用户名: 密码: 验证码:
沉积型铝土矿矿床模拟及采矿可视化设计技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,我国矿业受传统采矿模式的束缚,技术水平跟不上生产实际的需要。随着中国加入世贸组织,处在世纪之交信息技术蓬勃发展浪潮中的古老采矿业面临着机遇与挑战并存的局面,任何一个矿山企业只要率先创新意识,把信息资源当作矿山的重要战略资源之一加以统筹开发和综合利用,就会在现代企业竞争中取胜,并逐步走向可持续发展之路。
     本论文针对南川铝土矿的资源情况和开采技术特点,将数字矿山理念渗透到该矿山的开采设计、生产管理、投资决策等领域,并取得了以下的研究成果:
     1)通过运用先进的DIMINE数字矿山软件,建立了中铝重庆分公司所属几个矿区的三维实体模型,准确、直观、形象地反映了矿山各工程实体的空间形态,为矿山进行后续的探采设计和工程施工奠定了坚实的基础。
     2)以南川铝土矿灰河采区的钻孔数据库为基础,进行了原始样品和组合样统计分析以及空间数据的变异函数分析,阐述了估值方法的选择原则,分别采用距离幂次反比法和传统方法对矿体的有用化学组分进行了品位推估,将距离幂次反比法估值后的块段模型分别按组分A12O3品级及中段高度进行了区间显示和储量统计,并对不同估值方法的储量计算结果进行了对比分析,指出传统方法(尤其是块段法)的优越性,利用该方法进行了实际的动态储量估算,基本弄清了灰河采区矿体品位的空间分布特征及资源储量的分布情况,进一步验证了地质数据库及矿体模型的准确性和有效性,也为后续的生产探矿设计和开采设计提供了资源方面的参考。
     3)基于模糊优先关系比较法,综合考虑了影响采矿方案的动态、静态、定量和非定量指标,计算了3个待选择方案的隶属度并确定了它们的优先顺序,为采矿可视化设计提供了可靠的依据。
     4)提出了人机交互式三维采矿优化设计技术,阐述了该技术的总体思路和优化的目标及方法,借助该技术在建立的矿区三维实体模型的基础上,根据采区资源分布情况和金属市场价格,划分了回采单元,并结合矿体的赋存规律、岩体的延展趋势和断层的出露特征,基于已有工程构建空间约束,本着资源利用最大化和开采成本最小化的原则,完成了生产勘探设计和采矿单体设计。
     5)采用平行孔+扇形孔的联合设计法,对灰河采区内3号装矿巷道进行浅孔爆破可视化设计,并对设计参数进行了交互式修改和编辑,生成了爆破实体和二维的炮孔施工卡片,可用于指导现场施工。
     6)通过分析该矿山灰河采区生产的基本特征并参照矿山在编制生产计划方面的要求,试探性地运用3D可视化计划编制的关键技术,形成了初始的计划编排结果。
     通过本次研究,足见数字矿山技术对于提高采矿业的劳动效率、改变安全生产状况、促进绿色协调开采等具有重要意义。
In China, the technical level of mining industry can't keep up with the need of the practical production due to the straitjacket of traditional mining model for a long time.
     After entering the WTO, Chinese old mining industry faces the opportunities and challenges at the turn of the century when information technology develops so rapidly. As long as the mining enterprise take the lead to innovate, treat the information resource as one of important strategic resources of mine and carry out the overall planning development and the comprehensive utilization, it will win in the modern competition and step into the sustainable development gradually.
     According to the resource conditions and the characteristics of mining technology of Nanchuan bauxite, this thesis integrates the digital mine concepts into its mining design, production management, investment decision-making and so on, and has obtained the following research results:
     1) Advanced digital mine software DIMINE was used to establish three-dimensional solid model of several mining areas of Chongqing Branch of CHALCO, which reflected the space form of various mine project entities accurately, intuitively and vividly. At the same time, it laid a solid foundation for conducting the following exploration, mining design and engineering construction.
     2) Based on the drilling database of Huihe Mining District in Nanchuan bauxite, statistical analysis of sample and space variation functional analysis of spatial data were made to elaborate the selection principle of estimation methods. Meanwhile, distance power inverse ratio methods and traditional methods were adopted respectively for grade estimation of useful chemical components of the orebody. Then the estimated block mode was displayed according to respective grade level of A/S, A12O3 and reserve statistics were completed in the light of height of sublevel. The author conducted comparative analysis for reserve calculation results based on different estimation methods, and pointed out the advantage of traditional methods (block method particularly). An actual dynamic reserves estimation was carried out by using this method, and the spatial distribution characteristic of ore grade and the resources reserves distribution of Hui-he Mining District were clarified basically. The accuracy and validity of geological database and ore-body models were further verified, which can provide references of resource aspects for the follow-up production exploration design and mining design.
     3) Based on the fuzzy preferential relation comparison method, lots of dynamic and static, fix and non-fix quantified influence factors working on the mining method were taken into account. Membership degrees of the three alternative schemes were calculated and their priority orders were determined, which provided the reliable basis for the mining visualization design.
     4) Man-machine interactive three-dimensional mining optimization design technology was proposed, and the general ideas of the technology and the optimization of objectives and methods were described. with the aid of this technology, based on the established three-dimensional solid model of the mine, the extraction units were divided according to the resources distribution of the mining area and the metal market prices, and then combining the occurrence regularity of ore-body, the extension trends of rock mass and the outcrop feature of faults, in line with the maximization of resource utilization and the minimization of exploitation cost, the production exploration design and mining single design were completed based on the space constraints constructed by existing projects.
     5) With the design method which combined parallel holes and fan-pattern holes, the shallow hole blasting visualization design was carried out in the No.3 loading ore tunnel of Hui-he mining district. The design parameters were modified and edited interactively to generate the blasting entity and two-dimensional blast-hole construction cards, which can be used to guide the field construction.
     6) By analyzing the basic characteristics of the production of Huihe Mining District and referring to the requirements of production plan scheduling, the key technologies of 3D visualization plan formulation were used tentatively and the initial plan arrangement results were formed.
     This study sufficiently indicates that the digital mine technology is important to improve labor efficiency of the mining industry, change safety production situation, and promote the green coordinated exploitation.
引文
[1]吴立新,朱旺喜,张瑞新.数字矿山与我国矿山未来发展[J].科技导报,2004(7):29-31.
    [2]吴立新,殷作如,邓智毅等.论21世纪的矿山:数字矿山[J].煤炭学报,2000,25(4):337-342.
    [3]吴立新,殷作如,钟亚平.再论数字矿山:特征、框架与关键技术[J].煤炭学报,2003,28(1):1-7.
    [4]G.R贝登(周叔良译).国际镍公司未来25年的机器人采矿[J].国外金属矿山,1996(10)
    [5]吴立新.中国数字矿山进展[J].地理信息世界,2008(5):6-13.
    [6]庄玲.数字矿山可视化技术的研究与实现[D].济南:山东科技大学,2003.
    [7]宋子岭,耿晓伟,王德江.三维立体建模技术在矿业中应用研究[J].辽宁工程技术大学学报,2002,21(4):456-459.
    [8]闫旭骞.可视化与虚拟现实技术及其在矿业中的应用[J].黄金,2003,24(8):26-28.
    [9]王李管,曾庆田,贾明涛.数字矿山整体实施方案及其关键技术[A].第七届全国采矿大会论文集[C],2006,(9):493-498.
    [10]Houlding, S W.3D Geoscience Modeling:Computer Techniques for Geological Characterization [M]. Springer-Verlag,1994.
    [11]朱良峰,任开蕾,潘信,何铮.地质实体模型的三维交互与分析技术研究[J].岩土力学,2007,28(9):1959-1963.
    [12]黄志伟,古德生.科学可视化技术及其在矿业中的应用前景[J].矿业研究与开发,2003,23(1):1-4,48.
    [13]石教英.面向21世纪的可视化技术展望[J].计算机世界报,1998.
    [14]胡建明.三维矿山数字化软件的应用和发展方向[J].金属矿山,2008(1):97-99.
    [15]龚元翔.铜厂铜矿三维可视化建模及露天境界优化技术研究[D].长沙:中南大学,2008.
    [16]陈建宏.可视化集成采矿CAD系统[D].长沙:中南大学,2002.
    [17]陈建宏,古德生,罗周全.矿床模型辅助建模工具及其开发.中南大学学报(自然科学版),2002,33(5)
    [18]陈建宏,周智勇,古德生.基于钻孔数据的勘探线剖面图自动生成方法[J].中南大学学报(自然科学版),2005,3(4)
    [19]王立磊,王李管.依托DIMINE软件实现中国矿山的数字化[J].现代矿业, 2009,(3)
    [20]曾庆田.复杂多金属矿床可视化建模及其三维采矿设计技术研究[D].长沙:中南大学,2006.
    [21]贾建红,周传波,张亚海,方胜勇.基于DATAMINE的三维采矿工程可视化建模技术研究[J].金属矿山,2009(3):111-115.
    [22]房智恒.汤丹铜矿矿柱可视化模型构建及回采方案研究[D].长沙:中南大学,2009.
    [23]李志林,朱庆.数字高程模型[M].武汉:武汉大学出版社,2003.
    [24]赵鑫.水下环境和声纳处理数据的三维可视化技术研究[D].北京:北京工业大学,2009.
    [25]胡超.基于GIS的数字矿山岩层可视化混合构模方法的研究[D].长沙:湖南大学,2007.
    [26]Victor, J. D. Delaunay triangulation in TIN creation:An overview and a linear-time algorithm [J]. Int. J GIS,1993.7(6):501~524.
    [27]张顺岚.三维雷达终端显示器的仿真[D].成都:电子科技大学,2005.
    [28]肖源源.基于虚拟城市的三维空间模型的研究[D].贵州:贵州大学,2008.
    [29]贾晓林,吴立新,王彦兵.二维Delaunay三角网局部更新:点插入与点删除[J].地理与地理信息科学,2004,20(5)
    [30]武晓波,王世新,肖春生.Delaunay三角网的生成算法研究[J].测绘学报,1999,28(1)
    [31]徐德军.基于GIS与SDM集成技术的基本地形特征识别[D].武汉:武汉大学,2004.
    [32]尹亚娟.地性线提取及DEM数据格式转换方法研究[D].许昌:解放军信息工程大学,2007.
    [33]张力岩.数字矿山中三维地质模拟与体视化研究[D].武汉:中国科学院研究生院(遥感应用研究所),2004.
    [34]吴立新,史文中.地理信息系统原理与算法[M].北京:科学出版社,2003,10.
    [35]吴斐.数字矿山中三维空间数据模型及其应用研究[D].武汉:中国科学院研究生院(遥感应用研究所),2006.
    [36]吴立新,史文中Christopher Gold.3DGIS与3DGMS中的空间构模技术[J].地理与地理信息系统,2003,19(1):5-11.
    [37]代昌标.煤矿安全虚拟现实仿真系统总体设计及关键技术的研究[D].武汉:中国地质大学,2007.
    [38]吴立新,余接情.基于球体退化八叉树的全球三维网格与变形特征[J].地理与 地理信息科学,2009,(1)
    [39]郭平波,徐昌荣.矿山井巷工程立体建模系统开发[J].南方冶金学院学报,2000,21(2):79-82,103.
    [40]栾东丽,刘明.基于曲线插值算法的巷道自动建模[J].信息技术,2008(12):34-36.
    [41]蒋京名,王李管DIMINE矿业软件推动我国数字化矿山发展[J].中国矿业,2009,18(10):90-92.
    [42]尚晓明.新余良山铁矿三维地质体可视化建模方法研究[D].长沙:中南大学,2008.
    [43]游迪.Surpac环境下苏家坪矿三维模型与边界品位优化研究[D].武汉:武汉理工大学,2009.
    [44]南格立.矿体线框模型及其建立方法[J].有色矿山,2001(5):1-4.
    [45]朱良峰,吴信才,刘修国等.基于钻孔数据的三维地层构建[J].地理与地理信息学,2004,20(3):26-30.
    [46]刘进,李绍虎.断层的三维可视化建模研究[J].吉林大学学报(地球科学版),2004,34:36-39.
    [47]武强,徐华.虚拟矿山系统中三维断层模拟技术[J].辽宁工程技术大学学报,2005,6(3):316-319.
    [48]李畅.矿床三维建模及地质剖面成图技术研究[D].长沙:中南大学,2009.
    [49]国土资源部储量司.矿产资源储量计算方法汇编[M].北京:地质出版社,2000.
    [50]郑贵洲.矿山三维GIS可视化建模方法及关键技术研究[D].武汉:中国地质大学,2008.
    [51]侯景儒,黄竞先编译.地质统计学的理论与方法[M].地质出版社,1990.
    [52]孙涛.露天矿矿床模型及边界品位优化[D].沈阳:东北大学,1999.
    [53]姜谙男.矿山入选品位动态优化数模建立及电算化[D].沈阳:东北大学,2003.
    [54]李章林,王平,张夏林.距离幂次反比法的改进与应用[J].金属矿山,2008,(4):88-92.
    [55]靳国栋,刘衍聪,牛文杰.距离加权反比插值法和克里金插值法的比较[J].长春工业大学学报,2003,24(3):53-57.
    [56]陈建宏,邓顺华,王李管.三维变异函数的计算及拟合[J].中南矿冶学院学报,1994,25(6):686-690.
    [57]罗周全,朱青凌,刘晓明,李畅.钨矿床三维建模和储量可视化计算[J].科技导报,2009,(19):65-68.
    [58]李翠平,李仲学,郝秀强,郝晋会.地矿工程可视化仿真中品位与储量的计算 实现[J].北京科技大学学报,2007,29(9):859-862,872.
    [59]罗周全,李畅,刘晓明等.金属矿床可视化建模及储量计算[J].矿冶工程,2009,29(1):10-14.
    [60]毕林,王李管,陈建宏,冯兴隆.基于八叉树的复杂地质体块段模型建模技术[J].中国矿业大学学报,2008,37(4):532-537.
    [61]罗周全,张保,刘晓明,鹿浩,李畅.矿体品位和储量统计分析的三维可视化方法[J].有色金属(矿山部分),2008,60(5):24-27.
    [62]蒋权,陈建宏,王李管等.可视化仿真中某低铝硅比薄矿体的动态储量计算[J].科技导报,2010,28(19):36-41.
    [63]叶海旺,常剑.基于模糊决策和层次分析法的采矿方法选择[J].武汉理工大学学报,2009,31(8):145-148,153.
    [64]刘相斌,朱嬿.运用优先关系比较法进行招标评标[J].基建优化,2003,24(1):10-12.
    [65]凤亚红.建筑工程项目招标评标的综合评价方法[J].西安科技大学学报,2008,28(4):793-796,826.
    [66]贾明涛,潘长良,王李管.地下矿大规模开采过程动态模拟系统[J].煤炭学报,2003,28(3):235-240.
    [67]贾明涛,潘长良,谢学斌.深井矿山回采过程模拟及调控研究[J].湖南科技大学学报(自然科学版),2003,18(3):9-12.
    [68]刘晓明,罗周全,袁雯妮等.基于CMS的隐患空区三维特征信息获取[J].科技导报,2011,29(5):32-36.
    [69]贾明涛,鲁芳,潘长良.地下金属矿山回采方案优化设计新技术[J].科技导报,2009,27(6):51-56.
    [70]贾明涛.基于过程模拟的回采方案优化技术及其应用[D].长沙:中南大学,2007.
    [71]冯兴隆,王李管,毕林等.矿石块度预测的三维模拟[J].兰州大学学报(自然科学版),2008,44(4):35-39,44.
    [72]罗周全,沈玉众,刘晓明等.金属矿山矿柱回采三维可视化设计[J].科技导报,2010,28(20):48-51.
    [73]刘晨,杨鹏,吕文生.体视化技术及其在地下采矿方法设计系统中的应用研究[J].中国矿业,2006,1(1):68-70.
    [74]丁开旭,杜长龙,王清华.三维采矿模拟箱体的设计[J].矿山压力与顶板管理2005,(4):132-133.
    [75]张荣立,何国纬,李铎.采矿工程设计手册[M].北京:煤炭工业出版社,2003.
    [76]王青,史维详.采矿学[M].北京:冶金工业出版社,2001.
    [77]房智恒,王李管,冯兴隆等.基于DIMINE软件的采矿方法真三维设计研究与实现[J].中国铝业,2008,32(6):28-31.
    [78]王国焘,罗周全,刘晓明等.金属矿区采区三维探测及可视化建模与应用[J].中国地质灾害与防治学报,2010,21(1):104-109.
    [79]罗勇,沈兆武.炮孔合理堵塞长度的研究[J].岩土工程技术,2006,20(1):25-28.
    [80]万元林,王树仁.关于空气不耦合装药初始冲击波压力计算的分析[J].爆破,2001,18(1):14-15.
    [81]龚元翔,王李管等.MICROMINE系统在爆破设计中的应用[J].金属矿山,2008(4):109-112.
    [82]李英龙,童光煦.矿山生产计划编制方法的发展概况[J].金属矿山,1994,(12):11-167.
    [83]邢存恩,王神虎,催永丰.基于GIS的煤矿采掘衔接计划动态可视化管理系统[J].太原理工大学学报:2008,39(1):75-78.
    [84]王文铭,池重.基于MATLAB和神经网络的露天矿生产计划优化[J].有色金属(矿山部分),2005,57(5):37-40.
    [85]胡柳青,王李管,毕林.地下矿山生产计划3D可视化编制技术[J].煤炭学报,2007,32(9):930-933.
    [86]荆永滨.地下矿山生产计划三维可视化编制技术研究[D].长沙:中南大学,2007.
    [87]蒋京名.DIMINE三维可视化软件在大红山铜矿生产计划编制中的应用研究[D].长沙:中南大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700