉淀转化法制备前驱体FePO4,然后合成LiFePO4/C。研究了物理性能和电化学性能的关系。
     采用均匀沉淀法制备LiFePO4/C前驱体磷酸铁,比较了尿素添加量、表面活性剂对FePO4结构、形貌以及LiFePO4电化学性能的影响。结果表明:未添加表面活性剂,最优情况下合成LiFePO4的首次放电比容量为141.9mAh/g,倍率性能差。添加表面活性剂PEG制备的LiFePO4/C在O.1C倍率下放电比容量为151.5mAh/g,1C倍率下的放电比容量为122.5mAh/g,振实密度达1.17cm3/g。
     研究了制备LiFePO4前驱体磷酸铁的新方法-氧化沉淀转化法:在pH=9.5的条件下制备纳米磷酸亚铁悬浊液,然后在pH=2的条件下将其氧化制备获得磷酸铁。结果表明:制备的磷酸铁形貌为类球形,尺寸为100nm左右。以该磷酸铁为前驱体合成的LiFePO4/C在O.1C倍率下首次放电比容量为139.8mAh/g,2C倍率下放电容量为123.2mAh/g,具有优良的倍率性能。
     以商业化磷酸铁为原料,研究不同碳源制备的LiFePO4/C的物理性能和电化学性能的关系。结果表明:碳含量在6%-11%之间,振实密度和倍率性能都随碳含量增加而升高。随着比表面积的增大,材料的倍率性能先升高后降低。
Olive-type LiFePO4/C has gained much attention as its high theoretical capacity, flat voltage platform, rich resources, lower price, environmentally friendliness and good safety performance. But its poor rate performance and low tap density restrict its practical application. Homogeneous precipitation method and oxidized precipitate transformation method are adopted to prepare precursor FePO4, and then prepare LiFePO4/C. The relationship between physical performance and electrochemical performance is also investigated.
     Homogeneous precipitation method is adopted to prepare FePO4 precursor, here the influence of urea amount and surfactant on the structure, morphology as well as electrochemical performance of LiFePO4 is investigated and the results show that at the optimized condition without surfactant, the first discharge capacity is 141.9mAh/g and poor rate performance. The discharge capacity of LiFePO4/C prepared with surfactant PEG reached 151.5mAh/g at 0.1 C rate, and the discharge capacity of 122.5mAh/g is reached at 1C rate, the tap density is 1.17cm3/g.
     A new method-oxidized precipitate transformation method is put forward to prepare FePO4 precursor. The suspension of Fe3(PO4)2 is prepared at pH=9.5, and then the suspension is oxidized to prepare FePO4 at pH=2. The results show that the particle size of sphere FePO4 is about 100nm. The discharge capacity of LiFePO4/C prepared with FePO4 is 139.8mAh/g at 0.1C rate, and 123.2mAh/g at 2C, showing a well rate performance.
     The relationship between physical performance and electrochemical performance of LiFePO4/C prepared with FePO4 as raw material is studied, the results show that the tap density and rate performance increase in the range of 6%-11%of carbon content. The rate performance first increases and then decreases as the specific surface area increases.
引文
[1]沈晓光.MEDO描述了电动汽车驱动电池未来蓝图.世界科学,2009,(8):62
    [2]Armand M. in Materials for Advanced Batteries (D.W.Murphy, J.Broodhead, B.C.H.Steele, Editors), Plenum Press, New York,1980,145
    [3]Nagaura T. Development of rechargeable lithium batteries, I. Lithium manganese oxide rechargeable batteries. Progress in Batteries & Battery Materials,1991,10: 209~217
    [4]Nagaura T. Development of rechargeable lithium batteries, II. Lithium ion rechargeable batteries. Progress in Batteries & Battery Materials,1991,10: 218~226
    [5]Hewston T A, Chamberland B L. A Survey of first-row ternary oxides LiMO(2)(M= Sc-Cu). Journal of Physics and Chemistry of Solids,1987,48(2): 97~108
    [6]Van D V, Aydinol M K, Ceder G. First-principles investigation of phase stability in Li(x)CoO(2).1998,58(6):2976~2987
    [7]Paulsen J M, Muller-Nehaus J R, Dahn J R. Layered LiCoO2 with a different oxygen stacking as a cathode material for rechargeable lithium batteries. Journal of Electrochemical Society,2000,147(2):A508~A516
    [8]叶乃清,刘长久,沈上越.锂离子电池正极材料LiNiO2存在的问题与解决办法.无机材料学报,2004,19(6):1217~1223
    [9]Chun C M, Navrotsky A, Aksay I A. in Proceedings of Microscopy and Microanalysis. In:Bailey G W, Ellisman M H, Hennigar R A, Zaluzec N J, eds. New York:Jones and Begell,1995.188
    [10]Jang D H, Shin Y J, Oh S M. Dissolution of spinel oxides and capacity losses in 4V Li/LixMn20O4 cells. Journal of Electrochemical Society,1996,143(7): A2204~A2211
    [11]Thackeyar M M. Structural considerations of layered and spinel lithiated oxides for lithium ion batteries. Journal of Electrochemical Society,1995,142(8): A2558~A2563
    [12]Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-Olivines as positive electrode materials for rechargeable lithium batteries. Journal of Electrochemical Society,144(4):A1188~A1194
    [13]Streltsov A, Belokneva L, T sirelson G, et al. Multipole Analysis of the Electron Density of Triphylite LiFePO4 using X-ray Differaction Data. Acta Crystallographica, 1993,49:149~153
    [14]Dragana J, Dragana U. A review of recent developments in the synthesis procedures of lithium iron phosphate powders. Journal of Power Sources,2009, 190(2):538~544
    [15]Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-livinesas positive electrode materials for rechargeable lithium batteries. Journal of Electrochemical of Society,1997,144(4):A1188~A1194
    [16]郭永兴,李新海,王志兴,等.真空高温固相法合成LiFePO4/C纳米复合材料.中国有色金属学报,2010,20(7):1402~1406
    [17]Prosini P P, Carewska M, Scaccia S, et al. A new synthetic route for preparing LiFePO4 with enhanced electrochemical performance. Journal of Electrochemical Society,2002,149(7):A886~A890
    [18]Wang Y G, Wang Y R, Hosono E, et al. The Design of a LiFePO4/Carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method. Angewandte Chemie International Edition, 2008,47(39):1~6
    [19]Lee M H, Kim J Y, Song H K. A hollow sphere secondary structure of LiFePO4 nanoparticles. Chemical Communication,2010,46(36):6795~6797
    [20]Xu Z H, Xu L, Lai Q Y, et al. A PEG assisted sol-gel synthesis of LiFePO4 as cathodic material for lithium ion cells. Materials Research Bulletin,2007,2(4): 422~427
    [21]Liu YY, Cao C B, Li J. Enhanced electrochemical performance of carbon nanospheres-LiFePO4 composite by PEG based sol-gel synthesis. Electrochimica Acta,55(12):3921~3926
    [22]Peng W X, Jiao L F, Gao H Y, et al. A novel sol-gel method based on FePO4·2H2O to synthesize submicrometer structured LiFePO4/C cathode material. Journal of Power Source,2010,5(1):2841~2847
    [23]Chen J J, Whittingham M S. Hydrothermal synthesis of lithium iron phosphate. Electrochemistry Communications,2006,8:855~858
    [24]Ni J F, Morishita M, Kawabe Y, et al. Hydrothermal preparation of LiFePO4 nanocrystals mediated by organic acid. Journal of Power Sources,2010,195: 2877~2882
    [25]Huang X J, Yan S J, Zhao H Y, et al. Electrochemical performance of LiFePO4 nanorods obtained from hydrothermal process. Materials Characterization,2010, 61:720~725
    [26]Uematsu K, Ochiai A, Toda K, et al. Solid chemical reaction by microwave heating for the synthesis of LiFePO4 cathode material.2007,115(7):450~454
    [27]Murugan A V, Muraliganth T, Manthiram A. Rapid microwave-solvothermal synthesis of phospho-olivine nanorodes and their coating with a mixed conducting polymer for lithium ion batteries. Electrochemical Communication, 2008,10:903~906
    [28]Yang H, Wu X L, Cao M H, et al. Solvothermal synthesis of LiFePO4 hierarchically dumbbell-like microstructures by nanoplate self-assembly and their application as a cathode material in lithium-ion batteries. Journal of Physical Chemistry,2009,113(8):3345~3351
    [29]Ravet N, Chouinard Y, Magnan J F, et al. Electroactivity of natural and synthetic triphylite. Journal of Power Sources,2001,97-98(1-2):503~507
    [30]Takahashi M, Tobishima S, Takei K, et al. Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries. Solid State Ionics,2002, 148(3-4):283~289
    [31]Won J K, Kim C W, Jeong W T, et al. Synthesis and electrochemical properties of olivine LiFePO4 as a cathode material prepared by mechanical alloying. Journal of Power Sources,2004,137(1):93~99
    [32]应皆荣,高剑,姜长印,等.控制结晶法制备球形锂离子电池正极材料的研究进展.无机材料学报,2006,21(2):291~297
    [33]Xie H, Wang R S, Ying J, et al. Optimized LiFePO4-polyacene cathode material for lithium-ion batteries. Advanced Materials,2006,18:2609~2613
    [34]唐昌平,应皆荣,雷敏,等.控制结晶-微波碳热还原法制备高密度LiFePO4/C.电化学,2006,12(2):188~190
    [35]Oh S W, Myung S T, Oh S M, et al. Polyvinylpyrrolidone-assisted synthesis of microscale C-LiFePO4 with high tap density as positive electrode materials for lithium batteries. Electrochimica Acta,2010,55:1193~1199
    [36]Huang H, Yin S C, Nazar L F. Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochemical and Solid State Letters,2001, 4(10):A170~A172
    [37]Belharouak I, Johnson C, Amine K. Synthesis and electrochemical analysis of vapor-deposited carbon-coated LiFePO4. Electrochemistry Communications, 2005,7(10):983~988
    [38]Konstantinov K, Bewlay S, Wang G X, et al. New approach for synthesis of carbon-mixed LiFePO4 cathode materials. Electrochimica Acta,2004,50(2-3): 421~426
    [39]Chung S Y, Bloking J T, Chiang Y M. Electronically conductive phosphor-olivines as lithium storage electrodes. Nature Materials,2002,1(2): 123~128
    [40]Xu Y N, Chung S Y, Bloking J T, et al. Electronic structure and electrical conductivity of undoped LiFePO4. Electrochemical Solid State Letters,2004, 7(6):A131~A134
    [41]Wang G X, Bewlay S, Needgam S A, et al. Synthesis and characterization of LiFePO4 and Li Tio.oiFeo.99PO4 cathode materials. Journal of the Electrochemical Society,2006,153(1):A25~A31.
    [42]Wang D Y, Li H, Shi S Q, et al. Improving the rate performance of LiFePO4 by Fe-site doping. Electrochemica Acta,2005,50(14):2955~2958
    [43]Franger S, Le C F, Bourbon C. Comparison between different LiFePO4 synthesis routes and their influence on its physics-chemical properties. Journal of Power Sources,2003,119:252~257
    [44]Fey G T K, Chen Y G, Kao H M. Electrochemical properties of LiFePO4 prepared via ball-milling.2009,189(1):169~178
    [45]Armand M, Michot C, Ravet N, et al. Lithium insertion electrode material based on orthosilicate derives. US,6085015.2000-07-04
    [46]Dong Y Z, Zhao Y M, Chen Y H, et al. Optimized carbon-coated LiFePO4 cathode material for lithium-ion batteries. Materials Chemistry and Physics, 2009,115(1):245~250
    [47]Liu Y Y, Cao C B, Li J. Enhanced electrochemical performance of carbon nanospheres-LiFePO4 composite by PEG based sol-gel synthesis.2010,55: 3921~3926
    [48]Hua N, Wang C Y, Kang X Y, et al. Studies of V doping for the LiFePO4-based Li Ion batteries. Journal of Alloys and Compounds,2010,503:204~208
    [49]Doeff M M, Hu Y, Mclarnon F, et al. Effect of surface carbon structure on the electrochemical performance of LiFePO4 composite. Journal of Electrochemical Society,2005,152(3):A607~A610
    [50]Li X L, Kang F Y, Bai X D, et al. A novel network composite cathode of LiFePO4multiwalled carbon nanotubes with high rate capability for lithium ion batteries. Electrochemistry Communications,2007,9(4):663~666
    [51]Liu Y J, Li X H, Guo H J, et al. Effect of carbon nanotube on the electrochemical performance of C-LiFePO4/graphite battery.2008,184:522~526
    [52]Wang L, Wang H B, Liu X H, et al. A facile method of preparing mixed conducting LiFePO4 graphene composites for lithium-ion batteries.2010,181: 1685~1689
    [53]Croce F, Epifanio A D, Hassiun J. A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode. Electrochemical and Solid-State Letters,2002,5(3):A47~A50
    [54]Hu Y S, Guo Y G, Dominko R, et al. Improved electrode performance of porous LiFePO4 using RuO2 as an oxidic nanoscale interconnect. Advanced Materials, 2007,19(15):1963~1966
    [55]Herle P S, Ellis B, Coombs N, et al. Nano-network electronic conduction in iron and nickel olivine phosphates. Nature Materials,2004,3(3):147~152
    [56]Kim C W, Park J S, Lee K S. Effect of Fe2P on the electron conductivity and electrochemical performance of LiFePO4 synthesized by mechanical alloying using Fe3+raw material. Journal of Power Sources,2006,163(1):144~150
    [57]Huang Y H, Park K S, Goodenough J B. Improving lithium batteries by tethering carbon-coated LiFePO4 to polypyrrole. Journal of Electrochemical Society,2006, 153(12):A2282~A2286
    [58]Chung S Y, Blocking J T, Chiang Y M. Electronically conductive phospholivines as lithium as lithium storage electrodes. Nature Materials,2002,1(2):123~128
    [59]Shin H C, Park S B, Jang H, et al. Rate performance and structural change of Cr-doped LiFePO4/C during cycling. Electrochimica Acta.2008,53:7946~7951
    [60]Heo J B, Lee S B, Cho S H, et al. Synthesis and electrochemical characterizations of dual doped Li1.05Fe0.997Cu0.003PO4. Materials Letters,2008, 63:581~583
    [61]Herle P S, Ellis B, Coombs N, et al. Nano-network electronic conduction in iron and nickel olivine phosphates. Nature Materials,2004,3 (3):147~152
    [62]Ravet N, Abouimrane A, Armand M. On the electronic conductivity of phospho-olivines as lithium storage electrodes. Nature Materials,2003,2(11): 702~706
    [63]Yamada Y, Chung S C, Kinokuma K. Optimized LiFePO4 for lithium battery cathodes. Journal of Electrochemical Society,2001,148(3):A224~A229
    [64]Huang Y H, Ren H B, Peng Z H, et al. Synthesis of LiFePO4/carbon composite from nano-FePO4 by a novel stearic acid assisted rheological phase method. Electrochimica Acta,2009,55:311~315
    [65]王红梅.碳包覆对正极材料LiFePO4性能的影响:[硕士学位论文].河北:燕山大学.2010
    [66]雷敏,应皆荣,姜长印,等.高密度球形LiFePO4的合成及性能.电源技术,2006,30(1):11~13
    [67]黄新荣,周震涛.高密度LiFePO4正极材料的合成与性能.化学工业与工程技术,2009,30(5):12~15
    [68]曹寅,王子港,杨晖.不同粒径球形LiFePO4的制备及其性能研究.功能材料,2011,3:1~3
    [69]张晓鸣LiFePO4/C正极材料改性及电极制备工艺研究:[硕士学位论文].上海:上海交通大学,2007
    [70]Prosini P P, Carewska M, Scaccia S, et al. A new synthesis route for preparing LiFePO4 with enhanced electrochemical performance. Journal of the Electrochemical Society,2002,149(7):A886~A890
    [71]Wang B F, Qiu Y L, Ni S Y. Ultrafine LiFePO4 cathode materials synthesized by chemical reduction and lithiation method in alcohol solution. Solid State Ionics, 2007,178 (11-12):843~847
    [72]Zheng J C, Li X H, Wang Z X, et al. LiFePO4 with enhanced performance synthesized by a novel synthetic route. Journal of Power Sources,2008,184(2): 574~577
    [73]Ravet N, Gauthier M, Zaghib K, et al. Mechanism of the Fe3+reduction at low temperature for LiFePO4 synthesis from a polymeric additive. Chemistry of Materials,2007,19(10):2595~2602.
    [74]Mi C H, Zhao X B, Cao G S, et al. In situ synthesis and properties of carbon-coated LiFePO4 as Li-ion battery cathodes. Journal of the Electrochemical Society,2005,152 (3):A483~A487
    [75]郑俊超,李新海,王志兴,等.制备过程pH值对FePO4xH2O及LiFePO4性能的影响.中国有色金属学报,2008,18(5):867~872
    [76]郑忠.胶体科学导论.北京:高等教育出版社,1989:17~18
    [77]Dobryszycki J, Biallozor S. On some organic inhibitors of zinc corrosion in alkaline media. Corrosion Science,2001,43(7):1309~1319
    [78]Wang L N, Zhan X C, Zhang Z G, et al. A soft synthesis routine for LiFePO4/C using a novel carbon source. Journal of Alloys and Compounds,2008,456(1-2): 461~465
    [79]Zhang S S, Allen J L, Xu K, Jow T R. Optimization of reaction condition for solid-state synthesis of LiFePO4-C composite cathodes. Journal of Power Sources,2005,147(1-2):234~240
    [80]Liu H, Cao Q, Fu L J, et al. Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries. Electrochemistry Communications,2006,8(10): 1553~1557
    [81]Arnold G, Garche J, Hemmer R, et al. Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique. Journal of Power Sources,2003,1(119-121):247~252
    [82]Shigeto O, Takafumi Y, Yasunori O, et al. Cathode properties of amorphous and crystalline FePO4.2005,146(1-2):570~574
    [83]Huang H, Yin S C, Nazar L F, Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochemical and Solid State Letters,2001, 10(4):A170~A172
    [84]Belharouak I, Johnson C, Amine K. Synthesis and electrochemical analysis of vapor-deposited carbon-coated LiFePO4. Electrochemistry Communications, 2005,10(7):983~988
    [85]Li W, Wang H B, Liu Z H, et al. A facile method of preparing mixed conducting LiFePO4/graphene composites for lithium-ion batteries. Solid State Ionics,2010, 181(37-38):1685~1689
    [86]George T K F, Huang K P, Kao H M, et al. A polyethylene glycol-assisted carbothermal reduction method to synthesize LiFePO4 using industrial raw materials. Journal of Power Sources.2011,196(5):2810~2818
    [87]李新海,郭永兴,王志兴,等.LiCoO2结构及性能与锂离子电池电压特性的关系.中国有色金属学报,2002,12(4):739~742
    [88]高农,谷芳,顾大明LiNi0.78Co0.2Zn0.02O2的制备及物理性能对其电化学性能的影响.哈尔滨工业大学学报,2006,38(9):1605~1612
    [89]王廷吉,周萍华.在低pH值下尿素水解速度规律的研究.华东地质学院学报.1994,17(1):94~96

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700