用户名: 密码: 验证码:
BOLD及MRS脑温测量对缺血半暗带的价值:实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、BOLD评价猴MCAO及再灌注模型脑缺血半暗带
     目的建立猴大脑中动脉闭塞(middle cerebral artery occlusion,MCAO)及再灌注模型。应用血氧合水平依赖(blood oxygenation level dependent,BOLD)成像评价缺血半暗带(ischemic penumbra,IP)特征及演变规律,探讨血流动力学改变对BOLD效应的影响。
     对象与方法成年猴6只,应用血管内法制备MCAO及再灌注模型。影像检查包括CT灌注(CTP)、MR灌注(PWI)、弥散成像(DWI)、T2WI、T2像及T2~*像。应用T2像及T2~*像计算R2'像,即BOLD像。测量参数包括局部脑血流量(rCBF)、局部脑血容量(rCBV)、平均通过时间(MTT)、表观弥散系数(ADC)、T2、T2~*及R2'值,计算缺血区与健侧比值,得到相对值。扫描时间为动脉闭塞1-1.5h及再灌注后1h、3h、6h、12h、24h及48h。将低灌注组织定义为在闭塞动脉供血区,再灌注前任何一种PWI参数存在灌注异常的脑区。以缺血组织转归为依据,将低灌注组织划分为三个区域:缺血核心、缺血半暗带及低灌注区。缺血核心定义为动脉闭塞期DWI及再灌注24小时T2WI均为高信号的脑区;半暗带为动脉闭塞期DWI高信号,再灌注24小时T2WI为等信号的脑区;低灌注区为动脉闭塞期DWI及再灌注24小时T2WI均为等信号的低灌注组织。应用多元线性回归分析血流动力学改变对BOLD效应的影响。处死动物后,制作5mm厚横断面大体切片,行TTC染色。
     结果(1)6只猴中4只模型成功,TTC染色梗死灶体积与再灌注后24小时T2WI缺血灶体积差别不显著。动脉闭塞期DWI病变体积到再灌注24小时于T2WI明显缩小,平均缩小28%。(2)CTP与PWI所测灌注参数绝对值存在差异,而相对值之间差异不显著。(3)动脉闭塞期,缺血核心、缺血半暗带及低灌注区R2'值存在显著差异,负性BOLD效应以低灌注区最显著,缺血半暗带次之,低灌注区不明显。(4)再灌注期,缺血核心、缺血半暗带及低灌注R2'演变过程不一,以缺血核心变化最显著,由轻度负性BOLD迅速变为正性BOLD。而对于缺血半暗带及低灌注区,负性BOLD效应持续存在,且有增强趋势。(5)rCBF及MTT对缺血区R2'分别具有负性及正性影响。
     结论(1)在动脉闭塞期,负性BOLD效应可以区分缺血核心、缺血半暗带及低灌注区,判断缺血组织活性。(2)再灌注期,持续存在的负性BOLD效应提示组织存活;负性BOLD效应消失或转化为正性BOLD效应提示组织坏死。(3)rCBF及MTT为影响缺血区BOLD效应的因素。
     二、MRS脑温测量评价猴MCAO及再灌注模型缺血半暗带的可行性研究
     目的建立修正的脑温(T)-NAA化学位移方程。应用~1H MRS评价猴MCAO及再灌注模型不同缺血区及对侧脑组织温度演变规律,分析血流动力学及BOLD对脑温变化的影响。
     对象与方法制备MR兼容的恒温控制系统,评价系统精度及稳定性。应用~1H MRS对含脑生理液的体模进行检查,得到修正的温度-NAA化学位移方程。应用~1H MRS检测正常猴脑及缺血区温度。应用多元线性回归分析血流动力学及BOLD对脑温变化的影响。
     结果(1)制备MR兼容的恒温控制系统控温精度高,可重复性好。建立T-NAA化学位移方程:T=37+100(CS_(NAA)-2.039)。(2)正常猴平均脑温37.16℃,双侧半球间无显著差别。(3)动脉闭塞期,缺血区脑温升高并高于对侧半球脑温。缺血灶内存在温度梯度,缺血半暗带脑温最高,高于缺血核心,而以低灌注区最低。(4)再灌注早期,缺血区脑温均有不同程度下降,以核心区下降最明显;再灌注后期,半暗带及低灌注区脑温逐渐恢复正常,而缺血核心温度反而升高。(5)rCBF对脑温有负性影响,MTT及BOLD对脑温有正性影响。
     结论(1)~1H MRS可无创性测量脑温,可显示猴MCAO模型不同缺血区温度梯度。(2)对于猴MCAO模型,rCBF及MTT为影响缺血区脑温的重要因素;BOLD效应有助于对脑温变化的理解。
PartⅠ:The applications of BOLD in brain ischemic penumbra of monkey reversible MCAO model
     Objective Cynomologous macaques were used to develop reversible middle cerebral artery occlusion(MCAO)model.To investigate the features and evolution of ischemic penumbra(IP)on blood oxygenation level dependent(BOLD)images and the effects of cerebral hemodynamic changes on BOLD.
     Methods Reversible MCAO model were developed in male cynomologous macaques(n=6)by using endovascular techniques.We used the following imaging protocols:CT perfusion,T2WI,DWI,PWI,as well as quantitative T2 map and T2~* map.Animals were scanned with CT and MRI between 1-1.5 hours after occlusion to 1h,3h,6h,12h,24h and 48h hours after reperfusion.Parameters included regional cerebral blood flow(rCBF),regional cerebral blood volume(rCBV),mean transit time(MTT),ADC,T2,T2~* and R2'.Quantitative T2 was linked to quantitative T2~* resulting in BOLD images(R2').The flow-compromised tissue was defined as the abonormal perfusion area on any PWI maps.According to the fate of the ischemic tissue,the flow-compromised tissue could be divided into three distinct areas:ischemic core,ischemic penumbra and regions of oligemia.Ischemic core:the region showed high signal intensity(SI)both on initial DWI and T2WI of hour 24 after reperfusion;ischemic penumbra:the region showed high SI on initial DWI and iso-SI on T2WI of hour 24 after reperfusion;the regions of oligemia:iso-SI both on initial DWI and T2WI of hours 24 after reperfusion.The effects of cerebral hemodynamic changes on BOLD were analyzed using multiple linear regression. Immediately after killing animals,the brains were removed and sliced fresh into axial 5-mm-thick axial slabs and stained with 2,3,5-triphenyltetrazolium chloride(TTC).
     Results(1)Reversible MCAO model were demonstrated successful in four cynomologous macaques.T2WI derived lesion volumes in hour 24 after reperfusion were similar to those of infarct measured on TTC.However,T2WI derived lesion volumes were smaller than the volumes of high SI on initial DWI about 28%.(2)The absolute perfusion values derived from CTP and PWI demonstrated definitely different.The discrimination disappeared when the relative ratios were considered. (3)During the MCAO,the SI of ischemic core,ischemic penumbra and regions of oligemia on R2' were different significantly.Strongest negative BOLD appeared within the regions of oligemia,then in ischemic penumbra.No remarkably negative BOLD could be detected within the regions of ischemic core.(4)Afer reperfusion, ischemic penumbra and regions of oligemia on R2' showed different time course.The bold effct changed dramatically from slight negative bold to positive in the region of ischemic core.The negative bold persisted during the reperfusion in the areas of ischemic penumbra and oligemia,and demonstrated a tendency stronger over time.(5)rCBF and MTT showed negative and positive influence on the SI on R2' respectively.
     Conculsion(1)During the MCAO,negative BOLD can be used to distinguish the ischemic core from ischemic penumbra and regions of oligemia,and to assess viability of brain tissue.(2)Afer reperfusion,the persistent negative bold sugest the tissue being salvaged while loss of negative blod or positive bold appeared imply tissue being dead.(3)rCBF and MTT are both important factors on BOLD effect.
     PartⅡ:Measurement of Brain Temperature with Magnetic Resonance Spectroscopy in brain ischemic penumbra of monkey reversible MCAO model
     Objective To establish the modified equation between brain temperature and chemical shift of NAA.To investigate the features and evolution of ischemic penumbra(IP)in brain temperature measured with magnetic resonance spectroscopy and the influence on brain temperature from cerebral hemodynamic changes.
     Methods To develope the MRI-compatible thermostatic control system,and assess the precision and stability of the sytem.To establish the modified brain temperature and NAA form through vitro experiment.To measure the brain temperature in flow-compromised tissue in monkey transient MCAO model and normal temperature in the controls.The effects of cerebral hemodynamic changes on brain temperature were analyzed using multiple linear regression.
     Results(1)The MRI-compatible thermostatic control system showed high performance in precision and stability.The chemical shift of NAA therefore appeared to vary with temperature,and a modified version of Eq.was given by:T=37+100(CSN_(NAA)-2.039).(2)The normal brain temperature of monkeys was 37.16℃with no different between bilateral hemispheres.(3)After MCAO, temperature in the flow compromised tissue showed higher than those in contralateral hemisphere and normal monkeys.Temperature gradients could be found within the flow compromised region.Highest brain temperature appeared in ischemic penumbra,then the ischemic core and region of oligemia.(4)In the early stage after reperfusion,temperature in the flow compromised tissue decreased in different levels,most significant decrease in ischemic core.In the late stage,after reperfusion,the temperature within region of ischemic penumbra and oligemia recovered to normal while temperature within the ischemic core elevated again.(5) rCBF showed negative influence on brain temperature.
     Conculsion(1)~H MRS can be used to measure brain temperature noninvasively and to disclose the the temperature gradient within flow compromised areas.(2) rCBF and MTT are both important factors on brain temperature in monkey reversible MCAO model.Bold is helpful for understanding the changes of brain temperature.
引文
1. NINDS Study Group. Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. N Engl J Med,1995,333: 1581-1587
    2. Hacke W, Donnan G, Fieschi C, et al. Association of outcome with early stroke treatment: pooled analysis of ATLANTIS, ECASS, and NINDS rt-PA stroke trials. Lancet,2004, 363:768-774.
    3. Astrup J, Siesjo B, Symon L. Thresholds in cerebral ischemia: the ischemic penumbra. Stroke, 1981,12: 723-725
    4. Hakim AM, Pokrupa RP, Villanueva J, et al. The effect of spontaneous reperfusion on metabolic function in early human cerebral infarcts. Ann Neurol, 1987,21:279-289
    5. Rother J, Schellinger PD, Gass A, et al. Effect of intravenous thrombolysis on MRI parameters and functional outcome in acute stroke <6 hours. Stroke,2002, 33:2438-2445.
    6. Kidwell CS, Alger JR, Saver JL. Beyond mismatch. Evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging. Stroke,2003, 34: 2729-2735.
    7. Grandin CB, Duprez TP, Smith AM, et al. Which MR-derived perfusion parameters are the best predictors of infarct growth in hyperacute stroke? Comparative study between relative and quantitative measurements. Radiology, 2002,223: 361-370
    8. Fiehler J, Knudsen K, Kucinski T,et al. Predictors of apparent diffusion coefficient normalization in stroke patients. Stroke,2004,35: 514-519
    9. Heiss WD. Ischemic penumbra: evidence from functional imaging in man. J Cereb Blood Flow Metab,2000, 20: 1276-1293.
    10. Tamura H, Hatazawa J, Toyoshima H,et al.Detection of deoxygenation-related signal change in acute ischemic stroke patients by T2*-weighted magnetic resonance imaging. Stroke, 2002,33: 967-971.
    11. Geisler BS, Brandhoff F, Fiehler J et al.Blood Oxygen Level-Dependent MRI Allows Metabolic Description of Tissue at Risk in Acute Stroke Patients. Stroke, 2006,37:1778-1784
    12. Olsen TS, Weber UJ, Kammersgaard LP. Therapeutic hypothermia for acute stroke. Lancet Neurol,2003,2:410-416.
    13. Zhang Y, Wong KC, Zhang Z. The effect of intraischemic mild hypothermia on focal cerebral ischemia/reperfusion injury. Acta Anaesthesiol Sin,2001 ,,39:65 -69.
    14. Colbourne F, Corbett D. Delayed postischemic hypothermia: a six-month survival study using behavioral and histological assessments of neuroprotection. J Neurosci, 1995,15:7250- 7260.
    15. Schwab S, Schwarz S, Spranger M,et al. Moderate hypothermia in the treatment of patients with severe middle cerebral artery infarction. Stroke. 1998,29:2461-2466.
    16. Berger C, Schramm P, Schwab S. Reduction of diffusion-weighted MRI lesion volume after early moderate hypothermia in ischemic stroke. Stroke, 2005,36:e56-e58
    17. Schwab S, Spranger M, Aschoff A, et al. Brain temperature monitoring and modulation in patients with severe MCA infarction.Neurology,1997,48:762-767.
    18. Schwab S, Schwarz S, Aschoff A, et al. Moderate hypothermia and brain temperature in patients with severe middle cerebral artery infarction. Acta NeurochirSuppl, 1998, 71: 131-134.
    19. Reith J, Jorgensen HS, Pedersen PM, et al. Body temperature in acute stroke: relation to stroke severity, infarct size, mortality,and outcome. Lancet, 1996,347:422-425.
    20. Castillo J, Davalos A, Marrugat J, et al. Timing for fever-related brain damage in acute ischemic stroke. Stroke 1998;29:2455-2460.
    21. Germain D, Chevallier P, Laurent A, et al. MR monitoring of tumour thermal therapy. Magn Reson Materials Phys Biol Med (MAGMA),2001,13:47- 59.
    22. Kuroda K, Chung AH, Hynynen K, et al. Calibration of water proton chemical shift with temperature for non-invasive temperature imaging during focused ultrasound surgery. J Magn Reson Imaging, 1998,8:175-181.
    23. Corbett RJ, Laptook AR, Tollefsbol G, et al. Validation of a noninvasive method to measure brain temperature in vivo using ~1H NMR spectroscopy. J Neurochem, 1995,64:1224-12230.
    24. Corbett RJ, Purdy PD, Laptook AR, et al .Noninvasive measurement of brain temperature after stroke. AJNR.1999;20:1851- 1857.
    25. Corbett R, Laptook A, Weatherall P. Noninvasive measurements of human brain temperature using volume-localized proton magnetic resonance spectroscopy. J Cereb Blood Flow Metab, 1997,17:363- 369.
    26. Corbett RJ, Laptook AR. Failure of localized head cooling to reduce brain temperature in adult humans. Neuroreport, 1998;9,2721-2725.
    27. Cady EB, D'Souza PC, Penrice J, et al. The estimation of local brain temperature by in vivo ~1H magnetic resonance spectroscopy.Magon Reson Med,1995,33:862-867.
    28. Marshall I, Karaszewski B, Wardlaw JM, et al. Measurement of regional brain temperature using proton spectroscopic imaging: validation and application to acute ischemic stroke. Magn Reson Imaging,2006,24:699-706.
    29. von Kummer R, Holle R, Rosin L, et al. Does arterial recanalization improve outcome in carotid territory stroke? Stroke, 1995,26:581-587
    30. Fukuda S, del Zoppo GJ. Models of focal cerebral ischemia in the nonhuman primate. Ilar J ,2003,44:96-104
    31. Thulborn KR, Gindin TS, Davis D, et al. Comprehensive MR imaging protocol for stroke management: Tissue sodium concentration as a measure of tissue viability in nonhuman primate studies and in clinical studies. Radiology,1999,213:156-166.5.
    32. Kuge Y, Yokota C, Tagaya M, et al. Serial changes in cerebral blood flow and flow- metabolism uncoupling in primates with acute thromboembolic stroke. J Cereb Blood Flow Metab,2001, 21:202-210.6.
    33. Kito G, Nishimura A, Susumu T, et al. Experimental thromboembolic stroke in cynomolgus monkey. J Neurosci Methods,2001,105:45-53
    34. Miles KA, Hayball M, Dixion AK,et al. Colour perfusion imaging: a new application of computed tomography. Lancet, 1991,337(8742):643-645
    35. Ogilvy C, Maynard K, Hunter G, et al. Early assessment of the area at risk following occlusion reduces stroke size variability in baboons. Soc Neurosci Abstr, 1995,21:222
    36. Jing z,Tingyun z.Serial CT perfusion studies in reversible middle cerebral artery occlusion model of subhuman monkey (electronic poster).European congress of radiology,2003 Vienna Austria
    37. de Crespigny AJ, D'Arceuil HE, Maynard KI,et al. Acute studies of a new primate model of reversible middle cerebral artery occlusion.J Stroke Cerebrovasc Dis. ,2005,14(2):80-87
    38. Freret T, Bouet V, Toutain J,et al. Intraluminal thread model of focal stroke in the non-human primate.J Cereb Blood Flow Metab.,2008,28(4):786-96
    39. Gonzalez RG,Hirsch JA,Koroshetz MHL. Acute ischemic stroke: imaging and intervention[M].Germany:Springer-Verlag Berlin Heidelderg,2006:91
    40. Terada T, Nambu K, Hyotani G, et al. A method for quantitative measurement of cerebral vascular permeability using X-ray CT and iodinated contrast medium. Neuroradiology, 1992,34:290-296
    41. Ogawa, S, Lee, TM, Nayak, AS,et al.Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn. Res, Med, 1990,14:68-78
    42. Nair DG. About being BOLD.Brain Res Brain Res Rev, 2005,50:229-243
    43. Grohn OHJ,Kauppinen RA. Assessment of brain tissue viability in acute ischemic stroke by BOLD MRI.NMR Biomed.,2001,14:432-440
    44. Neema M, Stankiewicz J, Arora A,et al. Tl- and T2-based MRI measures of diffuse gray matter and white matter damage in patients with multiple sclerosis. J Neuroimaging,2007,17(Suppl 1):16S-21S.
    45. Gelman N, Gorell JM, Barker PB, et al.MR imaging of human brain at 3.0 T: preliminary report on transverse relaxation rates and relation to estimated iron content. Radiology, 1999,759-767
    46. Steiger HJ, Ciessinna E, Seiler RW. Identification of posttraumatic ischemia and hyperperfusion by determination of the effect of induced arterial hypertension on carbon dioxide reactivity. Stroke, 1996,27:2048-2051.
    47. Humphreys SA, Koss MC. Role of nitric oxide in post-ischemic cerebral hyperemia in anesthetized rats. Eur J Pharmacol, 1998,347:223-229.
    48. Pulsinelli WA, Duffy TE. Regional energy balance in rat brain after transient forebrain ischemia. J Neurochem,1983,40:1500-1503
    49. Lassen NA. The luxury-perfusion syndrome and its possible relation to acute metabolic acidosis localised within the brain. Lancet, 1966,2:1113-1115
    50. Infeld B, Davis SM, Donnan GA, et al.Streptokinase Increases Luxury Perfusion After Stroke. Stroke, 1996,27(9): 1524-15249
    51. van Lookeren,Campagne M, Thomas GR, et al. Secondary reduction in the apparent diffusion coefficient of water, increase in cerebral blood volume,and delayed neuronal death after middle cerebral artery occlusion andearly reperfusion in the rat. J Cereb Blood Flow Metab,1999,19:1354-1364.
    52. Neumann-Haefelin T, Kastrup A, et al. Serial MRI after transient focal cerebral ischemiain rats: dynamics of tissue injury, blood- brain barrier damage, and edema formation. Stroke,2000,31:1965-1972.
    53. Li F, Liu KF, Silva MD, Omae T, et al.Transient and permanent resolution of ischemic lesions on diffusionweighted imaging after brief periods of focal ischemia in rats: correlation with histopathology. Stroke. 2000;31:946 -954.
    54. Bardutzky J, Shen Q, Henninger N,et al. Characterizing tissue fate after transient cerebral ischemia of varying duration using quantitative diffusion and perfusion imaging. Stroke,2007,38(4): 1336-1344
    55. Grant PE, He J, Halpern EF,et al. Frequency and clinical context of decreased apparent diffusion coefficient reversal in the human brain. Radiology.,2001,221(1):43-50
    56. Kidwell CS, Saver JL, Starkman S, et al.Late secondary ischemic injury in patients receiving intraarterial thrombolysis. Ann Neurol,2002,52(6):698-703.
    57. Baron JC, Bousser MG, Rey A, et al. Reversal of focal "misery-perfusion syndrome" by extra-intracranial arterial bypass in hemodynamic cerebral ischemia: a case study with ~(15)O positron emission tomography. Stroke, 1981,12:454-459
    58. Heiss WD, Fink GR, Huber M,et al. Positron emission tomography imaging and the therapeutic window. Stroke, 1993.24(supp 1):I50-I53.
    59. Furlan M, Marchal G, Viader F, et al. Spontaneous neurological recovery after stroke and the fate of the ischemic penumbra.Ann Neurol., 1996,40:216-226.
    60. Hakim AM, Evans AC, Berger L, et al. The effect of nimodipine on the evolution of human cerebral infarction studied by PET. J Cereb Blood Flow Metab,1989,9:523-534.
    61. Heiss WD, Huber M, Fink GR, et al. Progressive derangement of periinfarct viable tissue in ischemic stroke. J Cereb Blood Flow Metab, 1992,12:193-203.
    62. Lai S, Benson R, Wang JJ, et al. Improving detection of ischemic penumbra by quantitative BOLD imaging [A]. Proc Intl Soc Mag Reson Med. 2002:10.
    63. Kavec M, Grohn OH, Kettunen MI, et al. Use of spin echo T(2) BOLD in assessment of cerebral misery perfusion at 1.5 T. Magma,2001,12:32-39.
    64. Sobesky J, Weber OZ, Lehnhardt FG, et al Does the mismatch match the penumbra? Magnetic resonance imaging and positron emission tomography in early ischemic stroke. Stroke,2005,36:980-985.
    65. De Crespigny AJ, Wendland MF, Derugin N, et al. Real-time observation of transient focal ischemia and hyperemia in cat brain. Magn Reson Med,1992,27:391-397.
    66. Quast MJ, Huang NC, Hillman GR,et al. The evolution of acute stroke recorded by multimodal magnetic resonance imaging. Magn Reson Imaging, 1993,11:465-471.
    67. Roussel SA, van Bruggen N, King MD, et al. Identification of collaterally perfused areas following focal cerebral ischemia in the rat by comparison of gradient echo and diffusion- weighted MRI. J Cereb Blood Flow Metab, 1995,15:578-586.
    68. Dijkhuizen RM, Berkelbach van der Sprenkel JW, Tulleken KA, et al.Regional assessment of tissue oxygenation and the temporal evolution of hemodynamic parameters and water diffusion during acute focal ischemia in rat brain. Brain Res,1997,750:161-170.
    69. Grohn OH, Kettunen MI, Penttonen M, et al. Graded reduction of cerebral blood flow in rat as detected by the nuclear magnetic resonance relaxation time T2: a theoretical and experimental approach. J Cereb Blood Flow Metab,2000,20:316-326
    70. Naressi, A., Couturier, C, Devos, J.M., et al. Java-based graphical user interface for the MRUI quantitation package. MAGMA,2001, 112: 141-152.
    71. van den Boogaart A, van Ormondt D, Pijnappel WWF, et al.Removal of the water resonance from ~1H magnetic resonance spectra[M].Mathematics in signal processing. 3rd ed. Editor:McWhirter, JG. Oxford, United Kingdom: Clarendon Press,1994:175-195.
    72. Chan L.The current status of magnetic resonance spectroscopy—basic and clinical aspects. West J Med, 1985,143:773-781.
    73. Hindman JC. Proton resonance shift of water in gas and liquid states. J. Chem. Phys,1966,44: 4582-4592.
    74. Ishihara Y, Calderon A, Watanabe H, et al. A precise and fast temperature mapping method using water proton chemical shift.Proc. SMRM, 11th Annual Meeting, Berlin. 1992:4803.
    75. Peters RD, Hinks RS, Henkelman RM.Ex vivo tissue-type independence in proton-resonance frequency shift MR thermometry. Magn Reson Med. 1998, 40:454-459
    76. Kuroda K, Chung AH, Hynynen K, et al. Calibration of water proton chemical shift with temperature for noninvasive temperature imaging during focused ultrasound surgery. J Magn Reson Imaging, 1998,8:175-181.
    77. Kuroda K, Mulkern RV, Oshio K, et al. Temperature mapping using the water proton chemical shift: selfreferenced method with echo-planar spectroscopic imaging. Magn Reson Med,2000,43:220-225.
    78. Kiyatkin EA. Brain hyperthermia as physiological and pathological phenomena. Brain Res Brain Res Rev. 2005;50:27-56.
    79. Busto R, Dietrich WD, Globus MY,et al. Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab, 1987,7:729-738.
    80. Maher J, Hachinski V. Hypothermia as a potential treatment for cerebral ischemia.Cerebrovasc Brain Metab Rev,1993,5:277-300.
    81. Miyazawa T, Tamara A, Fukui S, et al. Effect of mild hypothermia on focal cerebral ischemia: review of experimental studies. Neurol Res,2003,25:457-464.
    82. ROSOMOFF HL. Hypothermia and cerebral vascular lesions. II. Experimental middle cerebral artery interruption followed by induction of hypothermia. AMA Arch Neurol Psychiatry,1957,78:454-464.
    83. Laughlin SB, de Ruyter van Steveninck RR, Anderson JC . The metabolic cost of neural information. Nat Neurosci, 1998,1:36-41.
    84. Kiyatkin EA. Brain temperature fluctuations during physiological and pathological conditions. Eur J Appl Physiol. 2007;101:3-17.
    85. Albrecht 2nd RF, Wass CT, and Lanier WL. Occurrence of potentially detrimental temperature alterations in hospitalized patients at risk for brain injury. Mayo Clin. Proc, 1988,73:629-635.
    86. Ginsberg MD, Busto R. Combating hyperthermia in acute stroke: a significant clinical concern. Stroke. 1998; 29:529-534
    87. Zauner A, Bullock R, Di X, Young HF et al.Brain Oxygen, CO2, pH, and Temperature Monitoring: Evaluation in the Feline Brain. Neurosurgery. 1995,37:1168-1177
    88. Minamisawa H, Smith ML, Siesjo BK. The effect of mild hyperthermia and hypothermia on brain damage following 5, 10, and 15 minutes of forebrain ischemia. Ann Neurol. 1990;28:26-33
    89. Alois Z, Ross B, Xiao Di,et al. Hyperthermia and hypermetabolism in focal cerebral ischemia[M]. Adv Exp Med Biol,2005,566:83-89
    90. Karaszewski B, Wardlaw JM, Marshall I,et al. Measurement of brain temperature with magnetic resonance spectroscopy in acute ischemic stroke. Ann Neurol,2006,60:438-46.
    91. Ishihara Y, Calderon A, Watanabe H,et al. A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med,1995,34:814-23
    92. Jayasundar R, Singh VP. In vivo temperature measurements in brain tumors using proton MR spectroscopy. Neurol India,2002,50:436-439
    93. Kil HY, Zhang J, Piantadosi CA. Brain temperature alters hydroxyl radical production during cerebral ischemia/reperfusion in rats. J Cereb Blood Flow Metab, 1996,16:100-106.
    94. Kumura E, Yoshimine T, Takaoka M, et al. Hypothermia suppresses nitric oxide elevation during reperfusion after focal cerebral ischemia in rats. Neurosci Lett,1996,220:45-48.
    95. Maier CM, Sun GH, Cheng D, et al. Effects of mild hypothermia on superoxide anion production, superoxide dismutase expression and activity following transient focal cerebral ischemia.Neurobiol Dis,200,11:28-42.
    96. Hu BR, Kamme F, Wieloch T. Alterations of Ca2+/calmodulin-dependent protein kinase II and its messenger RNA in the rat hippocampus following normo- and hypothermic ischemia. Neuroscience,1995,68:1003-1016.
    97. Ishikawa M, Sekizuka E, Sato S, et al. Effects of moderate hypothermia on leukocyte-endothelium interaction in the rat pial microvasculature after transient middle cerebral artery occlusion.Stroke,1999,30:1679-1686.
    98. Inamasu J, Suga S, Sato S, et al. Post-ischemic hypothermia delayed neutrophil accumulation and microglial activation following transient focal ischemia in rats. J Neuroimmunol,2000,109:66 74.
    99. Horvath TL, Diano S, Barnstable C. Mitochondrial uncoupling protein 2 in the central nervous system: neuromodulator and neuroprotector. Biochem Pharmacol. 2003,65,1917-1921
    1.Hacke W,Kaste M,Fieschi C,et al.Randomised double-blind placebocontrolled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS Ⅱ).Second European-Australasian Acute Stroke Study Investigators.Lancet,1998,352:1245-1251.
    2.Baird AE,Warach S.Imaging developing brain infarction.Curr.Opin.Neurol.1999;12:65-71.
    3.Beauchamp NJ Jr.,Barker PB,Wang PY,van Zijl PC.Imaging of acute cerebral ischemia.Radiology,1999,212:307-324.
    4.Neumann-Haefelin T,Moseley ME,Albers GW.New magnetic resonance imaging methods for cerebrovascular disease:emerging clinical applications.Ann.Neurol,2000,47:559-570.
    5.Baird AE,Warach S.Magnetic resonance imaging of acute stroke.J.Cereb.Blood Flow Metab,1998,18:583-609.
    6.Gro¨hn OH,Lukkarinen JA,Oja JM,et al.Noninvasive detection of cerebral hypoperfusion and reversible ischemia from reductions in the magnetic resonance imaging relaxation time,T2.J.Cereb.Blood Flow Metab,1998,18:911-920.
    7.Kavec M,Gro"hn OH J,Kettunen MI,et al.Use of spin echo T2 BOLD in assessment of misery perfusion at 1.5 T.MAGMA,2001,12:32-39.
    8.Hossmann KA.Viability thresholds and the penumbra of focal ischemia.Ann.Neurol,1994,36:557-565.
    9.Astrup J,Siesjo¨ BK,Symon L.Thresholds in cerebral ischemia:the ischemic penumbra.Stroke,1981,12:723-725.
    10.Baron JC,Bousser MG,Rey A,et al.Reversal of focal "misery-perfusion syndrome" by extra-intracranial arterial bypass in hemodynamic cerebral ischemia.A case study with 150 positron emission tomography.Stroke,1981,12:454-459.
    11.Heiss WD.Ischemic penumbra:evidence from functional imaging in man.J. Cereb. Blood Flow Metab,2000,20: 1276-93.
    12. Marchal G, Beaudouin V, Rioux P, et al. Prolonged persistence of substantial volumes of potentially viable brain tissue after stroke:a correlative PET-CT study with voxel-based data analysis. Stroke, 1996,27: 599-606.
    13. Heiss W-D, Huber M, Fink GR, et al. Progressive derangement of periinfarct viable tissue in ischemic stroke. J. Cereb. Blood Blow Metab,1992,12: 193-203.
    14. Heiss WD, Graf R, Lottgen J, et al. Repeat positron emission tomographic studies in transient middle cerebral artery occlusion in cats: residual perfusion and efficacy of postischemic reperfusion. J. Cereb.Blood Flow Metab,1997,17: 388-400.
    15. Heiss WD, Graf R, Wienhard K, et al. Dynamic penumbra demonstrated by sequential multitracer PET after middle cerebral artery occlusion in cats. J. Cereb. Blood Flow Metab,1994,14: 892-902.
    16. Powers WJ, Grubb RL Jr., Darriet D,et al. Cerebral blood flow and cerebral metabolic rate of oxygen requirements for cerebral function and viability in humans. J. Cereb. Blood Flow Metab,1985,5: 600-608.
    17. Sakoh M, Ostergaard L, Rohl L, et al. Relationship between residual cerebral blood flow and oxygen metabolism as predictive of ischemic tissue viability: sequential multitracer positron emission tomography scanning of middle cerebral artery occlusion during the critical first 6 hours after stroke in pigs. J. Neurosurg ,2000, 93: 647-57.
    18. Young AR, Sette G, Touzani O, et al. Relationships between high oxygen extraction fraction in the acute stage and final infarction in reversible middle cerebral artery occlusion: an investigation in anesthetized baboons with positron emission tomography. J. Cereb. Blood Flow Metab,1996,16: 1176-1188.
    19. Baird AE, Benfield A, Schlaug G, et al. Enlargement of human cerebral ischemic lesion volumes measured by diffusion-weighted magnetic resonance imaging. Ann. Neurol,1997, 41: 581-589.
    20. Sorensen AG, Buonanno FS, Gonzalez RG, et al. Hyperacute stroke: evaluation with combined multisection diffusion-weighted and hemodynamicaHy weighted echo-planar MR imaging. Radiology, 1996,199: 391-401.
    21.Kidwell CS, Alger JR, Saver JL. Beyond mismatch. Evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging. Stroke,2003, 34: 2729-2735.
    22. Grandin CB, Duprez TP, Smith AM,et al. Which MR-derived perfusion parameters are the best predictors of infarct growth in hyperacute stroke? Comparative study between relative and quantitative measurements. Radiology, 2002,223: 361-370.
    23. Gro¨hn OH, Lukkarinen JA, Silvennoinen MJ, et al. Quantitative magnetic resonance imaging assessment of cerebral ischemia in rat using on-resonance T1 in the rotating frame. Magn. Reson. Med, 1999,42: 268-276.
    24. Li F, Han S, Tatlisumak T, et al. Reversal of acute apparent diffusion coefficient abnormalities and delayed neuronal death following transient focal cerebral ischemia in rats. Ann. Neurol, 1999,46: 333-342.
    25. Fiehler J, Knudsen K, Kucinski T, et al. Predictors of apparent diffusion coefficient normalization in stroke patients. Stroke,2004, 35: 514-519.
    26. Heiss WD, Sobesky J, Hesselmann V. Identifying thresholds for penumbra and irreversible tissue damage. Stroke,2004,35:2671-2674.
    27. Sobesky J, Zaro Weber O, Lehnhardt FG, et al. Does the mismatch match the penumbra? Magnetic resonance imaging and positron emission tomography in early ischemic stroke. Stroke,2005,36:980-985.
    28. Sobesky J, Zaro Weber O, Lehnhardt FG, et al. Which time-to-peak threshold best identifies penumbral flow? A comparison of perfusion-weighted magnetic resonance imaging and positron emission tomography in acute ischemic stroke. Stroke,2004,35:2843-2847.
    29. Shimosegawa E, Hatazawa J, Ibaraki M, et al. Metabolic penumbra of acute brain infarction: a correlation with infarct growth. Ann Neurol,2005,57:495-504.
    30. Guadagno JV, Jones PS, Fryer TD, et al. Local relationships between restricted water diffusion and oxygen consumption in the ischemic human brain. Stroke ,2006,37:1741-1748.
    31. Guadagno JV, Warburton EA, Aigbirhio FI, et al. Does the acute diffusion weighted imaging lesion represent penumbra as well as core? A combined quantitative PET/MRI voxel-based study. J Cereb Blood Flow Metab ,2004,24:1249-1254.
    32. Guadagno JV, Warburton EA, Jones PS, et al. How affected is oxygen metabolism in DWI lesions? A combined acute stroke PET-MR study.Neurology, 2006,67:824-829.
    33. Hoehn-Berlage M, Norris DG, Kohno K, et al. Evolution of regional changes in apparent diffusion coefficient during focal ischemia of rat brain: the relationship of quantitative diffusion NMR imaging to reduction in cerebral blood flow and metabolic disturbances. J Cereb Blood Flow Metab, 1995,15:1002-1011.
    34. Lin W, Lee JM, Lee YZ, et al. Temporal relationship between apparent diffusion coefficient and absolute measurements of cerebral blood flow in acute stroke patients. Stroke,2003,34:64-70.
    35. Saur D, Buchert R, Knab R, et al. Iomazenil-single-photon emission computed tomography reveals selective neuronal loss in magnetic resonance-defined mismatch areas. Stroke,2006,37:2713-2719.
    36. Coles J. Imaging of cerebral blood flow and metabolism. Curr Opin Anaesthesiol. 2006,19:473-480.
    37. Neumann-Haefelin T, Wittsack HJ, Wenserski F, et al. Diffusion- and perfusion weighted MRI: the DWI/PWI mismatch region in acute stroke. Stroke 1999;30:1591-1597.
    38. Grohn OHJ,Kauppinen RA.Assessment of brain tissue viability in acute ischemic stroke by BOLD MRI.NMR Biomed,2001,14:432-440
    39. De Crespigny AJ, Wendland MF, Derugin N, et al. Real time observation of transient focal ischemia and hyperemia in cat brain. Magn. Reson. Med, 1992,27: 391-397.
    40. Roussel SA, van Bruggen N, King MD, et al. Identification of collaterally perfused areas following focal ischemia in the rat by comparison of gradient echo and diffusion-weighted MRI. J.Cereb. Blood Flow Metab,1995,15: 578-586.
    41. Bryant RG, Marill K, Blackmore C, et al. Magnetic relaxation in blood and blood clots. Magn. Reson. Med,,1990,13: 133-144.
    42. Gillis P, Koenig SH. Transverse relaxation of solvent protons induced by magnetized spheres: application to ferritin, erythrocytes,and magnetite. Magn. Reson. Med, 1987,5: 323-345.
    43. Calamante F, Lythgoe MF, Pell GS, et al. Early changes in water diffusion, perfusion, T1, and T2 during focal cerebral ischemia in the rat studied at 8.5 T. Magn Reson Med, 1999,41:479-485.
    44. Kucinski T, Jung S, Knab R, et al. T2 time increase as an indicator of the early ischemic edema in acute stroke. Proc Intl Soc Mag Reson Medicine: ISMRM 13th Scientific Meeting Miami Beach, Florida, USA,2005,13:234.
    45. Gomori JM, Grossman RI, Yo-Ip C, et al. NMR relaxation times of blood: dependence on field strength, oxidation state, and cell integrity. J. Comput. Assist. Tomogr, 1987,11:684-690.
    46. Thulborn KR, Waterton JC, Matthews PM, et al. Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim. Biophys. Acta, 1982,714:265-270.
    47. Sette G, Baron JC, Mazoyer B, et al. Local brain haemodynamics and oxygen metabolism in cerebrovascular disease. Positron emission tomography. Brain, 1989,112: 931-951
    48. Popel AS, Gross JF. Analysis of oxygen diffusion from arteriolar networks. Am. J. Physiol, 1979,237: 681-689.
    49. McHedlishvili G, Varazashvili M, Mamaladze A, et al. Blood flow structuring and its alterations in capillaries of the cerebral cortex. Microvasc. Res, 1997,53: 201-210.
    50. Yamauchi H, Fukuyama H, Nagahama Y,et al.Cerebral hematocrit decreases with hemodynamic compromise in carotid artery occlusion: a PET study. Stroke, 1998,29: 98-103.
    51. Gro"hn OHJ, Kettunen MI, Penttonen M, et al. Graded reduction of cerebral blood flow in rat as detected by the nuclear magnetic resonance relaxation time T2: a theoretical and experimental approach. J. Cereb. Blood Flow Metab,2000,20: 316-326
    52. van Zijl PC, Eleff SM, Ulatowski JA, et al. Quantitative assessment of blood flow, blood volume and blood oxygenation effects in functional magnetic resonance imaging. Nat. Med,,1998,4: 159-167.
    53. Oja JME, Gillen JS, Kauppinen RA,et al. Determination of oxygen extraction ratios by magnetic resonance imaging. J. Cereb. Blood Flow Metab,1999,19: 1289-1295.
    54. Boxerman JL, Bandettini PA, Kwong KK, et al. The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo. Magn. Reson. Med, 1995,34: 4-10
    55. Oja JME, Gillen J, Kauppinen RA, et al.Venous blood effects in spin echo fMRI of human brain. Magn.Reson. Med,1999,42: 617-626.
    56. Haacke EM, Hopkins A, Lai S, et al. 2D and 3D high resolution gradient echo functional imaging of the brain: venous contributions to signal in motor cortex studies. NMR Biomed, 1994,7:54-62.
    57. Golay X, Silvennoinen MJ, Zhou J, et al. Measurement of tissue oxygen extraction ratios from venous blood T2: increased precision and validitation of principle.Magn. Reson. Med,2001,46: 282-291.
    58. Lee BC, Vo KD, Kido DK, Mukherjee P, et al. MR high-resolution blood oxygenation level-dependent venography of occult (low-flow) vascular lesions.Am. J. Neuroradiol, 1999,20: 1239-1242.
    59. Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke, 1989,20: 84-91
    60. Kato H, Kogure K, Ohtomo H, et al. Characterization of experimental ischemic brain edema utilizing proton nuclear magnetic resonance imaging. J. Cereb. Blood Flow Metab, 1986,6: 212-221.
    61. Knight RA, Dereski MO, Helpern JA, et al. Magnetic resonance imaging assessment of evolving focal cerebral ischemia. Comparison with histopathology in rats. Stroke, 1994,25: 1252-1261
    62. Tamura H, Hatazawa J, Toyoshima H,et al. Detection of Deoxygenation-Related Signal Change in Acute Ischemic Stroke Patients by T2*-Weighted Magnetic Resonance Imaging,Stroke,2002;33: 967-971.
    63. Geisler BS, Brandhoff F, Fiehler J, et al.Blood Oxygen Level-Dependent MRI Allows Metabolic Description of Tissue at Risk in Acute Stroke Patients. Stroke, 2006,37:1778-1784

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700