用户名: 密码: 验证码:
西藏冈底斯泽当矿田构造岩浆演化与成矿作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冈底斯造山带经历了从特提斯俯冲阶段到陆陆碰撞阶段的多阶段复杂的构造运动和岩浆演化作用,并且发育了多阶段、多类型、多矿种的成矿作用,形成了规模巨大的成矿带。本论文以位于冈底斯南缘的、紧邻雅鲁藏布江缝合带的泽当矿田为研究对象,通过野外地质调查,结合各种同位素测年、岩石地球化学测试、ESR测试等技术,对泽当矿田构造特征、岩浆作用类型、矿床特征和成矿作用等进行详细调查研究,分析从特提斯洋俯冲阶段、主碰撞造山阶段、晚碰撞转换阶段以及后碰撞伸展阶段,泽当矿田的构造岩浆演化与成矿作用的关系,深化对泽当矿田成矿母岩、控矿构造以及成矿作用的认识,探讨泽当矿田成矿潜力和成矿规律,取得了以下成果和认识:
     1、特提斯俯冲阶段:泽当地块中斜长花岗岩的锆石U-Pb年龄为152.5-156Ma,具有埃达克质,可能与洋内弧环境下板片俯冲熔融有关;安山质玄武岩具有岛弧岩浆岩特征,微量元素上显示IAB型特征。说明泽当地区在晚侏罗世可能发生了一期洋内俯冲。晚白垩世发育具有埃达克特征的岩浆侵入活动,岩体时代为94.1Ma,埃达克岩可能来自俯冲板片,并在上升过程中与幔源物质发生了混染。这期埃达克岩形成了桑布加拉矽卡岩矿床,含矿辉钼矿的Re-Os年龄为(93.3±4.1)Ma;
     2、碰撞造山阶段:主碰撞阶段侵入岩的时代为50~63Ma,地球化学特征为具有大陆边缘弧特征的I型高钾钙碱性岛弧岩浆岩。这类岩浆具有成矿的优势条件,在泽当矿田外围发现有成矿作用,但是泽当矿田目前尚未有相关成矿作用的报导;在大竹卡组内部发现了火山岩夹层,获得锆石U-Pb年龄集中在49.6-52.6Ma之间,通过对砂岩ESR测试,年龄为19.8-28.5Ma。重新厘定了大竹卡组的时代,将下限提前到始新世早期,地层时限为E2-N1。说明至少在52Ma之前,泽当地区特提斯洋已经完全闭合,陆陆碰撞造成的山脉隆升作用已经发生;
     3、晚碰撞阶段:泽当矿田最主要的成矿阶段,主要为矽卡岩型矿床,矿体受侵入岩与围岩的接触边界控制。成矿母岩的时代集中在29.88-31.64Ma之间,与含矿辉铝矿的Re-Os时代同期。成矿母岩具有两种类型,一种具有埃达克特征,一种具有岛弧岩浆岩特征。说明泽当矿田在该阶段的成矿母岩来源具有多样性,反应不同的构造环境导致的不同的岩浆来源;
     4、后碰撞阶段:冈底斯反冲断层和冈底斯逆冲断层相向对冲到大竹卡组之上,因此两期断层的下限至少要晚于19.8Ma。两期断层破坏了早期的成矿作用,是主要的破坏性构造。除了大规模的断层活动外,泽当矿田广泛发育与逆冲推覆和裂谷相关的北东、北西、南北向节理、裂隙,被热液充填,发生矿化现象。单一规模虽然不大,但是某些节理密集或是断层活动强烈处,也能成为较为可观的矿化现象。
From the Tethys subduction to the continental collision, the Gangdese orogenic belt has expericnecd complex evolution and development about tectonism, magmatism and metallization, which forming a gaint metallogenic belt with great varieties of stage,type and mineral.
     In this thesis,we regard Zetang orefield,located in the southern margin of the Gangdese ore belt and adjacent to the Yarlung Zangbo suture zone,as the research object. We undertake inverstigation and research about the structure feature, magma types,deposit characteristics and metallization based on field geological survey and testing methods,including isotope dating,lithogeochemical testing and Electron Spin Resonance method and so on. Our study was divided into four stages, correspongding to the orogenetic process,namely Tethys subduction stage, main collisional orogenic stage,late-collisional transformation stage and post-collisional extension.According to the research about each stage,summarize the relationship between tectonic evolution and mineralization.It is propitious to strengthen the understanding of ore host rock,ore-controlling structural and metallization,besides,it is also in favor of investigating the metallogenic potential and metallogenic regularities. The achievements are as follows.
     1.Tethys subduction stage:Plagioclase granite from Zetang terrane has the Zicon U-Pb ages from152.5Ma to156Ma,and show the adakite character. The source of host rock maybe come from the melt plate subduction, associated with the intra-oceanic arc environment. Moreover, the andesite basalt also has the characteristics of magmatic arc, its trace element display IAB type character. All the results suggest that, it was exist a intra-oceanic subduction in Late Jurassic. At the subduction late stage, like-adakite magma had intruded, with94.1Ma age of Zicon U-Pb. The adakite maybe come from subduction plate, and mixed with mantle material. This period adakite intrude wall rock, forming the Sangbujiala deposit. The Re-Os age of molydenite in Sangbujiala deposit is (93.3±4.1) Ma, in Late Cretaceous.
     2.Main collisional orogenic stage:The age of this period intrusive rock is50-63Ma.and the geochemical characteristics indicate they are island arc magmatic rocks with Ⅰ type, high calc-alkaline,potassium and continental margin arc characters. This kind of magmatic has an advantage of mineralization. Researchers have found this period mineralization nearby Zetang but not in Zetang orefield. Zicon U-Pb ages of the volcano rock interlayer in Dazhuka group are between49.6Ma with52.6Ma. and the ESR ages of the sandstone are from19.8Ma to28.5Ma.We redefine the Dazhuka group age with these results, from early Eocene to Miocene. The age of Dazhuka group illustration the Tethys ocean had closed completely and the mountains caused by collision has been uplifting before52Ma, in Zetang.
     3.Late-collisional transformation stage:It is the main metallogenic stage of Zetang orefield.The deposits are skarn and the ore bodies are controlled by the contact boundary of intrusive rocks and wall rocks. The era of mother rocks concentrated at29.88-31.64Ma, in accordance with the Re-Os age of molydenite in deposits. The ore-forming mother rock has two types, one with adakitic features and the other with arc magmatic features. Suggesting that the mother rock has diversity sources and resulting in different tectonic environment.
     4.Post-collisional extension:Gangdese Thrust(GT) and Great Counter Thrust(GCT) thrust upon Dazhuka group in opposite direction, thus the two thrust systems at least later than19.8Ma. Besides, they are become the most important structure destructing the early mineralization. In addition to these faults, Zetang orefield widely developed north-east, north-west and north-south trend joints and cracks, which were filled by hydrothermal, and developmented weak mineralization.
引文
Aitchison J C, Badengzhu, Davis A M, et.al.2000.Remnants of a Cretaceous intra-oceanic subduction system within the Yarlung-Zangbo suture (southern Tibet)[J].Earth and Planetary Science Letters, 183:231~244.
    Aitchison J C, Davis A M, Badengzhu, et al.2002.New constraints on the India-Asia collision:the lower Miocene Gangrinboche conglomerates, Yarlung-Tsangpo suture zone,Tibet[J].Sedimentary Geology, 150:247~273.
    Allegre C J, et al.1984. Strueture and evolution of the Himalayan-Tibet orogenic belt[J].Nature,307: 17~22.
    Atherton M P, Petford N.1993.Generation of sodium-rich magmas fromnewly underplated basaltic crust[J],Nature,362:144~146.
    Barbarin B.1990.Granitoids main petrogenetic classifications in relation to origin and tectonic setting[J].Geol. J.,25:227~238.
    Burtman V S.1994.Meso-Tethyan oceanic sutures and their deformation[J].Tectonophysics,234:305~327.
    Chung S L, Chu M F, Zhang Y, et al.2005.Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism[J].Earth-Science Reviews,68:173~196.
    Dewey J F, Cande S, Pitman W C.1989.Tectonic evolutionof the India/Eurasia Cillision Zone[J].Eclogae geol Helv,82 (3):717~734.
    Defant M J.Drummond M S.1990.Derivation of some modern arc magmas by melting of young subduction lithosphere[J].Nature,347:662~665.
    Ding L, Kapp P, Wan X.2005.Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south-central Tibet[J].Tectonics,24:1218.
    Dong Guochen, Mo Xuanxue, Zhao Zhidan, et al.2005.Geochronologic constraints on the magmatic underplating of the Gangdise belt in the India-Eurasia collision:evidence of SHRIMP II zircon U-Pb dating[J].Acta Geologica Sinica,79 (6):787~794.
    Dupuis C, Hebert R, Dubois-Cte V, et al.2005.Petrology and geochemistry of mafic rocks from melange and flysch units adjacent to the Yarlung Zangbo Suture Zone, southern Tibet[J]. Chemical Geology, 214:287-308.
    Flower M, Russo R, Tamaki K, et al.2001.Mantle contamination and the Izu-Bonin-Mariana (IBM)"high-tidemark":evidence for mantle extrusion caused by Tethyan closure[J].Tectonophysics, 333:9-34.
    Gaetani M, Garzanti E.1991.Multieyelic history of the northern India continental margin (northwestern Himalaya)[J].Am Assoe-Pet.Geol.Bull.,75:14271~446.
    Gao S, Rudnick R L, Yuan H L, et al.2005.Recycling lower continentalcrust in the North China craton[J].Nature,432:892~897.
    Garzantie E, Baud A, Mascle G.1987.Sedimentary record of the northward flight of India and its collision with Eurasia(Ladakh Himalaya, India)[J].Geodinamica Acta (Paris),1(4/5):297~312.
    Guo Z, Wilson M, Liu J.2007. Post-collisional adakites in south Tibet:products of partial melting of subduction-modified lower crust[J].Lithos,96:205~224.
    Harrison T M, Grove M, McKeegan K D, et al.1999.Origin andepisodic emplacement of the Manaslu intrusive complex, central Hiamalaya[J].Petrol,1999,40:3~19.
    Harrison T M, Yin A, Grove M, et.al.2000.The Zedong window:A record of superposed Tertiary convergence in southeastern Tibet[J].Journal of Geophyical Research,105:19211~19230.
    HouZQ, GaoYF, Qu X M, et al.2004.Origin of adakitic intrusive generated during mid-Miocene east-west extension in southern,Tibet[J].Earth Planet. Sci. Lett.,220:139~155.
    Huot F, Hebert R, Varfalvy V et al.2002.The Beimarang Melange(southern Tibet)brings additional constraints in assessing the origin, metamorphicevolution and obduction processes of the Yarlung Zangbo ophiolite [J].Journal of Asian Earth Sciences,21:307~322.
    Jaeger J J, Courtillot V, Tapponnier P.1989.Paleontological view of the ages of the Deccan Traps, the Cretaceous/Tertiary boundary, and the India-Asia collision[J].Geology,17:316~319.
    Jiang Y H, Jiang S Y, Ling H F, et al.2006.Low-degree melting of a metasomatized lithospheric mantle for the origin of Cenozoic Yu-long monzogranite-porphyry, east Tibet:Geochemical and Sr-Nd-Pb-Hf isotopic constraints [J]. Earth Planet. Sci. Lett.,241:617~633.
    Liu G, Einsele G.1994.Sedimentary history of the Tethyan basin in the Tibetan Himalayas[J].Geol Rundsch,83:32~61.
    Martin H.1999.Adakitic magmas:Modern analogues of Archean granitoids[J].Lithos,46:411~429.
    Martin H, Smithies R H, Rapp R, et al.2005.An overview of adakite.tonalite trondhjemite granodiorite (TTG)and sanukitoid:relationshipsand some implications for crustal evolution[J].Lithos,79:1~24.
    McDermid I, Aitchison J C, Davis A M, et.al.2002. The Zedong terrane:a Late Jurassic intra-oceanic magmatic arc within the Yarlung-Zangbo suture zone.southeastem Tibet[J].Chemical Geology,187: 267~277.
    Mo X, Zhao Z, Zhou S, et al.2002.Evidence for timing of the initiation of India-Asia collision from igneous rocks in Tibet[J].EOS Trans,83 (47)
    Mo Xuanxue, Dong Guochen, Zhao Zhidan, et al.2005.Timing of magma mixing in the Gangdise magmatic belt during the India-Asia collision:zircon SHRIMP U2Pb dating[J].Acta Geologica Sinica,79 (1): 66~76.
    Mo X, Zhao Z, Deng J, et al.2006.Petrology and geochemistry of postcollisional volcanic rocks from the Tibetan plateau:implications for lithosphere heterogeneity and collision-induced asthenospheric mantle flow[J].Geological Society of America Special Paper,507~530.
    Petford N, Atherton M P.1996.Na-rich partial melts from newlyunderplated basaltic crust:the Cordillera Blanca batholith[J].Petrol,37:1491~1521.
    Pierce J A, Mei H.1988.Voleaniec rocks of the 1985 Tibet Geotraverse Lhasa to Golmud.Phil Trans.Roy.Soe.Lond. [A],327:203~213.
    Quidelleur X, Grove M, Lovera O M, et al.1995.The thermal evolution and slip history of the Renbu Zedong Thrust,southeastern Tibet[J].J.Geophys. Res.,102:2659~2697.
    Ray G E, Webster I C L.1995.The geochemistry of mineralized skarns in british Columbia, in geological fieldwork 1994, B.C.[J].Ministry of Energy, Mines and Petroleum Resources, Paper,1:371~383.
    Rowley D B.1998.Minimum age of initiation of collision between India and Asia north of the Everest based on the sub-sidence history of the Zhepure Mountain section[J].The Journal of Geology,106:229~235.
    Sajona F. G., Maury R. C.1998.Association of adakites with gold and copper mineralization in the Philippines[J].CR. Acad. Sci. Paris,326(1):27~34.
    Searle M P, Windley B F, Coward M P, et al.1987.The closing of Tethys and the tectonics of the Himalaya[J].GeolSoc of Am Bull,98 (6):678~701.
    Thieblemont D, Stein G, Lescuyer J L.1997.Epithermal and porphyry deposits:the adakite connection[J].Earth &Planet. Sci.,325:103~109.
    Wang Q, McDermott F, Xu J F, et al.2005.Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet:lower-crustal melting in an intracontinental setting[J].Geology,33 (6):465~468.
    Wan X, Jansa L F, Sarti M.2002. Cretaceous and Tertiary boundary strata in southern Tibet and their implication for India-Asia collision[J].Lethaia,35 (2):131~146.
    Yin An, Harrison T M, Ryerson F J, et al.l 994. Tertiary structural evolution of the Gangdese thrust system, southeastern Tibet[J].1994. Journal of Geophysical Research,99 (B9):18175~18201.
    Yin An, Harrison T M, Murphy M A, et al.1999a. Tertiary deformation history of southeastern and southwestern Tibet during the Indo-Asian collision[J].Geol. Soc.Am/Bulletin,111:1644~1664.
    Yin An, Harrison T M.2000. Geologic evolution of the Himalayan-Tibet Orogen [J]. Annu Rev Earth Planet Sci,28:211~80.
    Zhu Dicheng, Zhao Zhidan, Pan Guitang, et al.2009.Early Cretaceous subduction-rlated adakite-like rocks of the Gangdese Belt,southern Tibet:Products of slab melting and subsequent melt-peridotite interaction?[J].Asian Earth Sci.,34 (3):298~309.
    Zhou S, Mo X, Dong G, et al.2004.40Ar/39Ar geochronology of Cenozoic Linzizong volcanic rocks from Linzhou Basin, Tibet, China, and their geological implications[J].Chinese Science Bulletin,49 (18): 1970~1979.
    Zhao Zhidan, Mo Xuanxue, Dilek Yildirim, et al.2009.Geochemical and Sr-Nd-Pb-O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet:Petrogenesis and implications for India intra-continental subduction beneath southern Tibet[J].Lithos,2009, doi:10.1016/j.lithos.2009.02.004.
    Ziabrev SV, Aitchison J C, Abrajevitch AV, et al.2003.Precise radiolarian age constraints on the timing of ophiolite generation and sedimentation in the Dazhuqu terrane, Yarlung-Tsangpo suture zone, Tibet[J]. Journal of the Geological Society,160:591~599.
    程力军,李志,刘鸿飞,等.2001.冈底斯东段铜多金属成矿带的基本特征[J].西藏地质,19:43-53.
    陈玉水,王成东,杜庆安.2011.西藏山南明则矿区斑岩型钼矿地质特征及外围找矿预测[J].地质与勘探,47(1):31-35.
    范新,陈雷,秦克章,等.2011.西藏山南地区明则斑岩钼矿蚀变矿化特征与成矿时代[J].地质与勘探,47(1):89-99.
    高一鸣,陈毓川,唐菊兴,等.2009.西藏工布江达县亚贵拉铅锌钼多金属矿床石英斑岩锆石SHRIMP定年及其地质意义[J].地质学报,83(10):1436-1444.
    高一鸣,陈毓川,唐菊兴,等.2011.西藏工布江达地区亚贵拉铅锌钼矿床辉钼矿Re-Os测年及其地质意义[J].地质通报,30(7):1027-1036.
    高永丰,侯增谦,魏瑞华,等.2003.西藏高原冈底斯第三纪斑岩岩石学特征及其动力学意义[J].岩石学报,19(3):4]8-428.
    耿全如,潘桂棠,王立全,等.2005.西藏冈底斯带叶巴组火山岩同位素地质年代[J].沉积与特提斯地 质,26(1):128.
    韩逢杰.2006.西藏桑日县明则斑岩铜矿地质特征及找矿前景[J].地质找矿论丛,21:20-21.
    郝杰,周新华,李齐,等.1996.沿雅鲁藏布江(东段)地区推覆与反向冲断构造的地质特征及其形成机制[J].地震地质,18(1):30-36.
    黄汲清,陈炳蔚.1987.中国及邻区特提斯海的演化[M].北京:地质出版社.
    黄树峰,江善元,江化寨,等.2011.西藏山南铜多金属成矿系统及走滑转换构造应力场分析[J].地质与勘探,47(1):1-10.
    侯增谦,曲晓明,黄卫,等.2001.冈底斯斑岩铜矿成矿带有望成为西藏第二条玉龙铜矿带[J].中国地质,28:27-29.
    侯增谦,莫宣学.2003.埃达克岩:斑岩铜矿的一种可能的重要含矿母岩——以西藏和智利斑岩铜矿为例[J].矿床地质,22(1):1-12.
    侯增谦,杨竹森,徐文艺,等.2006a.青藏高原碰撞造山带:Ⅰ.主碰撞造山成矿作用[J].矿床地质,25(4):337-354.
    侯增谦,潘桂棠,王安建,等.2006b.青藏高原碰撞造山带:Ⅱ.晚碰撞转换成矿作用[J].矿床地质,25(5):521-543.
    侯增谦,曲晓明,杨竹森,等.2006c.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用[J].矿床地质,25(6):629-651.
    侯增谦,郑远川,杨志明,等.2012.大陆碰撞成矿作用:Ⅰ.冈底斯新生代斑岩成矿系统.矿床地质,31(4):647-670.
    康志强,许继峰,陈建林,等.2009.藏南白垩纪桑日群麻木下组埃达克岩的地球化学特征及其成因.地球化学,38(4):334-344.
    潘桂棠,陈智楔,李兴振,等.1996.特提斯多弧-盆系统演化模式.岩相古地理[J].岩相古地理,(2):52-65.
    潘桂棠,莫宣学,侯增谦,等.2006.冈底斯造山带的时空结构及演化[J].岩石学报,22(3):521-533.
    廖忠礼,莫宣学,潘桂棠,等.2006.西藏曲珍过铝花岗岩的地球化学特征及地球动力学意义[J].岩石学报,22(4):845-854.
    梁华英,魏启荣,许继峰,等.2010.西藏冈底斯矿带南缘矽卡岩型铜矿床含矿岩体锆石U-Pb年龄及意义[J].岩石学报,26(6):1692-1698.
    陆彦.2002.埃达克质岩的特征及其构造一成矿意义[J].西藏地质,20(1):101-103.
    李光明,杨家瑞,丁俊.2003.西藏雅鲁藏布江成矿区矿产资源评价新进展[J].地质通报,22(9):699-703.
    李光明,冯孝亮,黄志英,等.2000.西藏冈底斯构造带中段多岛弧-盆系及其演化[J].沉积与特提斯地质,20(4):38-46.
    李光明,秦克章,丁奎首,等.2006.冈底斯东段南部第三纪矽卡岩型Cu-Au±Mo矿床地质特征、矿物组合及其深部找矿意义[J].地质学报,80(9):1407-1423.
    李光明,刘波,佘宏全,等.2006.西藏冈底斯成矿带南缘喜马拉雅早期成矿作用——来自冲木达铜金矿床的Re-Os同位素年龄证据[J].地质通报,25(12):1481-1486.
    孟祥金,侯增谦,高永丰,等.2003.西藏冈底斯成矿带驱龙铜矿Re-Os年龄及成矿学意义[J].地质论评,49(6):660--666.
    莫宣学,赵志丹,邓晋福,等.2003.印度-亚洲大陆主碰撞过程的火山作用响应[J].地学前缘,10(3):135-148.
    莫宣学,董国臣,赵志丹,等.2005.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息[J].高校地质学报,11(3):281-290.
    莫宣学,潘桂棠.2006.从特提斯到青藏高原形成:构造-岩浆事件的约束[J].地学前缘,13(6):43-51.
    莫宣学.2009.青藏高原岩浆岩成因研究:成果与展望[J].地质通报,28(12):1693-1703.
    莫宣学,等.2009.青藏高原新生代碰撞-后碰撞火成岩[M].北京:地质出版社,1-396.
    秦克章,李光明,赵俊兴,等.2008.西藏首例独立钼矿——冈底斯沙让大型斑岩钼矿的发现及其意义[J].中国地质,35(6):1101-1112
    曲晓明,侯增谦,黄卫.2001.冈底斯斑岩铜矿成矿带:西藏第二条玉龙铜矿带?[J].矿床地质,20:355-366.
    芮宗瑶,侯增谦,曲晓明,等.2003.冈底斯斑岩铜矿成矿时代及青藏高原隆升[J].矿床地质,22(3):217-315.
    陕西省地矿局区调队.1994,1:20万泽当幅区调报告.
    孙忠军,任天祥,向运川.2003.西藏冈底斯东段成矿系列区域地球化学预测[J].中国地质,30(1):105-112.
    唐菊兴,陈毓川,王登红,等.2009.西藏工布江达县沙让斑岩钼矿床辉铝矿铼-锇同位素年龄及其地质意义[J].地质学报,83(5):698-704.
    王莉,曾令森,高利娥,等.2012.藏南侏罗纪残留洋弧的地球化学特征及其大地构造意义[J].岩石学报,28(6):1741-]754.
    王强,许继峰,赵振华.2001.一种新的火成岩——埃达克岩的研究综述[J].地球科学进展,16(2):201-208.
    王少怀,陈自康.2003.西藏克鲁-冲木达铜金矿带矿床地质特征及其成矿规律[J].地质与勘探,39(2):21-25.
    王焰,张旗,钱青.2000.埃达克岩(adakite)的地球化学特征及其构造意义[J].地质科学,35(2):251-256.
    韦栋梁,夏斌,周国庆,等.2007.西藏泽当英云闪长岩的地球化学和Sr-Nd同位素特征:特提斯洋内俯冲的新证据[J].中国科学(D辑),37(4):442-450.
    夏代祥,刘世坤.1997.西藏自治区岩石地层[M].武汉:中国地质大学出版社,1-200.
    西藏自治区地质调查院,2000.1:25万泽当幅区调报告.
    叶培盛,江万,吴珍汉.2006.西藏泽当-罗布莎蛇绿岩的地球化学特征及其构造意义现代地质[J].现代地质,20(3):370-377.
    闫学义,黄树峰,杜安道.2010.冈底斯泽当大型钨铜钼矿Re-Os年龄及陆缘走滑转换成矿作用[J].地质学报,84(3):398-406.
    杨志明,谢玉玲,李光明,等.2005.西藏冈底斯斑岩铜矿带驱龙铜矿成矿流体特征及其演化[J].地质与勘探,41(2):21-26.
    姚鹏,李金高,王全海,等.2006.西藏冈底斯南缘火山-岩浆弧带中桑日群adakite的发现及其意义[J].岩石学报,22(03):612-631.
    张旗,王焰,刘伟,等.2001.埃达克岩的特征及其意义.地质通报,21(7):431-435.
    张旗,钱青,王二七,等.2001.燕山中晚期的中国东部高原:埃达克岩的启示[J].地质科学,36(2):248-255.
    张松,郑远川,黄克贤,等.2012.西藏努日矽卡岩型铜钨钼矿辉钼矿Re-Os定年及其地质意义[J].矿床地质,31(2):337-346.
    张刚阳,郑有业,龚福志,等.2008.西藏吉如斑岩铜矿:与陆陆碰撞过程相关的斑岩成岩成矿时代约束[J].岩石学报,24(03):473-479.
    赵珍,胡道功,吴珍汉,等.2012.西藏冈底斯东段南缘桑布加拉辉铝矿Re-Os定年及地质意义[J],地质力学学报,18(2):178-186.
    赵珍,胡道功,陆露,等.2013.西藏泽当地区晚白垩世埃达克岩的发现及其成矿意义[J].地质力学学报,19(1):45-52.
    周肃.2002.西藏冈底斯岩浆岩带及雅鲁藏布蛇绿岩带关键地段同位素年代学研究[D].北京:中国地质大学,2002:1-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700