用户名: 密码: 验证码:
离子液体的微波合成及铝、铝锌合金的电沉积应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子液体是基于绿色化学和高效能源利用提出的,氯铝酸离子液体中有关铝及合金的研究较早,但是氯铝酸离子液体的常规制备往往需要大量的反应时间,而且需要大量的溶剂才能得到较高的产率,需要探寻一种新型高效的氯铝酸离子液体的合成方法。尽管氯铝酸离子液体中沉积出了铝及多种合金,但对铝及合金在氯铝酸离子液体中的电沉积机理研究仍不充分,双电层结构、阴阳极反应动力学仍不清楚,制备高质量沉积铝及合金仍需要对其影响因素做进一步的分析探讨。
     本文采用新型微波合成方法制备溴代氯铝酸离子液体,测试其物理化学性能,结果表明氯铝酸离子液体的新型微波合成解决了普通微波反应溶剂过热问题,与传统合成方法相比缩短了反应时间,提高了产品品质。溴代氯铝酸离子液体的各项性能取决于氯化铝(AlCl3)与中间体([EMIM]Br)的摩尔比,酸性溴代氯铝酸离子液体除其电化学窗口、电导率稍微低于中性溴代氯铝酸离子液体之外,其余各项物理化学性能优越,为其在铝及合金电沉积制备方向的应用提供了可能。
     2AlCl3/[EMIM]Br (AlCl3/[EMIM]Br的摩尔比为2:1)离子液体作为电解质应用于铝的电沉积,通过测定循环伏安曲线、交流阻抗谱、计时电流曲线以及极化曲线探讨铝的电沉积机理。室温下在铜、铝、碳钢基体上进行铝的电沉积实验,沉积层形貌、结构特性以及耐蚀性能分别用扫描电子显微镜(SEM)、X射线衍射(XRD)、电化学测试方法等进行表征。结果表明溴代氯铝酸离子液体中铝的电沉积为准可逆的动力学行为,双电层结构中存在弥散效应,沉积过程非单纯的扩散控制而是复杂动力学限制步骤,铝沉积的时间-电流暂态曲线主要包括三个区域分别对应着三种不同的极化方式,同时也对应着铝的结晶成核及长大的不同阶段,铝在铜基体上结晶成核符合三维瞬时成核模型;铝沉积层大致分为三种典型形貌,对各种形貌产生的原因及各项特征进行分析。
     2AlCl3/[EMIM]Br直接溶解ZnCl2进行铝锌合金的共电沉积实验研究。循环伏安分析铝锌共沉积机理,XRD分析电解液组成对合金结构性能的影响,SEM和X射线能谱仪(EDS)分析沉积电压对合金组成的影响。结果表明铜基体上铝锌的沉积有明显的两个峰,纯锌的沉积电位约为-0.42 V(v.A1),铝锌共沉积电位约为-0.63 V;ZnCl2/AlCl3/[EMIM]Br的不同组成对合金相结构有较大影响,随着电解液中锌含量的增加,合金相的衍射峰相比于纯铝的衍射峰有更明显的偏移,合金相衍射峰强度相应减小并不断宽化;沉积电位明显影响着合金相的组成,随着过电位的增加合金相中铝含量相应增加,而锌含量却相应减少。
The concept of ionic liquids is based on green chemistry and efficiency and electrodeposition of aluminium (Al) and its alloys from chloroaluminate ionic liquid has been studied for many years, but the conventional synthesis of this ionic liquid is often time consuming and needs a lot of solvent to get reasonable yield. It is necessary to explore a new and efficient synthesis method about chloroaluminate ionic liquid. Although Al and various of its alloys have been electrodeposited from chloroaluminate ionic liquid, the studies about electrodeposition mechanism is still not sufficient, the structure of double layer and the anode and cathode reaction kinetics is still unclear, further analysis of influencing factors is still needed for high-quality Al and its alloys deposits.
     A new microwave synthesis of bromo-chloroaluminate ionic liquid was described in our work and its physical and chemical characteristics were tested. Results indicated that the reaction time of the new microwave synthesis of chloroaluminate ionic liquid was drastically reduced as compared to the conventional methods and chloroaluminate ionic liquid with high properties was achieved;
     2AlCl3/[EMIM]Br (the molar ratio of AlCl3/[EMIM]Br is 2:1) ionic liquid was used as the electrolyte in Al electrodeposition. Electrochemical techniques of cyclicvoltammetry, electrochemical impedance spectroscopy, chronoamperometry and potentiodynamic polarization technology (tafel) were used to investigate the mechanism of Al electrodeposition. Constant potential electrodeposition of Al was conducted on Copper substrates at room temperature and the morphology, structure and anti-corrosion behavior analysis of the deposits was performed using Scanning Electron Microscopy (SEM), X-ray diffraction (XRD) and electrochemical methods, respectively. Results revealed that Al electrodeposition from this ionic liquid was not a simple linear diffusion controlled process, but a quasi-reversible process with complex kinetic limitations, a slight capacitance dispersion occurred in the chloroaluminate ionic liquid, three different regions occurred on the chronoamperometric curve are responding to the three different polarizations and the different periods of Al nucleation and growth process, instantaneous nucleation growth of Al electrodeposition was proved; Al deposits obtained at different potential were mainly about three typical morphology and the reason for the three typical morphology and their characteristics were analyzed.
     Co-deposition of Al-Zn alloy was performed from electrolyte that was prepared by directly dissolving of ZnCl2 into 2AlCl3/[EMIM]Br ionic liquid. Cyclicvoltammetry was used to investigate the mechanism of co-deposition of Al-Zn alloy, co-deposits obtained from different molar ratio of ZnCl2/AlCl3/[EMIM]Br were measured by XRD and the surface morphology and the composition of the co-deposits were measured by SEM and Energy Dispersive Spectrometer(EDS), respectively. Results indicated that bare Zn deposition occurred at the potential of-0.42 V (vs. Al), and Al-Zn coating begin to be co-deposited at the potential of-0.63 V; Zn was solidified as the second phase in the alloys, the co-deposits obtained at higher molar ratio of Zn appears bigger 20 shift, broader reflection centered around a 20 and lower reflections intensity; The applied potential has significantly effects on the composition of Al-Zn alloy, the deposition rate of Zn was more quick than that of Al at less negative potential and was limited when the potential getting more negative.
引文
[1]Wilkes J. A short history of ionic liquids-from molten salts to neoteric solvents[J]. Green chemistry,2002,4 (2):73-80.
    [2]Tsuda T, Hussey C. Electrochemical applications of room-temperature ionic liquids[J]. Electrochemical Society Interface,2007,16 (1):42-49.
    [3]Hurley F H, Thomas P. Wier J. Electrodeposition of Metals from Fused Quaternary Ammonium Salts[J]. Journal of the Electrochemical Society,1951,98 (5):203-206.
    [4]Hurley F H, Thomas P. Wier J. The Electrodeposition of Aluminum from Nonaqueous Solutions at Room Temperature [J]. Journal of the Electrochemical Society,1951,98 (5): 207-212.
    [5]Wilkes J S, Zaworotko M J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids[J]. Journal of the Chemical Society, Chemical Communications,1992, (13): 965-967.
    [6]Hsiu S-Ⅰ, Huang J-F, Sun I W, Yuan C-H, Shiea J. Lewis acidity dependency of the electrochemical window of zinc chloride-1-ethyl-3-methylimidazolium chloride ionic liquids[J]. Electrochimica Acta,2002,47 (27):4367-4372.
    [7]Abbott a P, Capper G, Davies D L, Rasheed R. Ionic Liquids Based upon Metal Halide/Substituted Quaternary Ammonium Salt Mixtures[J]. Inorganic Chemistry,2004, 43 (11):3447-3452.
    [8]Abbott a P, Capper G, Davies D L, Rasheed R K, Shikotra P. Selective Extraction of Metals from Mixed Oxide Matrixes Using Choline-Based Ionic Liquids[J]. Inorganic Chemistry, 2005,44 (19):6497-6499.
    [9]Abbott a P, Boothby D, Capper G, Davies D L, Rasheed R K. Deep Eutectic Solvents Formed between Choline Chloride and Carboxylic Acids:Versatile Alternatives to Ionic Liquids[J]. Journal of the American Chemical Society,2004,126 (29):9142-9147.
    [10]Abbott A, Capper G, Davies D, Shikotra P. Processing metal oxides using ionic liquids[J]. Mineral Processing and Extractive Metallurgy,2006,115 (1):15-18.
    [11]Stafford G R, Hussey C L. Electrodeposition of Transition Metal-Aluminum Alloys from Chloroaluminate Molten Salts [M]. Wiley-VCH Verlag GmbH,2001.
    [12]Endres F, Macfarlane D, Abbott A. Electrodeposition from Ionic liquids [M]. Vch Verlagsgesellschaft Mbh,2008.10-360.
    [13]Zhao Y, Vandernoot T J. Electrodeposition of aluminium from nonaqueous organic electrolytic systems and room temperature molten salts[J]. Electrochimica Acta,1997,42 (1):3-13.
    [14]Abbott A, Mckenzie K. Application of ionic liquids to the electrodeposition of metals[J]. Physical Chemistry Chemical Physics,2006,8 (37):4265-4279.
    [15]Endres F. Ionic Liquids:Solvents for the Electrodeposition of Metals and Semiconductors[J]. ChemPhysChem,2002,3 (2):144-154.
    [16]Welton T. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis[J]. Chemical Reviews,1999,99 (8):2071-2084.
    [17]Kim K, Lang C, Kohl P A. The Role of Additives in the Electroreduction of Sodium Ions in Chloroaluminate-Based Ionic Liquids[J]. Journal of the Electrochemical Society,2005, 152(1):E9-E13.
    [18]Gray G, Winnick J, Kohl P. Plating and stripping of sodium from a room temperature 1, 2-dimethyl-3-propylimidazolium chloride melt[J]. Journal of the Electrochemical Society, 1996,143 (7):2262-2266.
    [19]Gray G, Kohl P, Winnick J. Stability of sodium electrodeposited from a room temperature chloroaluminate molten salt[J]. Journal of the Electrochemical Society,1995,142 (11): 3636-3642.
    [20]Ali M R, Nishikata A, Tsuru T. Electrodeposition of aluminum-chromium alloys from AICl3-BPC melt and its corrosion and high temperature oxidation behaviors[J]. Electrochimica Acta,1997,42 (15):2347-2354.
    [21]Mitchell J A, Pitner W R, Hussey C L, Stafford G R. Electrodeposition of Cobalt and Cobalt-Aluminum Alloys from a Room Temperature Chloroaluminate Molten Salt[J]. Journal of the Electrochemical Society,1996,143 (11):3448-3455.
    [22]Ali M R, Nishikata A, Tsuru T. Electrodeposition of Co-Al alloys of different composition from the AICl3-BPC-CoCl2 room temperature molten salt[J]. Electrochimica Acta,1997, 42(12):1819-1828.
    [23]Tsuda T, Hussey C L, Stafford G R, Kongstein O. Electrodeposition of Al-Zr Alloys from Lewis Acidic Aluminum Chloride-1-Ethyl-3-methylimidazolium Chloride Melt[J]. Journal of the Electrochemical Society,2004,151 (7):C447-C454.
    [24]Morimitsu M, Tanaka N, Matsunaga M. Induced Codeposition of Al-Mg Alloys in Lewis Acidic AICl3-EMIC Room Temperature Molten Salts[J]. Chemistry Letters,2000,29 (9): 1028-1029.
    [25]Pitner W R, Hussey C L, Stafford G R. Electrodeposition of Nickel-Aluminum Alloys from the Aluminum Chloride-1-methyl-3-ethylimidazolium Chloride Room Temperature Molten Salt[J]. Journal of the Electrochemical Society,1996,143 (1):130-138.
    [26]Tsuda T, Hussey C L, Stafford G R, Bonevich J E. Electrochemistry of Titanium and the Electrodeposition of Al-Ti Alloys in the Lewis Acidic Aluminum Chloride--1-Ethyl-3-methylimidazolium Chloride Melt[J]. Journal of the Electrochemical Society,2003,150 (4):C234-C243.
    [27]Pradhan D, Reddy R G. Electrochemical production of Ti-Al alloys using TiCl4-AlCl3-1-butyl-3-methyl imidazolium chloride (BmimCl) electrolytes[J]. Electrochimica Acta,2009,54 (6):1874-1880.
    [28]Pradhan D, Reddy R G, Lahiri A. Low-Temperature Production of Ti-Al Alloys Using Ionic Liquid Electrolytes:Effect of Process Variables on Current Density, Current Efficiency, and Deposit Morphology [J]. Metallurgical and Materials Transactions B,2009, 40(1):114-122.
    [29]Tsuda T, Hussey C L, Stafford G R. Electrodeposition of Al-Mo-Mn Ternary Alloys from the Lewis Acidic AlCl3-EtMeImCl Molten Salt[J]. Journal of the Electrochemical Society, 2005,152(9):C620-C625.
    [30]Tsuda T, Arimoto S, Kuwabata S, Hussey C L. Electrodeposition of Al-Mo-Ti Ternary Alloys in the Lewis Acidic Aluminum Chloride-1-Ethyl-3-methylimidazolium Chloride Room-Temperature Ionic Liquid[J]. Journal of the Electrochemical Society,2008,155 (4): D256-D262.
    [31]Huddleston J G, Visser a E, Reichert W M, Willauer H D, Broker G A, Rogers R D. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation[J]. Green Chemistry,2001,3 (4):156-164.
    [32]Zein El Abedin S, Saad a Y, Farag H K, Borisenko N, Liu Q X, Endres F. Electrodeposition of selenium, indium and copper in an air-and water-stable ionic liquid at variable temperatures[J]. Electrochimica Acta,2007,52 (8):2746-2754.
    [33]Bando Y, Katayama Y, Miura T. Electrodeposition of palladium in a hydrophobic 1-n-butyl-l-methylpyrrolidmium bis(trifluoromethylsulfonyl)imide room-temperature ionic liquid[J]. Electrochimica Acta,2007,53 (1):87-91.
    [34]Yang M H, Sun I W. Electrodeposition of antimony in a water-stable 1-ethyl-3-methylimidazolium chloride tetrafluoroborate room temperature ionic liquid[J]. Journal of Applied Electrochemistry,2003,33 (11):1077-1084.
    [35]El Abedin S, Moustafa E, Hempelmann R, Natter H, Endres F. Additive free electrodeposition of nanocrystalline aluminium in a water and air stable ionic liquid[J]. Electrochemistry Communications,2005,7(11):1111-1116.
    [36]Moustafa E M, Zein El Abedin S, Shkurankov A, Zschippang E, Saad a Y, Bund A, Endres F. Electrodeposition of Al in 1-Butyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)amide and 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide Ionic Liquids:In Situ STM and EQCM Studies(?)[J]. The Journal of Physical Chemistry B,2007,111(18):4693-4704.
    [37]Zein El Abedin S, Moustafa E M, Hempelmann R, Natter H, Endres F. Electrodeposition of Nano-and Microcrystalline Aluminium in Three Different Air and Water Stable Ionic Liquids[J]. ChemPhysChem,2006,7 (7):1535-1543.
    [38]Nuli Y, Yang J, Wu R. Reversible deposition and dissolution of magnesium from BMIMBF4 ionic liquid[J]. Electrochemistry Communications,2005,7 (11):1105-1110.
    [39]Mukhopadhyay I, Aravinda C L, Borissov D, Freyland W. Electrodeposition of Ti from TiCl4 in the ionic liquid 1-methyl-3-butyl-imidazolium bis (trifluoro methyl sulfone) imide at room temperature:study on phase formation by in situ electrochemical scanning tunneling microscopy[J]. Electrochimica Acta,2005,50 (6):1275-1281.
    [40]Zein El Abedin S, Farag H K, Moustafa E M, Welz-Biermann U, Endres F. Electroreduction of tantalum fluoride in a room temperature ionic liquid at variable temperatures[J]. Physical Chemistry Chemical Physics,2005,7 (11):2333-2339.
    [41]Zein El Abedin S, Endres F. Electrodeposition of nanocrystalline silver films and nanowires from the ionic liquid 1-ethyl-3-methylimidazolium trifluoromethylsulfonate[J]. Electrochimica Acta,2009,54 (24):5673-5677.
    [42]Zein El Abedin S, Borissenko N, Endres F. Electrodeposition of nanoscale silicon in a room temperature ionic liquid[J]. Electrochemistry Communications,2004,6 (5): 510-514.
    [43]El Abedin Sherif Z, Endres F (2009). Electrodeposition of Nanoscale Metals and Semiconductors from Ionic Liquids. Ionic Liquids as Green Solvents. Washington, DC, American Chemical Society:453-466.
    [44]Ge Z W, Zhang L P, Yu X J, Dong Y H, Li D G, Wang X M. Research Progress of Electro-Deposition of Aluminum[J]. Journal of the Chinese Society of Rare Earths,2010, 28 (7):814-818.
    [45]Wang D, Shi Z. Aluminizing and oxidation treatment of 1Cr18Ni9 stainless steel[J]. Applied Surface Science,2004,227 (1-4):255-260.
    [46]Wang D, Shi Z, Zou L. A liquid aluminum corrosion resistance surface on steel substrate[J]. Applied Surface Science,2003,214 (1-4):304-311.
    [47]Paredes R S C, Amico S C, D'oliveira a S C M. The effect of roughness and pre-heating of the substrate on the morphology of aluminium coatings deposited by thermal spraying[J]. Surface and Coatings Technology,2006,200 (9):3049-3055.
    [48]Boogaard A, Van Den Broek J J. Crystallisation and electrical resistivity of sputter-deposited aluminium-germanium alloy films[J]. Thin Solid Films,2001,401 (1-2): 1-6.
    [49]Caporali S, Fossati A, Bardi U. Oxidative post-treatments for enhanced corrosion resistance of aluminium electrodeposited from ionic liquids[J]. Corrosion Science,2010, 52(1):235-241.
    [50]Barchi L, Bardi U, Caporali S, Fantini M, Scrivani A, Scrivani A. Electroplated bright aluminium coatings for anticorrosion and decorative purposes[J]. Progress in Organic Coatings,2010,67 (2):146-151.
    [51]Ziegler K, Lehmkuhl H. Die Elektrolytische Abscheidung von Aluminium aus organischen Komplexverbindungen[J]. Zeitschrift fur anorganische und allgemeine Chemie,1956,283 (1-6):414-424.
    [52]Ueda M, Kigawa H, Ohtsuka T. Co-deposition of Al-Cr-Ni alloys using constant potential and potential pulse techniques in AlCl3-NaCl-KCl molten salt[J]. Electrochimica Acta, 2007,52 (7):2515-2519.
    [53]Jafarian M, Mahjani M G, Gobal F, Danaee I. Effect of potential on the early stage of nucleation and growth during aluminum electrocrystallization from molten salt (AlCl3-NaCl-KCl)[J]. Journal of Electroanalytical Chemistry,2006,588 (2):190-196.
    [54]Simka W, Puszczyk D, Nawrat G Electrodeposition of metals from non-aqueous solutions[J]. Electrochimica Acta,2009,54 (23):5307-5319.
    [55]Venkatesan K, Srinivasan T, Rao P. A Review on the Electrochemical Applications of Room Temperature Ionic Liquids in Nuclear Fuel Cycle[J]. Journal of Nuclear and Radiochemical Sciences,2009,10 (1):R1-R6.
    [56]Pinkert A, Marsh K N, Pang S, Staiger M P. Ionic Liquids and Their Interaction with Cellulose[J]. Chemical Reviews,2009,109 (12):6712-6728.
    [57]Rogers R D. Materials science:Reflections on ionic liquids[J]. Nature,2007,447 (7147): 917-918.
    [58]Jiang T, Chollier Brym M J, Dube G, Lasia A, Brisard G M. Electrodeposition of aluminium from ionic liquids:Part Ⅱ-studies on the electrodeposition of aluminum from aluminum chloride (AICl3)-trimethylphenylammonium chloride (TMPAC) ionic liquids[J]. Surface and Coatings Technology,2006,201 (1-2):10-18.
    [59]Jiang T, Chollier Brym M J, Dube G, Lasia A, Brisard G M. Electrodeposition of aluminium from ionic liquids:Part I-electrodeposition and surface morphology of aluminium from aluminium chloride (AlCl3)-1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) ionic liquids[J]. Surface and Coatings Technology,2006,201 (1-2):1-9.
    [60]Yue G, Zhang S, Zhu Y, Lu X, Li S, Li Z. A promising method for electrodeposition of aluminium on stainless steel in ionic liquid[J]. AIChE Journal,2009,55 (3):783-796.
    [61]Yue G, Lu X, Zhu Y, Zhang X, Zhang S. Surface morphology, crystal structure and orientation of aluminium coatings electrodeposited on mild steel in ionic liquid[J]. Chemical Engineering Journal,2009,147 (1):79-86.
    [62]Abbott a P, Qiu F, Abood H M A, Ali M R, Ryder K S. Double layer, diluent and anode effects upon the electrodeposition of aluminium from chloroaluminate based ionic liquids[J]. Physical Chemistry Chemical Physics,2010,12 (8):1862-1872.
    [63]Dzyuba S, Bartsch R. Efficient synthesis of 1-alkyl (aralkyl)-3-methyl (ethyl) imidazolium halides:Precursors for room-temperature ionic liquids[J]. Journal of Heterocyclic Chemistry,2001,38 (1):265-268.
    [64]Varma R, Namboodiri V. An expeditious solvent-free route to ionic liquids using microwaves[J]. Chemical Communications,2001,2001 (7):643-644.
    [65]Deetlefs M, Seddon K. Improved preparations of ionic liquids using microwave irradiation[J]. Green chemistry,2003,5 (2):181-186.
    [66]De La Hoz A, Diaz-Ortiz A, Moreno A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects[J]. Chemical Society Reviews,2005,34 (2):164-178.
    [67]Law M, Wong K, Chan T. Solvent-free route to ionic liquid precursors using a water-moderated microwave process[J]. Green chemistry,2002,4 (4):328-330.
    [68]Khadilkar B M, Rebeiro G L. Microwave-Assisted Synthesis of Room-Temperature Ionic Liquid Precursor in Closed Vessel(?)[J]. Organic Process Research & Development,2002,6 (6):826-828.
    [69]Webb S P, Gordon M S. Solvation of the Menshutkin Reaction:A Rigorous Test of the Effective Fragment Method[J]. The Journal of Physical Chemistry A,1999,103 (9): 1265-1273.
    [70]Wasserscheid P, Welton T. Ionic liquids in synthesis [M]. Vch Verlagsgesellschaft Mbh, 2007.
    [71]Earle M J, Gordon C M, Plechkova N V, Seddon K R, Welton T. Decolorization of Ionic Liquids for Spectroscopy[J]. Analytical Chemistry,2006,79 (2):758-764.
    [72]Baghurst D R, Mingos D M P. Superheating effects associated with microwave dielectric heating[J]. Journal of the Chemical Society, Chemical Communications,1992, (9): 674-677.
    [73]Galinski M, Lewandowski A, Stepniak I. Ionic liquids as electrolytes[J]. Electrochimica Acta,2006,51 (26):5567-5580.
    [74]Fannin a A, Floreani D A, King L A, Landers J S, Piersma B J, Stech D J, Vaughn R L, Wilkes J S, Williams John L. Properties of 1,3-dialkylimidazolium chloride-aluminum chloride ionic liquids.2. Phase transitions, densities, electrical conductivities, and viscosities[J]. The Journal of Physical Chemistry,1984,88 (12):2614-2621.
    [75]Lai P K, Skyllas-Kazacos M. Electrodeposition of aluminium in aluminium chloride/1-methyl-3-ethylimidazolium chloride[J]. Journal of Electroanalytical Chemistry, 1988,248 (2):431-440.
    [76]Brug G J, Van Den Eeden a L G, Sluyters-Rehbach M, Sluyters J H. The analysis of electrode impedances complicated by the presence of a constant phase element[J]. Journal of Electroanalytical Chemistry,1984,176 (1-2):275-295.
    [77]Zoltowski P. On the electrical capacitance of interfaces exhibiting constant phase element behaviour[J]. Journal of Electroanalytical Chemistry,1998,443 (1):149-154.
    [78]Jorcin J-B, Orazem M E, Pebere N, Tribollet B. CPE analysis by local electrochemical impedance spectroscopy[J]. Electrochimica Acta,2006,51 (8-9):1473-1479.
    [79]Su Y Z, Fu Y C, Wei Y M, Yan J W, Mao B W. The Electrode/Ionic Liquid Interface: Electric Double Layer and Metal Electrodeposition[J]. ChemPhysChem,2010,11 (13): 2764-2778.
    [80]Kornyshev a A. Double-Layer in Ionic Liquids:Paradigm Change?[J]. The Journal of Physical Chemistry B,2007,111 (20):5545-5557.
    [81]Baldelli S. Surface Structure at the Ionic Liquid-Electrified Metal Interface[J]. Accounts of Chemical Research,2008,41 (3):421-431.
    [82]Fu Y C, Su Y Z, Wu D Y, Yan J W, Xie Z X, Mao B W. Supramolecular Aggregation of Inorganic Molecules at Au(111) Electrodes under a Strong Ionic Atmosphere[J]. Journal of the American Chemical Society,2009,131 (41):14728-14737.
    [83]De Levie R. The influence of surface roughness of solid electrodes on electrochemical measurements[J]. Electrochimica Acta,1965,10 (2):113-130.
    [84]De Levie R. On porous electrodes in electrolyte solutions:I. Capacitance effects[J]. Electrochimica Acta,1963,8 (10):751-780.
    [85]Kim C-H, Pyun S-I, Kim J-H. An investigation of the capacitance dispersion on the fractal carbon electrode with edge and basal orientations[J]. Electrochimica Acta,2003,48 (23): 3455-3463.
    [86]Pajkossy T. Impedance spectroscopy at interfaces of metals and aqueous solutions-Surface roughness, CPE and related issues[J]. Solid State Ionics,2005,176 (25-28): 1997-2003.
    [87]Pajkossy T, Wandlowski T, Kolb D M. Impedance aspects of anion adsorption on gold single crystal electrodes [J]. Journal of Electroanalytical Chemistry,1996,414 (2): 209-220.
    [88]Lang G, Heusler K E. Changes of the specific surface energy of gold due to the chemisorption of sulphate[J]. Journal of Electroanalytical Chemistry,1995,391 (1-2): 169-179.
    [89]Lockett V, Sedev R, Ralston J, Home M, Rodopoulos T. Differential Capacitance of the Electrical Double Layer in Imidazolium-Based Ionic Liquids:Influence of Potential, Cation Size, and Temperature[J]. The Journal of Physical Chemistry C,2008,112 (19): 7486-7495.
    [90]Kamavaram V, Mantha D, Reddy R G. Recycling of aluminum metal matrix composite using ionic liquids::Effect of process variables on current efficiency and deposit characteristics[J]. Electrochimica Acta,2005,50 (16-17):3286-3295.
    [91]Scharifker B, Hills G. Theoretical and experimental studies of multiple nucleation[J]. Electrochimica Acta,1983,28 (7):879-889.
    [92]Holleck G L, Giner J. The Aluminum Electrode in AlCl3-Alkali-Halide Melts[J]. Journal of the Electrochemical Society,1972,119 (9):1161-1166.
    [93]Zhu Q, Hussey C L, Stafford G R. Electrodeposition of Silver-Aluminum Alloys from a Room-Temperature Chloroaluminate Molten Salt[J]. Journal of the Electrochemical Society,2001,148 (2):C88-C94.
    [94]Liu Q X, El Abedin S Z, Endres F. Electroplating of mild steel by aluminium in a first generation ionic liquid:A green alternative to commercial Al-plating in organic solvents[J]. Surface and Coatings Technology,2006,201 (3-4):1352-1356.
    [95]Simanavicius L, Stakenas A, Sarkis A. Codeposition of aluminum with some metals from AlBr3-dimethylethylphenylammonium bromide solutions containing acetylacetonate of selected metal[J]. Electrochimica Acta,2000,46 (4):499-507.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700