用户名: 密码: 验证码:
安徽庐江泥河铁矿矿床地质特征及成矿规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泥河铁矿位于长江中下游成矿带的庐枞矿集区。庐枞地区是我国东部典型的陆相火山-岩浆活动区域,也是国土资源部确定的五个重点矿产勘查区之一。区内与陆相火山-岩浆活动有关的铁矿床是我国铁矿资源中的一种重要成因类型和主要产地。泥河铁矿是安徽省地质调查院在实施2007年度国土资源大调查《安徽庐江盛桥—枞阳横埠地区铁铜矿勘查》项目中的重大新发现。泥河铁矿的发现不仅突破了庐枞地区过去只限于400~500米的勘查深度,也预示了在长江中下游地区进一步开展深部找矿工作具有十分广阔的前景。以泥河铁矿床为对象,进行典型矿床成矿特征和成矿规律总结研究,对推动长江中下游成矿带深部找矿工作具有重要的理论及实践意义。
     本文以泥河铁矿床为主要解剖对象,罗河铁矿床作为补充研究,以成矿地质作用特征研究、矿田构造研究、成矿作用特征与成矿作用标志研究为重点研究内容,进行系统的矿床成矿地质背景及成矿地质特征,成矿年代学、流体地质学和矿田构造学等研究,从而限定成岩成矿年代,探讨流体的来源、成矿物质的来源、矿化富集规律等,最终厘定泥河铁矿床的成矿地质体,并进行矿床成因探讨。以上述研究为基础,以区域构造-建造-流体-成矿作用作为研究主线,以铁矿床与构造-火山-热事件在时间、空间配置和耦合关系作为研究的主要脉络,探索和总结泥河铁矿床的成矿作用特征、矿化时空结构特征和成矿规律,以进一步深化对陆相次火山热液型铁矿成矿机理和成矿模式的认识。通过室内外综合研究,本文取得了以下主要认识及成果:
     (1)通过岩石岩相学鉴定、岩石地球化学分析,表明庐枞地区火山岩、次火山岩主要为一套碱性-亚碱性玄武质粗面岩、粗安岩、粗面英安岩、碱玄岩等。岩石地球化学特征表明庐枞火山岩具Si02中等偏高、富碱、富钾、高铝贫钛的特征,且碱性长石化阶段,钾质明显被交代活化迁移出来。火山岩-次火山岩-侵入岩演化从早到晚,Si02与TiO2、Fe2O3、FeO、MgO、CaO、P2O5等呈负相关关系,Si02与A12O3、K2O、Na2O呈一定的正相关关系。庐枞火山岩及侵入岩分异指数表明二者分异趋势相同,为同源产物,与宁芜盆地中生代火山-次火山岩具有相同的岩浆演化特征。
     (2)庐枞火山岩微量元素相对原始地幔,明显富集Rb、Pb、Hf、Th等大离子亲石元素,Nb、Ti、Y等高场强元素及P元素相对亏损。火山岩及侵入岩微量元素原始地幔标准化蛛网图变化特征相似,说明泥河矿区的次火山岩体及正长-二长岩侵入岩体微量元素具有火山岩继承性结晶分异特征,且晚期岩浆分异程度加强,为一个完整的岩浆演化系列同源异相产物。
     (3)泥河矿区火山岩→次火山岩→侵入岩稀土元素配分曲线形态较相似,均呈相对平滑的右倾型。且轻重稀土明显分异,轻稀土富集,重稀土相对亏损,均具有轻稀土分馏程度明显高于重稀土分馏程度的特征,稀土元素分布形式可能与富集地幔的部分熔融及地壳物质的不同程度混染有关。
     (4)火山岩及侵入岩的Sr-Nd同位素和Pb同位素特征表明二者均来源于深部地幔,是岩浆分离结晶演化过程中的同源异相产物。
     (5)根据野外实地调查,结合室内系统岩相学鉴定,总结了泥河铁矿床围岩蚀变分带特征和相应的蚀变矿物分带特征,自下而上依次为:下部浅色蚀变带(辉石-钾长石-钠长石-磷灰石-硬石膏)→深色蚀变带(辉石-磷灰石-磁铁矿-硬石膏,局部可见石榴子石)→叠加蚀变带(磷灰石-磁铁矿-硬石膏-赤铁矿-黄铁矿)→上部浅色蚀变带(石英-高岭石-绿泥石-碳酸盐-水云母等)。
     (6)通过对成矿物理化学条件的分析总结,揭示泥河、罗河铁矿床磁铁矿具有多期矿化特征。晚期岩浆结晶分异形成的磁铁矿结晶温度范围(T)为:775~1152℃,氧逸度(f02)为:10-8.89~10-15.27;T=711.04~1114.39℃,ao2=1.86×10-8~3.61xl0-16(据R.Powell和M. Powell,1977),二者获得的温度及氧逸度范围基本一致,明显高于热液作用磁铁矿的形成温度。磁铁矿主成矿阶段为辉石-硬石膏-磁铁矿矿化阶段,成矿温度为350~506℃。氧逸度(f02)、硫逸度(fs2)和酸碱度(pH)等物理化学参数表明膏辉岩与磁铁矿都是在高氧高硫以及酸性环境共同作用下形成的,二者为同期产物,从岩浆作用晚期到热液蚀变作用晚期,成矿环境从高氧高硫弱酸性环境向低氧低硫强酸性环境演化。
     (7)运用高精度同位素定年技术锆石U-Th-Pb法对成矿岩浆的成岩年龄进行测定初步限定成矿年代为128~134Ma之间,综合国内外成岩成矿理论、庐枞地区各矿化类型的成矿演化序列以及相关年代学数据可合理地进一步约束泥河铁矿的成矿时限为132~131Ma,从而建立起庐枞盆地成岩成矿的时间结构。
     (8)通过前人资料分析及同位素地球化学分析,铁矿床中的磁铁矿与庐枞盆地火山岩中磁铁矿氧同位素特征表明矿石中的氧化铁和火山岩中的氧化铁可能属同一来源,铁矿质是火山岩经交代作用淬取出来的,铅同位素具深部流体来源特征。泥河-罗河铁矿床成矿热液的硫可能部分来自断陷盆地下伏的地层,特别是三叠纪周冲村组海相硬石膏层,其余为岩浆携带的来自深部的。根据石英-水氧同位素分馏作用与温度的函数关系得出暗色蚀变阶段和磁铁矿生成阶段的水属岩浆水范围,而浅色蚀变黄铁矿化阶段可能有天水参加。
     (9)根据泥河铁矿床矿体产出特征、矿石组构学特征、围岩蚀变及矿化蚀变特征、成岩成矿时代、成矿物质来源等讨论分析认为泥河-罗河铁矿床为陆相次火山岩浆—热液型矿床成因,闪长玢岩是铁矿床的成矿母岩。
     (10)根据野外宏观地质调查及室内微观鉴定测试分析,对泥河铁矿床进行矿床地质特征及成矿地质要素总结分析,认为矿体赋存位置明显受地层-构造-岩浆建造的综合控制,成矿作用与构造-岩浆-热事件有关,区内围岩热液蚀变对矿化富集具有重要的促进作用。
     (11)以上述认识为基础,初步总结了庐枞地区陆相次火山岩型铁矿床的时空分布规律,初步厘清构造-岩浆-流体-成矿关系,建立了庐枞盆地陆相次火山岩型铁矿床综合成矿模式,为研究区找矿提供重要的理论依据。
Nihe iron ore deposit is located in the Yangtze River metallogenic belt of Luzong ore district, which is one of five key mineral exploration areas identified by the Ministry of Land and Resources. Luzong region is a typical continental volcanic-igneous activity area in easten China, where continental volcanism-magmatic activity related to iron ore deposits is an important genetic type and the main producer in China's iron ore resources. Nihe iron is a significant new discovery which is in the implementation of land resources survey project "Sheng Bridge-Zongyang Hengbu area iron-copper exploration in Lujiang, Anhui province."by Geological Survey of Anhui Province in 2007. The discovery of Nihe iron ore deposit not only breakthrough Luzong area past confined to only 400 to 500 meters depth exploration, but also indicates further deep prospecting work has very broad prospects in the Yangtze River. Nihe iron ore deposit as an typical object to do research into metallogenic characteristics and metallogenic regularity summarized, which has important theoretical and practical significance on the promotion of the Yangtze River metallogenic belt deep prospecting work.
     This paper is targeted on Nihe iron ore deposit as the main anatomical object, Luo River iron ore deposits as a supplementary study, which to focus research on the content of characteristics of geological metallogenesis, structure of ore field, characteristics of mineralization and mineralization signs study. Then having systematic study on metallogenic geological setting and metallogenic geological features, geochronology, fluid geology and tectonics ore field and so forth, which to limit the age of diagenesis and mineralization, and to confer the source of fluid, the source of minerals, enrichment rules of metallogenesis, etc. Ultimately determining the Nihe iron ore deposits geological body and deliberating the genesis. On the basis of the above-mentioned study, dealing the research with the regional structure-construction-fluid-mineralization as the main line, the iron ore deposits and structural-volcano-hot events in time-space configuration and the coupling relationship as the primary context, to explore and summarize characteristics of mineralization, space-time structure of mineralization and metallogenic regularity, and to further deepen knowledge of the continental sub-volcanic hydrothermal iron ore-forming mechanism and mineralization model. Through the comprehensive study of indoor and outdoor, the paper have made made the following main understanding and results:
     (1) Though rock microphysiography identification, rock geochemical analysis shows that Luzong region volcanic-sub-volcanic rocks are mainly a set of alkaline-sub-alkaline basaltic trachyte, trachyandesite, rough dacite, tephrite and so on. Geochemical features indicate that Luzong volcanic rocks with medium to high SiO2, alkali-rich, potassium-rich, high-aluminum and titanium-poor characteristics. Potassium was significantly to be metasomatism, mobilization and migration out from rock in the mineralization stage of alkali feldspar. Volcanic rock-sub-volcanic-intrusive rock evolution from morning till night, SiO2 and TiO2, Fe2O3, FeO, MgO, CaO,P2O5, etc.was negatively correlated, but SiO2 and A12O3, K2O, Na2O showed a certain positive correlation.In Luzong region, the volcanic and intrusive rocks differentiation index showed both of them have the same differentiation trend, they are the homologous products, and also has the same magma evolution characteristics with mesozoic era volcanic-subvolcanics in Nanjing-Wuhu basin.
     (2) Luzong volcanic trace elements relatively primitive mantle, significantly enriched in Rb, Pb, Hf, Th and other large ion lithophile elements, but Nb, Ti, Y,et al. high field strength elements and P element are relatively depleted, the variation characteristics between volcanic and intrusive rocks trace elements relatively primitive mantle-normalized spider diagrams is similar,which showed that sub-volcanic body and syenite-monzonite intrusions trace elements in Nihe mining area have characteristics of succession with volcanic features of crystallization differentiation, and the advanced degree of the late magmatic differentiation enhancing. It is the homologous heteropic phases product with a complete magmatic evolution series.
     (3)The REE curves shape about volcanic,subvolcanic and intrusive rocks in Nihe mining area is similar,which all showed a relatively smooth Right type. LREE and HREE clear differentiation, LREE enriched, HREE loss, and all rocks have the characteristics of light rare earth fractionation significantly higher than the heavy REE fractionation. REE distribution patterns may be related to partial melting of enriched mantle and crustal material of different degree of contamination.
     (4) the Sr-Nd isotopes and Pb isotopes showed that both volcanic and intrusive rocks are derived from the deep mantle, and both are the homologous heteropic phases product of fractional crystallization of magma evolution.
     (5) According to field survey, combined with the systematic indoor petrographic identification,summed up the characteristics of rock alteration zoning and the corresponding alteration mineral zoning in Nihe iron ore deposit, bottom-up as follows:the lower light-colored alteration zone (pyroxene-potassium feldspar-albite-apatite-anhydrite)→dark alteration zone (pyroxene- apatite-magnetite- anhydrite,and local shows garnet)→superimposed alteration zone (apatite-magnetite- anhydrite- hematite-pyrite)→upper light-colored alteration zone (quartz- kaolinite- chlorite- carbonate- Hydromica,etc.).
     (6) Through analyzed and summarized the physical and chemical conditions of mineralization, revealing that the magnetite of Nihe and Luo River iron ore deposits have the features of multi-stage mineralization. The formation of late magmatic fractional crystallization of magnetite crystallization temperature (T) is:775~1152℃, oxygen fugacity (fo2) is: 10-8.96~10-15.27 (according to Buddington and Lindsley,1964); T=711.04~1114.39℃, aO2=1.86×10-8~3.61×10-16(according to R. Powell and M. Powell,1977). Both methods obtained almost the same range of temperature and oxygen fugacity, which significantly higher than the formation temperature of hydrothermal magnetite. The main magnetite mineralization stage is pyroxene-anhydrite-magnetite mineralization stage, forming temperature is 350~506℃. Oxygen fugacity (fo2), sulfur fugacity (fs2) and acidity-basicity (pH) and other physical and chemical parameters indicate that pyroxenite and magnetite are the product for the same period,which formed under the combined action of high sulfur, high oxygen and acid environment. From the late magmatic to late hydrothermal alteration,ore-forming environment evolution from weak acidic environment of high oxygen sulfur into hypoxia-low sulfur and strongly acidic environment.
     (7) Using high-precision zircon dating technique U-Th-Pb method to determine the diagenetic age of magmatic mineralization, preliminary limit the metallogenic chronology is between 128~134Ma. To synthesize diagenetic mineralization theory at home and abroad and the metallogenic evolution sequence of mineralization types and associated chronology data in Luzong region can be further constrained reasonable time limit for Nihe iron ore deposit mineralization of 132~131Ma. So as to establish the temporal structure of metallogenic Luzong basin.
     (8) By the previous data analysis and isotope geochemistry, the oxygen isotope characteristics of magnetite in the magnetite ore deposit and magnetite in volcanic rocks of Luzong Basin show that iron oxide in iron ore and iron oxide in volcanic rocks may be of the the same source,the iron mineral were extracted from volcanic rocks by metasomatism. Lead isotope showed a characteristics of deep fluid source. Nihe-Luo River iron ore deposits of ore-forming hydrothermal sulfur may be part from rift basins the underlying strata,especially marine anhydrite layer in Zhou Chong village Triassic, the rest is from the deepen carried by magma. According to quartz-water oxygen isotope fractionation as a function of temperature work out that the water stage in the dark alteration stage and generation phase of magnetite stage is in the range of magmatic water, and the light-colored alteration pyritization stage may have participated in meteoric water.
     (9) According to the output features of Nihe iron deposit ore body, ore fabric characteristics, wall rock alteration and mineralization alteration features, forming ages, ore resouses,etc., discussion and analysis that Nihe-Luo River iron ore deposits are the continental subvolcanic magmatic-hydrothermal type deposit, the ore host rock of iron ore deposit is diorite porphyry.
     (10) According to the macro-geological field investigation and indoor micro-identification test and analysis, summarized and analyses the geological features and mineralization geological factors of Nihe iron ore deposits, ore body position significantly integrated control by stratum-tectonic-magmatic construction, mineralization is relevant to construction-magma-hot events, local wall rock hydrothermal alteration plays an important role in promoting mineralization enrichment.
     (11) Summarized the distribution law of spatial and temporal related to continental sub-volcanic iron deposits in Luzong region, clarify structure-magma-liquid-mineralization relationship, and establishment comprehensive metallogenic model for Luzong Basin continental sub-volcanic-type iron deposits,which provide important theoretical basis for study area prospecting.
引文
[1]常印佛,刘湘培,吴言昌.长江中下游铜铁成矿带[M].北京:地质出版社,1991.134-147.
    [2]翟裕生,姚书振,林新多等.长江中下游地区铁铜(金)成矿规律[M].北京:地质出版社,1991.1-240.
    [3]吕庆田,侯增谦,杨竹森,等.长江中下游她区的底侵作用及动力学演化模式:来自地球物理资料的约束[J].中国科学(D辑),2004.34(9):783-794.
    [4]周涛发,范裕,袁峰,2008.长江中下游成矿带成岩成矿作用研究进展[J].岩石学报,2008.24(8):1665-1678.
    [5]董树文.长江中下游铁铜矿带成因之构造分析[J].中国地质科学院院报,1991.23:43-56.
    [6]董树文,吴宣志,高瑞,卢德源,李英康,何义权,汤加富,曹奋扬,侯明金,黄得志.大别造山带地壳速度结构与动力学[J].地球物理学报,1998.41(3):349-361.
    [7]任启江,刘孝善,徐兆文,邱德同,胡文煊,方昌泉,阮惠础,董火根,李兆麟,吴启志.安徽庐枞中生代火山构造洼地及其成矿作用[M].北京:地质出版社,1991.1-206.
    [8]任启江,王德滋,徐兆文,董火根,潘龙泉,杨荣勇,方昌泉,胡进安.安徽庐枞火山—构造洼地的形成、演化及成矿.地质学报,1993.67(2):131-145.
    [9]刘洪,邱检生,罗清华,徐夕生,凌文黎,王德滋.安徽庐枞中生代富钾火山岩成因的地球化学制约[J].地球化学,2002.31(2):129-140.
    [10]宁芜研究项目编写小组.宁芜玢岩铁矿[M].地质出版社,1978.
    [11]唐永成,邢凤鸣,吴言昌,等.安徽沿江地区铜金多金属矿床地质[M].北京:地质出版社,1998.25-120.
    [12]刘珺.安徽庐枞火山岩盆地中巴家滩岩体的地质地球化学特征和成矿潜力评价[C].硕士论文,合肥:合肥工业大学,2005b:
    [13]曹毅.安徽庐枞盆地中生代A型花岗岩类及其岩石包体研究[D].硕士学位论文,北界:中国地质大学.2008
    [14]安徽省地质矿产开发局1:50000区调地质调查报告(义津桥、枞阳、庐江、矾山)[R].安徽省地质矿产开发,1981.
    [15]段超.安徽庐枞盆地龙桥铁矿床地质地球化学特征和矿床成因研究[D].硕士学位论文,合肥:合肥工业大学,2009.
    [16]张寿稳.安徽省枞阳县拔茅山铜矿地质特征[J].资源调查与环境,2007.28(3):193-197.
    [17]吴明安,张千明,汪祥云,等.安徽庐江龙桥铁矿[M].北京:地质出版社,1996.
    [18]吴明安,侯明金,赵文广.安徽省庐枞地区成矿规律及找矿方向[J].资源调查与环境,2007.28(4):269-277.
    [19]汤家富,陆三明,李建设,韦导忠.安徽庐枞火山岩盆地与邻区基底构造变形、形成 演化及其对矿床分布的控制[J].岩石学报,2010.26(9):2587-2597.
    [20]刘昌涛.安徽庐枞盆地硫铁矿床地质特征及控矿因素[J].化工地质,1994.16(3):163-171.
    [21]安徽地勘局327地质队.矾山镇幅、将军庙幅1:50000区域地质调查报告[R].1981
    [22]安徽地勘局327地质队.义津桥幅、枞阳县幅、汤沟镇幅1:50000区域地质调查报告[R].1984
    [23]安徽地勘局327地质队.盛桥幅、槐林咀幅、石涧埠幅、庐江县幅、开城桥幅1:50000区域地质调查报告[R].1988
    [24]安徽地勘局327地质队.牛埠幅、周潭幅1:50000区域地质调查报告[R].1994
    [25]周涛发,宋明义,范裕,袁锋,刘珺,吴明安,钱存超,陆三明.安徽庐枞盆地中巴家滩岩体的年代学研究及其意义[J].岩石学报,2007.23(10):2379-2386.
    [26]中国科学院地球化学研究所.宁芜玢岩铁矿床形成机理[M].北京:科学出版社,1987.
    [27]马立成.庐—枞火山岩盆地深部构造作用与成矿[D].博士学位论文,北京:中国地质科学院,2009.
    [28]张季生,高锐,李秋生,等.庐枞火山岩盆地及其外围重、磁场特征[J].岩石学报,2010.26(09):2613-2622.
    [29]高锐,卢占武,刘金凯,等.庐-枞金属矿集区深地震反射剖面解释结果——揭露地壳精细结构,追踪成矿深部过程[J].岩石学报,2010.26(09):2543-2552.
    [30]徐兆文,任启江,杨荣勇,等.安徽庐枞地区脉状铜矿、铜金矿化分布规律和矿床模式.地质与勘探[J].1992.28(1):8-16.
    [31]吕庆田,韩立国,严加永,等.庐枞矿集区火山气液型铁、硫矿床及控矿构造的反射地震成像[J].岩石学报,2010.26(09):2598-2612.
    [32]Le Maitre R.M..A Classification of Igneous Rocks and Glossary of Terms [M]. Oxford: Blackwell.1989.
    [33]J.A.Winchester and P.A.Floyd,1977. Geochemical discrimination of different magma series and theirdifferentiation products using immobile elements[J], Chemical Geology, vol.20, pp.325~343.
    [34]邱家骤.确定陆相火山岩名称、酸度、碱度系列和组合的简便化学方法[J].地质与勘探,1979.8期.
    [35]赵崇贺.中基性火山岩成分的ATK图解与构造环境[J].地质科技情报,1989.8(4):1-5.
    [36]Irvine T N and Barager W R A. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences,1971,8:523~548.
    [37]刘珺,袁峰,范裕,等.庐枞井边-盘珠洼地区中生代岩浆活动的构造背景[J].合肥工业大学学报,2005a.28(5):486-489.
    [38]袁峰,周涛发,范裕,等.庐枞盆地中生代火山岩的起源、演化及形成背景[J].岩石学报,2008.24(8):1691-1702.
    [39]覃勇军.安徽庐枞盆地燕山期成矿地球动力学背景及成矿模式[D].中国地质大学(武汉)硕士毕业论文,2010.
    [40]A. F. Buddington等,钛磁铁矿在地质温度与岩石成因上的意义[J].地质出版社,1955. 22-25.
    [41]Buddington, A. F.& Lindsley, D. H., Iron—titanium oxide minerals and synthetic cguivalents[J]. Jour of petrol.,1964.5:310~357.
    [42]#12
    [43]徐国风,邵洁涟.磁铁矿标型特征及其实际意义[J].《地质与勘探》,1979.3:30-37.
    [44]徐国凤,丰淑庄,左大华,宋玉禄,邹振华,晁盈宽.论某矿床金属矿物的标形特征及矿床成因[J].矿物学报.1982.3:33-37.
    [45]林师整.磁铁矿矿物化学成因及演化的探讨[J],《矿物学报》,1982.3:166-174.
    [46]王文斌,王润华,李绍新,邢文臣.从磁铁矿的某些特征看闽西南地区马坑式铁矿的成因[J].华东地质,1982.28(2):109-125.
    [47]王顺金.论磁铁矿的标型特征[A].矿物学岩石学论丛[M].武汉:中国地质大学出版社,1987.139-154.
    [48]叶庆同.粤东一些铁矿床中磁铁矿的标型特征及其成因意义[J].岩矿测试,1982.1(1):44-50.
    [49]靳是琴,李鸿超.成因矿物学概论下——几种常见矿物的成因矿物学[M].长春市:吉林大学出版社,1986.
    [50]陈光远,黎美华,汪雪芳,等.弓长岭铁矿成因矿物学专辑[J].矿物岩石,1984.4(2):14-42.
    [51]陈光远,孙岱生,殷辉安.成因矿物学与找矿矿物学[M].重庆:重庆出版社,1987.234-235.
    [52]薛君治,白学让,陈武.成因矿物学[M].北京:中国地质大学出版社,1990.1-161.
    [53]贾群子.从磁铁矿的标型特征论天湖铁矿的成因[J].西北地质,1991.12(1):19-25.
    [54]赵爱醒.湖北大冶铁山铁(铜)矿床磁铁矿矿物化学及其成因研究[J].地球科学(中国地质大学学报),1990.15(4):385-396.
    [55]徐建昌.金堆城钼矿床中磁铁矿赋存特征[J].有色矿山,1994.4:1-8.
    [56]杨守业,李从先,朱金初,张文兰.长江与黄河沉积物中磁铁矿成分标型意义[J].地球化学,2000.29(5):478-484.
    [57]刘慧卓,唐跃刚.河北近北庄磁铁矿的矿物学和地球化学组成及其药用意义[J].山西大学学报:自然科学版,2007.59(1):98-102.
    [58]王中波,杨守业,王汝成,张文兰,李从先.长江河流沉积物磁铁矿化学组成及其物源示踪[J].地球化学,2007.36(2):176-184.
    [59]王顺金.宁芜玢岩铁矿中磁铁矿的成分特征与矿床成因[J].1979,全国铁矿科学讨论会;1981,全国第一届矿物学术会议.
    [60]严炳铨,吴克隆,王文腾.福建漳州复式岩体磁铁矿的成因矿物学特征[J].福建地质,1993.12(1):1-16.
    [61]王奎仁.地球与宇宙成因矿物学[M].合肥:安徽教育出版社,1989.108-129
    [62]杨群慧,林振宏,张富元,等.南海东部表层沉积物中普通角闪石河磁铁矿的特征及其成因[J].海洋地质与第四纪地质,2004.24(2):29-35.
    [63]汤蔡联.符山铁矿磁铁矿的标型特征及其实际意义[J].河北地质情报,1990.(4):32-36.
    [64]应立娟,王登红.新疆阿尔泰乔夏哈拉铁铜金矿床磁铁矿的化学成分标型特征和地质 意义[J].矿物学报,2006.26(1):59-68.
    [65]王濮,潘兆橹,翁玲宝,等.系统矿物学[M].北京:地质出版社,1982.488-491.
    [66]沈保丰,陆松年,翟安民,李增慧,于恩泽.冀南等地接触交待型铁矿床中磁铁矿的化学成分特征及其地质意义[J].地质论评,1979.25(1):
    [67]王玉往,沙建明,程春.新疆磁海铁(钻)矿床磁铁矿成分及其成因意义[J].矿床地质,2006.25(增刊):321-324.
    [68]苏欣栋.鄂东南岩体及矿床中磁铁矿地质地球化学[J].中南冶金地质,1994.2:56-60.
    [69]Wang Q, Derek A W, Xu J F, et al. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China):Implications for geodynamics and Cu-Au mineralization[J]. Lithos,2006,89(3-4):424-446.
    [70]邢凤鸣,徐祥.安徽岩浆地区橄榄安粗岩系的特征和成因[J].安徽地质,1998.8(2):1-10.
    [71]赵振华,涂光炽等.中国超大型矿床(Ⅱ)[M].北京:科学出版社,2003.1-617
    [72]谢智,李忠全,陈江峰,等.庐枞早白垩世火山岩的地球化学特征及其源区意义[J].高校地质学报,2007.13(2):235-249.
    [73]胡文暄,胡受奚.宁芜和庐极地区钠长石化的钠质来源新探[J].地质找矿论丛,1991.6(2):36-46.
    [74]胡文瑄.宁芜和庐枞地区陆相火山喷气沉积-叠加改造型铁硫矿床[M].北京:地质出版社.1991
    [75]俞沧海.安徽铜陵天马山硫金矿床物质来源探讨[J].黄金地质,2000,6(2):44-49.
    [76]周济元,陆彦.三种平面应力状态叠加及联合构造体系[J].火山地质与矿产,1996,13(3): 1-13.
    [77]邢凤鸣,徐祥.安徽沿江地区橄榄安粗岩系的特点和成因:大陆橄榄安粗岩系一例[J].安徽地质,1998.8(2):8-20.
    [78]于学元,白正华.庐枞地区安粗岩系.地球化学[J].1981.(1):57-65
    [79]黄清涛.论罗河铁矿床地质特征及矿床成因[J].矿床地质,1984.3(4):9-19.
    [80]黄清涛,尹恭沛.安徽庐江罗河铁矿[M].地质出版社,1989.
    [81]巫全淮,王华田,章纯荪,贺菊瑞.大鲍庄和罗河铁矿区硫同位素特征及其成因的探讨[J].矿床地质,1983.4(2):26-34.
    [82]Ohmoto,H.and Rye,R.O., Isotopes of surfur and carbon. in Barnes, H.L.ed, Geochemistry of hydrothermal ore deposits,2nd ed., New York, John Wiley, pp.509-567.
    [83]陈锦石等.地质科研成果选集(第一集)[M].中国科学院地质研究所编:文物出版社,1982.279-286。
    [84]张荣华,盛继福,陆成庆.庐枞火山岩盆地的矿化蚀变与矿质来源[J].中国地质科学院矿床地质研究所所刊(第二号),1982,51-62.。
    [85]储雪蕾,陈锦石,王守信.安徽罗河铁矿的硫同位素温度及意义[J].地球化学,1984.(12):350-356.
    [86]王关玉,郑淑慧,强德美,魏菊英.氧同位素和铁矿的成因[J].地质研究论文集,1982.149-159.
    [87]魏家秀.庐枞盆地火山岩矿床流体包裹体研究及矿化蚀变机理[J].中国地质科学院矿 床地质研究所所刊,1984.1:40-55.
    [88]张儒瑗,从柏林,(1983),矿物温度汁和矿物压力计,地质出版社
    [89]Powell, M.& Powell, R., A nepheline-alkali feldspar geothermometer., Conty. Mineral.Petrpl.,1977.,62,193~204
    [90]魏家秀,张荣华.从矿物包裹体特征探讨庐枞火山岩盆地罗河等铁矿床的成矿条件[J].第二届全国矿床会议论文摘要汇编 (上册),1980.131-132.
    [91]储雪蕾,陈锦石,王守信.罗河铁矿的硫同位素分馏机制和矿床的物理化学条件的研究[J].地质科学,1986,(3):276-288.
    [92]杨晓勇.郯庐断裂带南段沙溪含铜斑岩体的40Ar/39Ar年代学研究及意义[J].矿物岩石,2006.26(2):52-56.
    [93]周涛发,范裕,袁峰,等.安徽庐枞(庐江-枞阳)盆地火山岩的年代学及其意义[J].中国科学,2008.38(11):1342-1353.
    [94]周涛发,范裕,袁峰,等.庐枞盆地侵入岩的时空格架及其对成矿的制约[J].岩石学报,2010.26(9):2694-2714.
    [95]范裕,周涛发,袁峰,等.安徽庐江-枞阳地区A型花岗岩的LA-ICP-MS定年及其地质意义.岩石学报,2008.24(8):1715-1724.
    [96]薛怀民,董树文,马芳.长江中下游地区庐(江)-枞(阳)和宁(南京)-芜(湖)盆地内与成矿有关潜火山岩体的SHRIMP锆石U-Pb年龄.岩石学报,2010.26(9):2653-2664.
    [97]曾键年,覃永军,郭坤一,等.安徽庐枞盆地含矿岩浆岩锆石U-Pb年龄及其对成矿时限的约束.地质学报,2010.84(4):466-478.
    [98]覃永军,曾键年,曾勇,等.安徽南部庐枞盆地罗河-泥河铁矿田含矿辉石粗安玢岩锆石LA-ICP-MS U-Pb定年及其地质意义.地质通报,2010.29(6):851-862.
    [99]张乐骏,周涛发,范裕,等.安徽庐极盆地井边铜矿床的成矿时代及其找矿指示意义.岩石学报,2010.26(9):2729-2738.
    [100]Wang and McDougall. K-Ar and 40Ar-39Ar age on mesozoic volcanic rocks from the lower yangtzc volcanic zone, southeast china[J]. jour.geol.autralia,1980,27:121-128.
    [101]毛景文,张作衡,余金杰,等,华北及邻区中生代大规模成矿的地球动力学背景:从金属矿床年龄精测得到启示[J].中国科学D辑:地球科学,2003.33(4):289-296.
    [102]倪若水,吴其切,汪祥云,等.安徽庐江龙桥铁矿层新资料及成矿作用多阶段演化模式[J].地质论评,1994.40(6):565-575.
    [103]傅斌,任启江,邢凤鸣,等.安徽沙溪含铜斑岩40Ar-39Ar定年及其地质意义[J].地质论评,1997,43(3):310-317.
    [104]杨荣勇,任启江,徐兆文,等.安徽庐枞地区巴家滩火山-侵入体的岩浆来源.地球化学,1993,(2):197-206.
    [105]郑永飞,傅斌,龚冰.安徽黄梅尖岩体热历史及其与成矿关系:同位素证据[J].地质学报,1995,69(4):337-348.
    [106]Yuan H L, Gao Sh, Liu X M, et al. Accurte U-Pb age and trace element determinations of zricon by laser ablation—inductively coupled plasma mass spectrometry[J]. Geostandard Reasearch,2004,28:353-370.
    [107]Ludwig KR. ISOPLOT 3.00:A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication,2003.1-70.
    [108]Belousova E A,Griffin W L,O'Reilly S Y,et al. Igneous zircon:trace element composition as an indicator of source rock type. Contrib.Mineral.Petrol.,2002,143:602-622.
    [109]Hoskin P W O.Schaltegger U,. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry,2003.3:27-62.
    [110]Griffin W L,Belousova E A.Shee S,. Crustal evolution in thenorthern Yiliarn Craton:U-Pb and Hf iotope evidence from detri-tal zircon. Precambrian Research,2004,131:231-282.
    [111]Wu Yuanbao, Zheng Yongfei. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin,2004,49:1554-1569.
    [112]Li J W, Deng X D, Zhou M F et al.,2010. Laser ablation ICP-MS titanite U-Th-Pb dating of hydrothermal ore deposits:A case study of the Tonglushan Cu-Fe-Au skarn deposit,SE Hubei Province,China. Chemical Geology,270:56-67.
    [113]孙冶东,杨荣勇,任启江,刘孝善.安徽庐枞中生代火山岩系的特征及其形成的构造背景[J].岩石学报,1994.10(1):94-103.
    [114]袁见齐,朱上庆,翟裕生.矿床学[M].北京:地质出版社,1986.
    [115]罗照华,莫宣学,卢欣祥,等.透岩浆流体成矿作用——理论分析与野外论证[J].地学前缘,2007.14(3):145-181.
    [116]毛景文,张作衡,余金杰,等.华北及邻区中生代大规模成矿的地球动力学背景:从金属矿床年龄精测得到启示[J].中国科学(D辑):地球科学,2003.33(4):289-296.
    [117]毛景文,Holly STEIN,杜安道,等.长江中下游地区铜金(钼)矿Re-Os年龄测定及其对成矿作用的指示[J].地质学报,2004.78(1):121-132.
    [118]李华芹,陈富文,梅玉萍.鄂东鸡冠嘴矿区成矿岩体锆石SHRIMP U-Pb定年及其意义[J].大地构造与成矿学,2009.33(3):411-417.
    [119]谢建成,杨晓勇,杜建国,等.安徽铜陵新桥Cu-Au-Fe-S矿床黄铁矿Re-Os定年及成矿意义[J].地质科学,,2009.44(1):183-192
    [120]Wang Q, Derek A W, Xu J F, et al,. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province(eastern China):Implications for geodynamics and Cu-Aumineralization. Lithos,2006,89(3/4):424-446.
    [121]余金杰,毛景文.宁芜玢岩铁矿钠长石40Ar-39Ar定年及其意义[J].自然科学进展,2002.12(10):1059-1063.
    [122]谢桂青,毛景文,李瑞玲,等.鄂东南地区大型矽卡岩型铁矿床金云母40Ar-39Ar同位素年龄及其构造背景初探[J].岩石学报,2008.24(8):1917-1927.
    [123]张荣华.长江中下游玢岩铁矿围岩蚀变的地球化学分带形成机理[J].地质学报,1980,(1): 70-84.
    [124]张荣华,胡书敏,王军,等.长江中下游典型火山岩区水-岩相互作用[M].北京:中国大地出版社,2002.
    [125]张荣华.长江中下游玢岩铁矿围岩蚀变的地球化学分带.地质学报.1979,53(2):137-152
    [126]徐凤鸣,徐祥.安徽沿江地区岩浆岩的基本特点[J].岩石学报,1995.11(4):409-422.
    [127]路凤香,桑隆康,邬金华,等.岩石学[M].北京:地质出版社,2002.
    [128]王可南,姚培慧,中国铁矿综述[M].北京:冶金工业出版社.1992
    [129]李建旭,方维萱,刘家军.智利铁氧化物-铜-金矿床区域定位构造—矿田构造类型与特征[J].地质与勘探,2011.47(2):323-332.
    [130]方维萱,柳玉龙,张守林.全球铁氧化物铜金型(IOCG)矿床的3类大陆动力学背景与成矿模式[J].西北大学学报(自然科学版),2009.39(3):404-413.
    [131]朱志敏,曾令熙,周家云,罗丽萍,陈家彪,沈冰.四川拉拉铁氧化物铜金矿床(IOCG)形成的矿相学证据[J].高校地质学报,2009.15(4):485-495.
    [132]肖晓林,朱志敏.铁氧化物铜金矿床及其特征和分类[J].金属矿山,2009.8:72-105
    [133]王美娟,李杰美,朝银银.我国的铁氧化物型铜——金矿床特征及研究现状[J].黄金科学技术.2008,16(4):14--19
    [134]毛景文,余金杰,袁顺达,程彦博,谢桂青,侯可军,向君峰,杨宗喜.铁氧化物-铜-金(IOCG)型矿床:基本特征、研究现状与找矿勘探[J].矿床地质.2008,27(3):267-278
    [135]聂凤军,江思宏,路彦明.氧化铁型铜-金(IOCG)矿床的地质特征、成因机理与找矿模型[J].中国地质,2008,35(6):1074-1087.
    [136]应立娟,王登红,李建康,等.新疆乔夏哈拉铁铜金矿床与国内外IOCG矿床的对比研究[J].大地构造与成矿学,2008,32(3):338-345.
    [137]许德如,王力,肖勇,等.“石碌式”铁氧化物-铜(金)-钴矿床成矿模式初探[J].矿床地质,2008,27(6):681-694.
    [138]周熊.中条山铜矿峪铁氧化物型矿床地质地球化学特征研究[D].长沙:中南大学,2007.
    [139]马芳,蒋少涌.与陆相火山岩有关的铁、铜、金矿床成矿地质特征及矿床成因[J].地质找矿论丛.2005,20(4):233-241
    [140]杨耀民,涂光炽,胡瑞忠.迤纳厂稀土铁铜矿床稀土元素地球化学[J].矿物学报,2004,24(3):301-308.
    [141]李泽琴,王奖臻,刘家军,李朝阳,杜安道,刘玉平,叶琳.拉拉铁氧化物-铜-金-钼-稀土矿床Re-Os同位素年龄及其地质意义[J].地质找矿论丛,2003(01)
    [142]张兴春.国外铁氧化物铜-金矿床的特征及其研究现状[J].地球科学进展,2003,18(4):551-560.
    [143]李泽琴,胡瑞忠,王奖臻,刘家军,李朝阳,刘玉平,叶霖.中国首例铁氧化物-铜-金-铀-稀土型矿床的厘定及其成矿演化[J].矿物岩石地球化学通报,2002.21(4):258-260.
    [144]Stillitoe R H.与陆相火山作用有关的金属矿化[A].李文达.火山成矿作用[C],北京:地质出版社,1983.116-137.
    [145]王元龙,张旗,王焰.宁芜火山岩的地球化学特征及其意义[J].岩石学报,2001.17(4):565-575.
    [146]邢凤鸣.安徽沿长江地区中生代岩浆岩的碱质来源[J].安徽地质,1996.6(1):15-18.
    [147]蔡本俊.长江中下游内生铁铜矿床与蒸发岩的关系[J].山西地质科技,1979.(3):1-10
    [148]臧绍先.我国地球动力学研究的发展和展望[J].地球物理,1994.37(1):114-127.
    [149]邓起东,张裕明,徐桂林,等.中国构造应力场特征及其与板块运动的关系[J].地震地 质,1979.1:11-22.
    [150]邓晋福,莫宣学,罗照华,等.火成岩构造组合与壳幔成矿系统[J].地学前缘(中国地质大学,北京),1999,6(2):259-270.
    [151]邓晋福,吴宗絮.下扬子克拉通岩石圈减薄事件与长江中下游Cu-Fe成矿带[J].安徽地质,2001,11(2):86-72.
    [152]姚书振.长江中下游铁、铜等成矿规律及隐伏矿床预测研究成果[J].地质科技情报,1990,19(4):100-101.
    [153]吴言昌.初论安徽沿江地区成矿系统的深部构造-岩浆控制[J].地学前缘,1998,6(2):285-295.
    [154]吴言昌,曹奋扬,常印佛.初论安徽岩浆地区成矿系统的深部构造-岩浆控制[J].地学前缘,1999,6(2):285-296
    [155]杜杨松,曹毅,袁万明,等.安徽沿江地区中生代碰撞后到造山后岩浆活动和壳慢相互作用-来自火山一侵入杂岩和岩石包体的证据[J].岩石学报,2007,23(6):1294-1234.
    [156]赵斌,邢凤鸣,朱成明,等.长江中下游中性-中酸性岩浆岩的母岩浆来源及铜的成矿作用-实验研究[J].地球化学,1996.25(4):387-400.
    [157]吴利仁.华东及邻区中、新生代火山岩[M].北京:科学出版社,1984.287
    [158]邓晋福,赵国春,赵海玲,等.中国东部燕山期火成岩构造组合与造山一深部过程[J].地质论评,2000.46(1):41-48.
    [159]陶奎元,谢家莹,阮宏宏等.中国东南沿海中生代火山岩作用基本特征[J].中国地质科学院南京矿产研究所所刊,1988.9(4):12-28.
    [160]吴利仁,齐进英,王听渡,等.中国东部中生代火山岩[J].地质学报,1982,(3):223-235.
    [161]徐志刚.中国东部中生代火山岩作用的构造背景[J].地学研究.1995,(28):108-110.
    [162]聂凤军(译).1976.磁铁矿中稀土元素及其它痕量元素的分布[J].in外国矿产地质[M].1993地质矿产研究所..译自《Chemical Gcalogy》.26(2):119-133.
    [163]陈岳龙,杨忠芳,赵志丹,等.同位素地质年代学与地球化学[M].北京:地质出版社,2005,210-270;
    [164]芮宗瑶,黄崇轲,齐国明,等.中国斑岩铜(钼)矿床[M].北京:地质出版社,1984.350.
    [165]卢作祥,范永香,刘辅臣,等.成矿规律和成矿预测学[M].武汉:中国地质大学武汉,1988.
    [166]袁见齐,朱上庆,翟裕生.矿床学[M].北京:地质出版社,1986.
    [167]翟裕生,姚书振,周宗桂,等.长江中下游铜金矿床矿田构造[M].武汉:中国地质大学出版社,1999.
    [168]Zhou Taofa, Wu Mingan, Fan Yu, et.al. Geological, geochemical characteristics and isotope systematics of the Longqiao iron deposit in the Lu-Zong volcano-sedimentary basin, Middle-Lower Yangtze (Changjiang) River Valley, Eastern China. Ore Geology Reviews, 2011.1~62.
    [169]A R P Pereira, F J Rios,C A Rosiere, J D Fabris. Iron oxides of Fazendao Deposit, East Border of Quadrilatero Ferrifero, Minas Gerais, Brazil[J]. International Conference on the Applications of the Mossbauer Effect (ICAME 2009),2010. Journal of Physics:Conference Series 217:1~5.
    [170]Enver Murad and Jose D Fabris. Kaolin mining and beneficiation:The role of iron[J]. International Conference on the Applications of the Mossbauer Effect (ICAME 2009),2010. Journal of Physics:Conference Series 217:1~6
    [171]B.K. Mohapatra, P.P. Mishra, P.P. Singh, Rajeev. Manganese ore deposits in Koira-Noamundi province of Iron Ore Group, north Orissa, India:In the light of geochemical signature[J]. Chemie der Erde,2009.69:377~394.
    [172]Fang Wei-xuan, Liu Yu-long, Zhang Shou- lin, Guo Mao-hua. Three types of continental geodynamics and metallogenic models for IOCG(Iron-oxide Copper Gold Deposits from the global view[J]. Journal of Northwest University(Natural Science Edition),2009.39(3): 404~413.
    [173]Lena Virginia Soares Monteiro, Roberto Perez Xavier, et.al. Mineral chemistry of ore and hydrothermal alteration at the Sossego iron oxide-copper-gold deposit, Carajas Mineral Province, Brazil[J]. Ore Geology Reviews,2008.34:317~336.
    [174]Baker T, Mustard R, Fu, B, et al. Mixed messages in iron oxide-copper-gold systems of the Cloncurry district. Australia:inssights from PIXE analysis of halogens and copper in fluid inclusions[J]. Mineralium Dcposita,2008,43:599-608.
    [175]Mao Jingwen,Chen Yuchuan and Yu Jinjie.The iron oxide-apatite deposits in theNingwu Cretaceous Basin in the lower reach of the Yangtze river valley, China[C]//33rd international geologicalcongress, (abstracts). Oslo:International Geological Congress,2008: 33.
    [176]Benavides J, T. K. Kyser, Alan H. Clark, Oates C J, Zamora R. The Mantoverde Iron Oxide-Copper-Gold District, III Region, Chile:The Role of Regionally Derived, Nonmagmatic Fluids in Chalcopyrite Mineralization[J]. Economic Geology,2007.102 (3):415~440.
    [177]Hunt J A, Baker T and Thorkelson D J. A Review of Iron oxide copper-gold deposits, with focus on the Wernecke breccias,Yukon, Canada, as an example of a non-magmatic end member and implications for IOCG genesis and classification [J]. Exploration and Mining Geology,2007.16:209-232.
    [178]Greentree M R. Tectonstratigraphic Analysis of the Proterozoic Kangdian Iron Oxide Copper Province, Southwest China [D]. Ph.D.Thesis, University of Western Australia,2007. p.1-284.
    [179]Pollard P J. An intrusion-related origin for Cu-Au mineralization in iron oxide-copper-gold (IOCG) provinces [J]. Mineralium Deposita,2006.41:179-187.
    [180]Takeshi Saito, Naoto Ishikawa, Hiroki Kamata. Iron-titanium oxide minerals in block-and-ash-flow deposits:implications for lava dome oxidation processes[J]. Journal of Volcanology and Geothermal Research,2004.138:283~294.
    [181]Herve Diot, Olivier Bolleb, Jean-Marc Lambert, et,al. The Tellnes ilmenite deposit (Rogaland, South Norway):magnetic and petrofabric evidence for emplacement of a Ti-enriched noritic crystal mush in a fracture zone[J]. Journal of Structural Geology,2003. 25:481-501.
    [182]Sillitoe R H. Iron oxide-copper-gold deposits:An Andean view[J]. Mineralium Deposita, 2003.38:787~812.
    [183]Barton M D and Johnson D A. Alternative brine sources for Fe-Oxide(-Cu-Au) systems: Implications for hydrothermal alteration and metals [C]//Porter T M ed. Hydrothermal Iron Oxide Copper-Gold and Related Deposits[J]. A Global Perspective,2000. Volume 1. Adelaide, PGC Publishing:43-60.
    [184]Hitzman M W. Iron oxide-Cu-Au deposits:What, where, when, and why? [C]//Porter T M, ed. Hydrothermal Iron Oxide; Copper-Gold and Related Deposits[J]. A Global perspective, 2000. Volume 1:Adelaide, PGC Publishing:9-25.
    [185]Sillitoe R H. Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region[J]. Australian Journal of Earth Sciences,1997.44:373-388.
    [186]Yu-sheng Zhai, Yong-liang Xiong, Shuzhen Yao, et, al. Metallogeny of copper and iron deposits in the Eastern Yangtse Craton, east-central China[J]. Ore Geology Reviews,1996. 11:229-248.
    [187]Barton M. D. and Johnson D A. Evaporitie-souse model for igneous-related Fe oxide-(REE-Cu-Au-U)mineralization[J]. Geology,1996.24:259-262.
    [188]Hitzman M W, Oreskes N, Einaudi M T. Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-REE) deposits[J]. Precambrian Research,1992.58: 241~287.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700