用户名: 密码: 验证码:
闪电放电不同阶段等离子体通道物理特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
依据在西藏那曲地区由无狭缝光栅摄谱仪获得的闪电放电通道的光谱资料,选取3个多回击自然闪电过程的光谱,并将其中一次闪电放电过程的光谱与同步的电学观测相结合,首次讨论了光谱特征和通道温度与闪电放电特性、电流热效应的相关性。研究结果表明,多回击放电过程中,闪电光谱的结构有明显变化,一次闪电不同回击过程的通道温度有明显差异,闪电前期的温度通常较高,之后呈逐渐降低趋势;光谱总强度与辐射电场的变化幅度、放电电流的大小成正比。另外,通道温度与回击过程传输的能量正相关,但二者的变化幅度不具有固定的比例关系,反映了不同回击中通道电阻、热量的传导、辐射、回击通道的初始温度等因素的差异,也与电场和电流的变化不完全同步有关。这项工作为进一步的高时间分辨率闪电光谱试验以及闪电过程光电相关性的研究和物理机制的探讨提供了参考数据。
     在此基础上,依据在山东地区利用无狭缝红外摄谱仪获得的波长在760~970nm范围的闪电近红外光谱,通过中性原子(NI、OI)的辐射计算了每个闪电沿回击通道不同位置处的温度;首次讨论了红外辐射阶段闪电放电等离子体温度和光谱总强度沿放电通道的演化特征。结果分析表明,近红外光谱主要是闪电回击后期的辐射,不同闪电的光谱结构差异不大,通道温度较回击初期和发展阶段降低,约为16000K左右。地闪通道的温度和光谱总强度沿放电通道的变化趋势与回击前期基本一致,即同一放电通道内,随着高度的增加略呈减小趋势,在近地端最大,与云-地闪电过程的光学观测相吻合;云闪通道的温度和光谱总强度沿放电通道非单调性变化,在通道的拐弯、分叉以及结点附近二者发生突变。为闪电放电的低温低电流过程以及通道的冷却提供一些新的信息,对闪电过程物理机制以及伴随的化学效应的研究有重要的意义。
According to the spectra data of cloud-to-ground (CG) lightning discharge channel have been obtained by using a Slite-less spectrogrograph on Chinese Tibet Plateau, selected the spctra of three lightning processes with multiple return strokes,and combining the spectra of one of the lightning with synchronous electrical information, the correlation among spectral properties, channel temperatures and discharge characteristics, thermal effects of current is discussed for the first time. The results show that the spectral structure varies obviously in different stages of multiple-stroke lightning discharge, and the channel plasma temperature varies significantly from stroke to stroke within a given flash, in other words, the temperatures in initial stage of flash are higher, and then decreases gradually afterwards. The total intensity of spectra is directly proportional to the amplitude of electric field change as well as intensity of discharge current. Moreover, the positive correlation has been confirmed between the channel plasma temperature and the thermal effect which shows the effect of the electric current accumulation. It is confirmed that channel temperature is correlated positively with the energy transmission in one return stroke, but there is no fixed proportionality for them. The main reason may be the discrepancies in channel resistances, heat capacities, and other factors during different strokes, even related to the incomplete synchronization between the electric field and the change of the current in decay stage. The results in this work will give some reference date for futher experiments on high time resolved spectra, study on correlation between spectra and electrical parameters and research on lightning physical mechanism in lightning discharge process.
     Based on this work, lightning spectra in the near-infrared region of 760 to 970nm were obtained by using Slit-less infrared spectrograph in Shandong region, the temperatures at different positions along the discharge channel are calculated according to neural nitrogen and oxygen radiation, respectively. The evolution characteristic between the channel plasma temperature and the total intensity of spectra along the stroke channel during near-infrared radiation are discussed for the first time. It has been found that the near-infrared spectrum is mainly the contribution of radiation from latter stage of lightning discharge, and there is little difference for spectral structure of different lightning. Moreover, the results show that the channel temperatures are lower than the initial stage and the developing stage of return stroke, and the temperature decreases to 16,000K during this period. In addition, the change tend between the channel temperature and the total intensity of spectra along the stroke channel was consistent with the initial stage of discharge for CG lightning, in other words, for a certain return stroke channel, temperatures and the total intensity of spectra at different positions show signs of falling away with increasing height alone the discharge channel, and it highest in near ground. The result is in accordance with the optical observation of lightning discharge. But there is non-uniformly varied between them in cloud lightning. Also, the channel temperature and the total intensity of spectra are sudden changes in the tortuous positions and the branches and the crunodes of the lightning channel. This work will provide new information on discharge processes with lower amplitude currents and temperatures, and perhaps channel cooling.
引文
[1] M L Prueitt. The excitation temperature of lightning. 1963, 68: 803-811.
    [2] S. Mandel’shtam. Excitation of the spectrum in a spark discharge. Spectrochimica. Acta. 1959, 15: 255-271.
    [3] M A Uman, Orville R E, Salanave L E. The density, pressure, and particle distribution in a lightning stroke near peak temperature. J. Atmos. Sci., 1964a, 21: 306-310.
    [4]陈渭民.雷电学原理(第二版).气象出版社,2004,124
    [5] Berger K. Blitzstrom-parameter von Aufartsbliten. Bull Schweiz Eelektroteck, Ver, 1978, 69: 353-360.
    [6] M A Uman, Beasley W H, Tiller J A, et al. An unusual lightning flash at Kennedy Space Center. Science, 1978, 201: 9-16
    [7]王道洪,郄秀书,郭昌明.雷电与人工引雷.上海:上海交通大学出版社,2000,60.
    [8] A Schuster. On spectra of lightning. Proc. Phys. Soc., 1880, 3: 46-52.
    [9] P D Jose. The infrared spectrum of lightning. J. Geophys. Res., 1950, 55: 39-41.
    [10] W Petrie, Small R. The near infrared spectrum of lightning. Phys. Rev., 1951, 54: 1263-1264.
    [11] L Wallace. Note on the spectrum of lightning in the region 3670 to 4280?. J. Geophys. Res., 1960, 65: 1211-1214.
    [12] L Wallace. The spectrum of lightning. Astrophys. J., 1964, 139: 994-998.
    [13] R E Orville. High-speed time-resolved slitless spectrum of a lightning stroke. Science, 1966a, 151: 451-452.
    [14] R E Orville. A high-speed time-resolved spectroscopic study of the lightning return stroke: part I. A qualitative analysis. J. Atmos. Sci., 1968a, 25: 827-838.
    [15] R E Orville. A high-speed time-resolved spectroscopic study of the lightning return stroke: part II. A quantitative analysis. J. Atmos. Sci., 1968b, 25: 839-851.
    [16] R E Orville. A high-speed time-resolved spectroscopic study of the lightning return stroke: part III. A Time-Dependent Model. J. Atmos. Sci., 1968c, 25: 852-856.
    [17] M A Uman. The peak temperature of lightning. J. Atmos. Terr. Phys., 1964, 26: 123-128.
    [18] M A Uman, Orville R E, Salanave L E. The density, pressure, and particle distribution in a lightning stroke near peak temperature. J. Atmos. Sci., 1964a, 21: 306-310.
    [19] M A Uman, Orville R E. Electron density measurement in lighting from stark broadening of Hα. J. Geophys. Res., 1964, 69: 5151-5154.
    [20]袁萍,欧阳玉花,吕世华等.青海地区闪电回击通道温度特性.高原气象,2006, 25(3): 503–508.
    [21]袁萍,郄秀书,吕世华等.一次强云对地闪电首次回击过程的光谱分析.光谱学与光谱分析,2006,26: 733-737.
    [22]张华明,袁萍,吕世华等.闪电回击通道的电子密度研究.高原气象,2007,26(2): 264-268.
    [23]王杰,袁萍,郭凤霞等.云闪放电通道的光谱及温度特性.中国科学D辑:地球科学,2009,39(2): 229-234.
    [24]王杰,袁萍,郭凤霞等.云闪放电通道内的粒子密度及分布特征.地球物理学报, 2010,53(6): 240-246.
    [25]郭逸潇,袁萍,瞿海燕. NI 493.5 nm谱线加宽估算闪电放电等离子体电子密度.高原气象,2009,28(3): 675-679.
    [26] Guo Y X, P Yuan, X Z Shen, et al. The electrical conductivity of a clound-to-ground lightning discharge channel. Phys Scr., 2009, 80(3): 035901 (5pp).
    [27] Chang Z S, P Yuan, Y X Guo. Transport coefficients of lightning discharge plasma on plateau area in china. IEEE Trans. Plasma Sci., 2010, doi: 10.1109/TPS. 2010.2051430.
    [28] W L Borucki, Chameides W L. lightning: Estimates of the rates of energy dissipation a nitrogen fixation. Rev. Geophys, 1984a, 22, 364.
    [29] W L Borucki, McKay C P, Whitten R C. Possible production by lightning of aerosols and trace gases in Tiann’s atmosphere. Icarus60, 1984b, 260-274.
    [30] R E Orville. Ozone production during thunderstorms measured by the absorption of ultraviolet radiation from lightning. J. Geophys. Res., 1967, 72: 3557-3561.
    [1] M L Prueitt. The excitation temperature of lightning. J Geophys Res., 1963, 68: 803-811.
    [2] S Mandel’shtam. Excitation of the spectrum in a spark discharge. Spectrochimica. Acta., 1959, 15: 255-271.
    [3] M A Uman, R E Orville, L E Salanave. The density, pressure, and particle distribution in a lightning stroke near peak temperature. J Atmos Sci., 1964, 21: 306-310.
    [4] M A Uman. The peak temperature of lightning. J Atmos Terr Phys., 1964, 26: 123-128.
    [5]徐伟,万宝年,光谱测量等离子体粒子温度和旋转速度,光学学报,2003,23(9), 1115-1118.
    [6] Robert D. Cowan. The Theory of Atomic Structure and Spectra, University of California Press (Berkeley, Los Angeles, London).
    [7] Uman M A, Orvillle R E. The opacity of lightning. J Geophys Res., 1965, 70: 5491-5497.
    [8] Griem H R. Plasma Spectroscopy. New York, Mc Graw Hill, 1964: 580.
    [9] Lochte-Hoitgreven W. Plasma Diagnostics. Amsterdam: North-holland Publishin Company, 1968: 178.
    [10]袁萍,刘欣生,张义军.与闪电有关的NII离子光谱.光谱学与光谱分析,2004, 24(3): 288-291.
    [11]袁萍,刘欣生,张义军等.闪电首次回击过程的光谱特性.高原气象,2003,22(3): 235-239.
    [12]贝克非等.激光等离子体原理.上海:上海科学技术出版社,1976: 330.
    [13] M A Uman. The conductivity of lightning. J Atmos Terr Phys.,1964,26: 1215-1210.
    [14] Wises W L,Paqutte D R,Solanski JEz. Phys Rev.,1963,129: 1225-1232.
    [15]张华明,袁萍,吕世华,欧阳玉花.闪电回击通道的电子密度研究.高原气象,2007,26: 264-269.
    [16] H R Griem. Plasma Spectroscopy. New York: McGraw Hill, 1964, 305.
    [17]邱德仁.原子光谱分析.上海:复旦大学出版社,2001,37.
    [18] M A Uman. The conductivity of lightning. J. Atmos. Terr. Phys., 1964, 26: 1215-1210.
    [19] R H Gold. Lightning. London: Academic Press, 1977: 176.
    [20] I P SHKAROFSKY,M P BACHYNSKI,T W JOHNSTON. Collision frequency associated with high temperature air and scattering cross-sections of the constituents. Planetary and Space Science,1961,6: 24-46.
    [21] J Rai. Conductivity and electron density of the return stroke lightning. Annales de geophysique,1980,36: 263-266.
    [22] G N Oetzel. Computation of the diameter of a lightning return stroke. J Geophys Res., 1968, 73: 1889-1896.
    [1] Ballarotti M G, M M F Saba,O Pinto. High-speed camera observations of negative ground flashes on a millisecond-scal. Geophys Res Lett., 2005, 32: L23802.
    [2] Guo C M, E P Krider. The optical and radiation field signatures produced by lightning return strokes. J Geophys Res., 1982, 87: 8913-8922.
    [3] Ganesh C, M A Uman, W H Beasley. Correlated optical and electric field signals produced by lightning return strokes. J Geophys Res., 1984, 89: 4905-4909.
    [4] Rakov V A, M A Uman, R Thottappillil. Review of lightning properties from electric field and TV observation. J Geophys Res., 1994, 99: 10,745-10,750.
    [5] Chen M L, T Watanable, N Takagi, et al. Simultaneous observations of optical and electrical signals in altitude-triggered negative lightning flashes. J Geophys Res., 2003, 108: 4240-4256.
    [6]孔祥贞,郄秀书,王才伟等.首次回击具有双接地点的地闪光学和电学特征的个例分析.高原气象,2003,22(3): 259-267.
    [7]李俊,张义军,吕伟涛等.一次多回击自然闪电的高速摄像观测.应用气象学报, 2008,19: 401-411.
    [8] Saba M M F, L Z S Campos, E. P. Krider, et al. High-speed Video observations of positive ground flashes produced by intracloud lightning. Geophys Res Lett., 2009, 36: L12811.
    [9] Prueitt M L. The excitation temperature of lightning. J Geophys Res., 1963, 68: 803-811.
    [10] Uman M A. The peak temperature of lightning. J Atmos Terr Phys., 1964a, 26(1): 123-128.
    [11] Uman M A, R E Orville. Electron density measurement in lightning from stark-broadening of Hα. J Geophys Res., 1964, 69: 5151-5154.
    [12] Uman M A, R E Orville, L E Salanav. The mass density, pressure, and electron density in three lightning stroke near peak temperature. J Geophys Res., 1964, 69: 5423-5424.
    [13]袁萍,欧阳玉花,吕世华等.青海地区闪电回击通道温度特性.高原气象,2006, 25(3): 503–508.
    [14]张华明,袁萍,吕世华等.闪电回击通道的电子密度研究.高原气象,2007,26(2): 264-268.
    [15]王杰,袁萍,郭凤霞等.云闪放电通道的光谱及温度特性.中国科学D辑:地球科学,2009,39(2): 229-234.
    [16]郭逸潇,袁萍,瞿海燕. NI 493.5 nm谱线加宽估算闪电放电等离子体电子密度.高原气象,2009,28(3): 675-679.
    [17] Guo Y X, P Yuan, X Z Shen, et al. The electrical conductivity of a clound-to-ground lightning discharge channel. Phys Scr., 2009, 80(3): 035901 (5pp).
    [18]王杰,袁萍,郭凤霞等.云闪放电通道内的粒子密度及分布特征.地球物理学报,2010,53(6): 240-246.
    [19] Chang Z S, P Yuan, Y X Guo. Transport coefficients of lightning discharge plasma on plateau area in china. IEEE Trans. Plasma Sci., 2010, doi: 10.1109/TPS. 2010.2051430.
    [20] Brook M, C Rhodes, O Vaughan, et al. Nighttime observations of thunderstorm electrical activity from a high-altitude airplane. J Geophys Res., 1985, 90: 6111- 6120.
    [21] Gomes C, V Cooray. Correlation between the optical signatures and current wave forms of long sparks: applications in lightning research. J Electrost., 1998, 43(4): 267-274.
    [22] Compos L Z S, M M F Saba, O Pinto, et al. Waveshapes of continuing currents and properties of M-component in natural negative cloud-to-ground lightning from high-speed video observations. Atmos Res., 2007, 84: 302-310.
    [23]郄秀书,郭昌明,张翠华等.地闪回击的微妙级辐射场特征及近地面过程分析.高原气象,1998,17 (1): 44-53.
    [24] Rachidi F, J L Bermudez, M Rubinstein, et al. On the estimation of lightning peak currents from measured fields using location systems. J Electrost., 2004, 60: 121-129.
    [25] Golde R H,著.周时键,孙景群,译.雷电(上卷)[M].北京:电力工业出版社,1981: 117-123.
    [26] Orville R E. A high-speed time-resolved spectroscopic study of the lightning return stroke: part I. A quantitative analysis. J Atmos Sci., 1968, 25: 827-838.
    [27]王道洪,郄秀书,郭昌明.雷电与人工引雷.上海:上海交通大学出版社,2000, 63-132.
    [28] Norinder H, Dahle O. Measurements by frame aerials of current variations in lightningdischarges. Arkiv Mat Astron Fysik., 1945, 32A: 1-70.
    [29] X Qie, Y Yu, D Wang, H Wang, and R Chu. Characteristics of Cloud-To-Ground Lightning in Chinese Inland Plateau. J Meteor Soc Japan, 2002, 80: 745-754.
    [1] Uman M A, Orville R E. The opacity of lightning. J Geophys Res., 1965, 70: 5491-5497.
    [2] Weidman C, Boye A, Crowell L. Lightning spectra in the 850 to 1400nm near-infrared region. J Geophys Res., 1989, 94: 13,249-13,257.
    [3] Prueitt M L. The excitation temperature of lightning. J Geophys Res., 1963, 68: 803-811.
    [4] Uman M A. The peak temperature of lightning. J Atmos Terr Phys., 1964, 26: 123-128.
    [5] Uman M A, Orville R E, Salanave L E. The mass density, pressure, and electron density in three lightning stroke near peak temperature. J Geophys Res., 1964, 69: 5423-5424.
    [6]袁萍,刘欣生,张义军等.高原地区云对地闪电首次回击的光谱研究.地球物理学报,2004,47(1): 42-46.
    [7]王杰,袁萍,郭凤霞等.闪电放电通道等离子体成分及其相关特性的研究.光谱学与光谱分析,2008,28(9): 2003-2008.
    [8] Wang J, Yuan P, Guo F X, et al. The spectrta and temperature of cloud lightning discharge channel. Sci. in China (Ser. D-Earth Sci.), 2009, 52(7): 907-912.
    [9] Guo Y X, Yuan P, Shen X Z, et al. The electrical conductivity of a cloud-to ground lightning discharge channel. Phys. Scr., 2009, 80(3): 5901.
    [10] Wang J, Yuan P, Guo F X, et al. particle densities and distributions in cloud lightning channels. Chinese J. Geophys. (in chinese), 2010, 53(3): 240-246.
    [11] Chang Z S, Zhao N, Yuan P. Study of the transports parameters of cloud lightning plasmas. Phys. Plasmas., 2010, 17: 113514.
    [12] Qu H Y, Yuan P, Zhang T L, et al. Analysis on the correlation between temperature and discharge characteristic of cloud-to-ground lighting discharge plasma with multiple return strokes. Phys. Plasmas., 2011, 18: 013504.
    [13] Borucki W L and Chameides W L. lightning: Estimates of the rates of energy dissipation a nitrogen fixation.Reviews of Geophysics and Space Physicss, 1984, 22:363-372.
    [14] Orville R E. Ozone production during thunderstorms measured by the absorption of ultraviolet radiation from lightning. J geophys Res., 1967, 72: 3557-3561.
    [15]张建奇,方小平.红外物理.西安:西安电子科技大学出版社, 2004.
    [16]张华明,袁萍,杨世刚等.闪电放电通道的辐射演化特性.光子学报,2010,39(6): 998-1002.
    [17]项志遴,余昌旋.高温等离子体诊断技术.上海:上海科学技术出版社,1982, 68-73.
    [18]张华明,袁萍,吕世华,欧阳玉花.闪电回击通道的电子密度研究.高原气象,2007,26: 264-269.
    [19] Meinel A B, Sslsnsve L E. N2+ Emission in lingtning. Journal of the Atmospheric sciences, 1964, 21: 157-160.
    [20] Orville R E, Henderson R W. Absolute spectral irradiance measurements of lightning from 375 to 880nm. J Atmos Sci.,1984,41: 3180-3187.
    [21] Orville R E. A high-speed time-resolved spectroscopic study of the lightning return stroke: Part I. A Qualitative Analysis. J Atmos Sci., 1968a, 25(5): 827-838.
    [22] plooster M N. Numerical model of the return stroke of the lightning discharge. Phys Fluids., 1971, 14: 2124-2133.
    [23] Uman M A, Voshall R E. Time interval between lightning strokes and the initiation of dart leaders. J Geophys Res., 1968, 73(2): 497-506.
    [24] Wang D, Takagi N, Rakov V, et al. Luminosity waves in branched channels of two negative lightning flashes. J.Atmos.Electr., 2000, 20(2): 91-97.
    [25] Wang D H, Rakov V A, Uman M A, et al. Attachment process in rocket-triggered lightning strokes. J Geophys Res., 1999, 104: 2143-2150.
    [26] Wang D H, Takagi N, Liu X, et al. Luminosity characteristics of multiple dart leader/return stroke sequences measured with a high-speed digital image system, Geogphys Res L., 2004, 31: L02111.
    [27] Qie X S, Kong X Z. Progression features of a stepped leader process with four grounded leader branches. Geogphys Res L., 2007, 34: L06809.
    [28]欧阳玉花,袁萍,郄秀书等.广东沿海地区闪电通道的温度特性研究.光谱学与光谱分析,2006,26(11): 1988-1992.
    [29] Liu X S, Krehbiel P R. The initial streamer of intracloud lightning flashes. J Geophys Res., 1985, 90: 6,211-6,218.
    [30] Shao X M, Krehbiel P R. The spatial and temporal development of intracloud lightning. J Geophys Res., 1996, 101: 26,641-26,618.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700