用户名: 密码: 验证码:
OFDM系统中基于导频序列的信道估计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
OFDM系统的接收机需要可靠有效的信道估计结果来实现相干检测。然而实际系统中一些因素例如信道的时变等常常会降低信道估计的精度,因此在各种场景中如何提高信道估计的准确性成为了国内外专家学者研究的热点。本论文以这一技术为主线,从减小信道估计误差、对抗信道时变性两个角度切入,主要以OFDM系统中基于导频训练序列的信道估计技术为主要内容展开研究和讨论。
     本论文首先概述了无线信道的衰落特性,并研究了无线信道的线性时变基带等效模型及离散时间基带模型。由于无线多径信道的小尺度衰落与多径信道的冲激响应直接相关,因此无线多径信道通常可建模为一个线性时变信道。接着本论文就OFDM系统的时域模型和频域模型进行了研究,引出OFDM系统中基于导频序列的信道估计方法的大致过程,主要涉及到“发送端导频的设计方法”、“接收端获得导频位置的信道信息的方法”和“接收端根据导频处信道信息重建整个信道全响应的方法”这三个核心问题。
     针对发送端导频的设计方法,本论文首先阐述了导频设计的基本准则:决定最小相关时间的最大多普勒频移,和决定最小相关带宽的最大多径时延扩展,它们共同决定了导频图样在时域和频域上的间隔。在这个准则的基础上,本论文对导频的设计方法展开了研究,主要分为重叠的导频设计方法和正交的导频设计方法两种方法进行了阐述。
     针对接收端获得导频位置的信道信息的方法,本论文研究了两种典型的信道估计算法:LS算法和MMSE算法,这两种算法对应着算法复杂度和性能的两个极端。LS算法通常与多种插值算法联合使用来重建整个频带上的信道全响应,而MMSE算法由于其算法复杂度太高不易于实现,因此业界围绕其简化算法开展了很多的研究,具有代表性的比如LMMSE算法和基于SVD分解的算法。
     针对接收端根据导频处信道信息重建整个信道全响应的方法,本论文主要研究了三种具体场景,就这三种场景下的信道估计算法展开研究,通过理论分析和软件仿真得出了在算法复杂度和算法性能之间进行最优折中的改进算法:
     ●在包含虚子载波的OFDM系统中,由于虚载波的引入,使得系统在频域虚载波处的信道信息缺失,因而造成时域上的能量弥散。本文研究了含虚载波的系统中两种改进的信道估计算法,一种基于虚载波导频插值,一种基于时域迭代。仿真表明这两种算法减小了虚载波带来的能量弥散,提高了系统性能。
     ●在快速时变信道的OFDM系统中,由于多普勒频移,信道冲激响应在一个OFDM符号周期内具有时变性,这种信道的时变性影响了OFDM子载波之间的正交性,最终引起了不利的载波间干扰ICI。本文研究了基于线性逼近和分段函数逼近的改进的信道估计算法。仿真表明,改进的信道估计最好地实现了信道估计性能和算法复杂度之间的折衷。
     ●在多小区TDD-OFDM系统中,由于不同用户使用非正交的导频训练序列引起的导频污染,给系统带来较大的小区间干扰。本文针对导频污染展开分析,研究了改进的带导频污染删除的信道估计算法。仿真表明,通过插入循环移位的导频,然后进行导频干扰删除,系统能获得最大的频谱传输速率。
     总结起来,通过全文的研究分析,得知在新一代OFDM通信系统及其他新的通信场景中,信道估计始终是关键的核心技术,对它的优化改进有利于显著改善系统性能,提高传输速率和可靠性。
To implement coherent detection, receivers in OFDM system need reliable and efficient channel estimation. However, due to time variance of channel state information, channel estimation tends to be inaccuracy in real system. Therefore it is vitally important to improve the reliability of channel estimation. This thesis studies the pilot-based channel estimation in OFDM system from two aspects, one is to mitigate the channel estimation error, and the other is to decrease the effect of time-varying channel.
     The thesis firstly gives an overview of wireless fading channel, and then studies the time-varying linear baseband equivalent model and discrete-time baseband model of the wireless channel. Due to the direct correlation between small-scale fading and multi-path channel impulse response, the wireless multi-path channel can be built as a linear time-varying channel. Then the thesis discusses both time-domain model and frequency-domain model of OFDM system, and introduces general procedures of the pilot-based channel estimation scheme in OFDM system. This scheme consists of three core issues:1) pilot design at transmitter terminal,2) channel estimation based on the pilots at receiver terminal, and3) the reconstruction of channel impulse response.
     In terms of pilot design at transmitter, this paper firstly describes the basic principles of pilot design:the maximum Doppler shift, which determines the minimal coherence time, and the maximum delay spread, which determines the minimal coherence frequency, jointly affect the interval between pilot pattern in both time and frequency domain. Then this thesis further elaborates the overlapping pilot design methodology and orthogonal pilot design methodology.
     In the perspective of channel estimation based on the pilots at receiver terminal, this thesis discusses two typical channel estimation algorithm:LS and MMSE. These two algorithms represent the trade-off between computation complexity and performance. Combined with interpolation algorithm, LS is often used to reconstruct the channel impulse response in frequency domain, while MMSE is hard to implement, due to the large computation complexity. Therefore, it is necessary to propose a novel algorithm that can improve the performance and lower the complexity simultaneously, such as LMMSE and SVD-based algorithm.
     With regard to the reconstruction of channel impulse response, this thesis focuses on three major scenarios, based on which, the channel estimation is conducted. From the theoretical analysis and simulation result, the conclusion can be obtained that the proposed scheme achieves compromise between computation complexity and performance.
     ●In OFDM system with virtual subcarriers, the channel information is partially lost in the area of virtual subcarriers. Eventually, it leads to the energy leakage in time domain. This paper mainly discusses two improved channel estimation algorithms in OFDM system with virtual subcarriers, one is based on virtual subcarrier pilot interpolation, and the other is based on iteration in time domain. Simulation results illustrate that both of these two algorithms reduce the energy leakage brought by virtual carrier, and improve the system performance.
     ●In fast time-varying channel, due to the Doppler shift, the channel impulse response is time-variant during one OFDM symbol. It plays a negative effect on orthogonality between subcarriers in OFDM system, which eventually leads to inter-cell interference (ICI). This thesis proposes an improved channel estimation algorithm on the basis of linear-approximation and piecewise approximation. The simulation results demonstrate that the proposed scheme achieves the better compromise between channel estimation performance and computation complexity.
     ●In multi-cell TDD-OFDM system, the pilot contamination, resulted from non-orthogonal pilot training sequence used by different users, can cause larger ICI. This paper analyzes pilot contamination, and designs a novel channel estimation algorithm to mitigate the pilot contamination. Simulation results show that after cyclic shift pilot interpolation and pilot interference cancellation, the maximum transmission rate is obtained.
     To sum up, through research and analysis, channel estimation is the key technology in the new generation of OFDM communication system. It is beneficial to optimize the channel estimation methods to improve the system performance, to gain higher transmission rate, and to enhance reliability.
引文
[1]J. G. Proakis, "Digital Communication",4th Edition, McGraw-Hill,2001
    [2]J. Barry, E. Lee and D. G. Messerschmitt, "Digital Communication", Third Edition, Kluwer,2003
    [3]S. M. Alamouti, "A simple transmit diversity technique for wireless communications", IEEE JSAC, Oct.1988, pp.1451-1458
    [4]Rappaport, S. Theodore, "Wireless Communication:Principles and Practice", Publishing House of Electronics Industry,2004
    [5]R. Steele, "Mobile Radio Communications", Piscataway, NJ:IEEEPress,1992
    [6]David Tse, Pramod Viswanath, "Fundamentals of Wireless Communication", Cambridge University Press,2005
    [7]李立华,王勇,张平等,《移动通信中的先进信号处理技术》,北京邮电大学出版社,2005
    [8]王文博,郑侃,《宽带无线通信OFDM技术》,人民邮电出版社,2003
    [9]吴伟陵,牛凯,《移动通信原理》,电子工业出版社,2006
    [10]罗仁泽,《新一代无线移动通信系统关键技术》,北京邮电大学出版社,2007
    [11]谢显中,雷维嘉,《移动通信中的空时信号处理》,电子工业出版社,2008
    [12]汪裕民,《OFDM关键技术与应用》,机械工业出版社,2007
    [13]黄韬,袁超伟,杨睿哲等,《MIMO相关技术与应用》,2006
    [14]Eric Lawrey, "The suitability of OFDM as a modulation technique for wireless telecommunications, with CDMA comparision", James Cook University,1997
    [15]Sheffi N., Sadot D., "Direct modulation and coherent detection optical OFDM", IEEEI, Nov.2010:pp.000808-000810
    [16]Chih-Liang Chen, Sau-Gee Chen, "Non-Coherent Cell Identification Detection Methods and Statistical Analysis for OFDM Systems", IEEE Transactions on Communications, vol.58, issue 11, Nov.2010:pp.3231-3243
    [17]Hsiao-Hwa Chen, M. Guizani, "Next Generation Wireless Systems and Networks", John Wiley and Sons Ltd,2006
    [18]Mohinder Jankiraman, "Space-Time Codes and MIMO Systems", ARTECH HOUSE, INC.,2004
    [19]Min Dong, Lang Tong, "Optimal design and placement of pilot symbols for channel estimation", IEEE Transactions on Signal Processing, vol.50, issue 12, Dec.2002:pp.3055-3069
    [20]S. Verdu, "Multiuser Detector", University of Cambridge Press,1998
    [21]G A. Franco, G Lachs, "An Orthogonal Coding Technique for Communications", I. R. R. Int. Conv. Rec., vol.8,1961:pp.126-133
    [22]R. W. Chang, "Synthesis of Band-Limited Orthogonal Signals for Multichannel Data Transmission", Bell Sys. Tech. J., vol.45, Dec.1966:pp.1775-1796
    [23]S. B. Weinstein, P. M. Ebert, "Data Transmission by Frequency Division Multiplexing Using the Discrete Fourier Transform", IEEE Transaction on Communication, COM-19(5), Oct.1971:pp.628-634
    [24]I. Koffman, V. Roman, "Broadband Wireless Access Solutions Based on OFDM Access in IEEE 802.6", IEEE Communication Magazine, vol.40, no.4, Apr. 2002:pp.96-103
    [25]3GPPTS 36.211, "Physical Channels and Modulation", R11.0.0, Sept.2012
    [26]3GPP2 TSG-C C.S0084-001, "Physical Layer for Ultra Mobile Broadband (UMB) Air Interface Specification", v 3.0, Aug.2008
    [27]Y. Li, H. Wang, "Channel Estimation for MIMO-OFDM Wireless Communications", IEEE PIMRC Beijing, vol.3, Sept.2003:pp.2891-2895
    [28]J. X. Du, Y. Li, "Channel Estimation for D-Blast OFDM Systems", IEEE Globecom Conf., vol.1, Nov.2002:pp.343-347
    [29]G Auer, "Channel Estimation for OFDM Systems with Multiple Transmit Antennas by Filtering in Time and Frequency", IEEE VTC. Conf., vol.2, Oct. 2003:pp.1204-1208
    [30]G Auer, "Channel Estimation in Two Dimensions for OFDM Systems with Multiple Transmit Antennas", IEEE Globecom, vol.1, Dec.2003:pp.322-326
    [31]H. Arslan, G E. Bottomley, "Channel Estimation in Narrowband Wireless Communications Systems", Wireless Communication and Mobile Comp., vol.1, no.2, Apr.2001:pp.201-219
    [32]A. I. EI-Arabawy, S. C. Gupta, "Reduced Mobile Complexity Scheme for Fast Fading Channel Estimation in OFDM-FDD Mobile Communication Systems", IEEE Int'l Conf. Universal Personal Commun., vol.1, Oct.1997:pp.274-278
    [33]S. G Kang, Y. M. Ha, E. K. Joo, "A comparative investigation on Channel Estimation Algorithms for OFDM in Mobile Communications", IEEE Transaction on Broadcast, vol.49, no.2, June 2003:pp.142-149
    [34]I. Harjula, A. Mammela, Z. Li, "Comparison of Channel Frequency and Impulse Response Estimation for Space Time Coded OFDM Systems", IEEE VTC, vol.4, Sept.2002:pp.2081-2085
    [35]H. Tang, K. Y. Lau, R. W. Brodersen, "Interpolation-Based Maximum Likelihood Channel Estimation Using OFDM Pilot Symbols", IEEE Globecom, vol.2, Nov. 2002:pp.1860-1864
    [36]M. K. Ozdemir, H. Arslan, E. Arvas, "MIMO-OFDM Channel Estimation for Correlated Fading Channels", IEEE Wireless and Microwave Technol. Conf., vol. 1,Apr.2004:pp.1-5
    [37]Y. Li, "Simplified Channel Estimation for OFDM Systems with Multiple Transmit Antennas", IEEE Transaction on Wireless Communication, vol.1, no.1, Jan.2002:pp.67-75
    [38]周炯槃,庞沁华,续大我等,《通信原理》,第三版,北京邮电大学出版社,2008年:238-240页,372-376页
    [39]吴伟陵,”线性时变信道分析“,北京邮电大学学报,1979年1月
    [40]H. L. Bertoni, "Radio Propagation for Modern Wireless System", Prentice Hall, Inc.,2000
    [41]E. Biglieri, J. Proakis, S. Shamai, "Fading Channels:Information Theoretic and Communications Aspects", IEEE Transaction on Information Theory, vol.44, no. 6,1998:pp.2619-2692
    [42]A. Paulraj, R. Nabar, D. Gore, "Introduction to Space-Time Wireless Communications", Cambridge University Press,2003
    [43]W. C. Jakes, "Microwave Mobile Communications", John Wiley, New York, 1974
    [44]EUR 12160, "Digital and Mobile Radio Communications", COST 207,1989
    [45]3GPP TR 25.996, "Spatial Channel Model for Multiple Input Multiple Output (MIMO) Simulations", Sep.2003
    [46]J. J. van de Beek, O. Edfors, M. Sandell, "On Channel Estimation in OFDM Systems", IEEE VTC Conf., Jul.1995:pp.815-819
    [47]孙婉璐,TDD系统信道估计与MIMO传输技术研究,[学位论文],北京邮电大学,2011年1月
    [48]陈秀鹏,未来无线通信系统导频设计技术研究,[学位论文],北京邮电大学,2010年1月
    [49]J. H. Lee, "Pilot Symbol Initiated Iterative Channel Estimation and Decoding for QAM Modulated OFDM Signals", IEEE VTC conf., vol.2, Apr.2003:pp.22-26
    [50]R. Negi, J. Cioffi, "Pilot Tone Selection for Channel Estimation in a Mobile OFDM System", IEEE Transaction on Consumer Electronics, vol.44, no.3, Aug. 1998:pp.1122-1128
    [51]Zhongshan Wu, Jianqiang He, Cuoxiang Gu, "Design of Optimal Pilot-tones for Channel Estimation in MIMO-OFDM Systems", IEEE Communications Society /WCNC 2005:pp.12-17
    [52]I. Barhumi, G. Leus, M. Moonen, "Optimal Training Design for MIMO-OFDM Systems in Mobile Wireless Channels", IEEE Transaction on Signal Processing, vol.51, June 2003:pp.1615-1624
    [53]C. Suh, C. S. Wang, H. Choi, "Preamble Design for Channel Estimation in MIMO-OFDM Systems", IEEE Globecom,2003:pp.317-321
    [54]S. Ohno, G. Giannakis, "Capacity Maximizing MMSE-optimal Pilots for Wireless OFDM over Frequency-selective Block Rayleigh-fading Channels", IEEE Trans. Inf. Theory, vol.50, no.9, Sept.2004:pp.2138-2145
    [55]Vasanth Kumar, Bhattacharjee R., "Analysis of the LS Estimation Error for a MIMO System on a Rician Fading Channel", IEEE TENCON, Nov.2008
    [56]宋磊,协同中继系统物理层技术研究,[学位论文],北京邮电大学,2012年6月
    [57]Liu Kewen, XingKe, "Reaserch of MMSE and LS Channel Estimation in OFDM Systems", IEEE ICISE, Dec.2010:pp.2308-2311
    [58]O. Edfors, M. Sandel, J. J. van de Beek, "OFDM Channel Estimation by Singular Value Decomposition", IEEE Trans. Commun., vol.46, no.7, July 1998:pp. 931-939
    [59]Wanlu Sun, Lihua Li, "A Time-domain Iteration-based Channel Estimation Method in OFDM Systems with Null Subcarriers", IEEE VTC, May 2010
    [60]Wanlu Sun, Lihua Li, Wei Yang, "A Simple Channel Estimation Method in MIMO-OFDM Systems with Virtual Subcarriers", IEEE WCNIS, June 2010:pp. 35-39
    [61]Liang Zhang, Zhihong Hong, Louis Thibault, "Improved DFT-based Channel Estimation for OFDM Systems with Null Subcarriers", IEEE VTC, Sept.2009
    [62]Dong Li, Feng Guo, GuoSong Li, "Enhanced DFT Interpolation-based Channel Estimation for OFDM Systems with Virtual Subcarriers", IEEE VTC, Nov.2001: pp.1977-1987
    [63]K. Kwak, S. Lee, J. Kim, "A New DFT-Based Channel Estimation Approach for OFDM with Virtual Subcarriers by Leakage Estimation", IEEE Trans, on Wireless Commun., vol.7, no.6, June 2008:pp.2004-2008
    [64]K. Zheng, J. Su, W. Wang. "DFT-based Channel Estimation in Comb-type Pilot-aided OFDM Systems with Virtual Carriers", IEEE PIMRC, Sept.2007
    [65]Xenofon G. D., Rodolphe L., "Robust Channel Estimation via FFT Interpolation for Multicarrier Systems", IEEE VTC, Apr.2007:pp.1861-1865
    [66]Jiann-Ching G., Havish K., "Low Complexity Channel Estimation for Minimizing Edge Effects in OFDM Systems", IEEE VTC, Apr.2007:pp.1440-1444
    [67]Xiaolin Hou, Zhan Zhang, Hidetoshi Kayama, "Low-complexity Enhanced DFT-based Channel Estimation for OFDM Systems with Virtual Subcarriers", IEEE PIMRC, Sept.2008
    [68]L. Zhao, P. Zhang, "Mitigating Intercarrier Interference by Rotating Received Symbols in OFDM Communication Systems", IET Int'l Conf.,2006:pp.6-9
    [69]J. Kim, S. Nam, D. S. Kwon, "Time-varying Channel Estimation in OFDM Systems", IEEE VTC, May 2008:pp.1409-1412
    [70]Y. Mostofi, D. C. Cox, "ICI Mitigation for Pilot-aided OFDM Mobile System" IEEE Trans. Commun., vol.4, no.2, May 2005:pp.765-774
    [71]S. A. Dyer, J. S. Dyer, "Cubic-Spline Interpolation", IEEE Instrumentation & Measurement Magazine, vol.4, no.1, Mar 2001:pp.44-46
    [72]K. Kwak, S. Lee, H. Min, "New OFDM Channel Estimation with Dual-ICI Cancellation in Highly Mobile Channel", IEEE Trans. Commun., vol.9, no.10, Oct.2010:pp.3155-3165
    [73]谢显中,《基于TDD的第四代移动通信技术》,电子工业出版社,2005
    [74]Kumar Appaiah, Alexei Ashikhmin, Thomas L. Marzetta, "Pilot Contamination Reduction in TDD Systems", IEEE ICC, May 2010
    [75]Jubin Jose, Thomas L. Marzetta, "Pilot Contamination and Precoding in Multi-Cell TDD systems", IEEE Trans., vol.10, issue.8,2011:pp.2640-2651
    [76]B. Copalakrishnan, Nihar Jindal, "An Analysis of Pilot Contamination on Multi-user MIMO Cellular Systems with Many Antennas", IEEE SPAWC,2011: pp.381-385
    [77]Jubin Jose, Alexei Ashikhmin, Thomas L. Marzetta, "Pilot Contamination Problem in Multi-cell TDD Systems", IEEE International Symposium on Information Theory, July 2009:pp.2184-2188

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700