用户名: 密码: 验证码:
稀土镧化合物调控核因子κB信号通路的分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景核因子-κB( nuclear factor-kappa B , NF-κB)是一种广泛存在于哺乳动物多种细胞具有多向性调节作用的蛋白质分子,是细胞中一个对环境改变发生应激反应的转录因子,它调节大量与细胞应激反应、炎症反应、免疫应答和细胞抗凋亡等相关的基因的转录。NF-κB活化的失调参与多种疾病的发生、发展过程,例如感染性休克(脓毒症)、多脏器功能衰竭等烧伤临床上常见,目前尚缺乏特异的治疗方法的并发症,而NF-κB在这些并发症的发生发展过程中起着非常重要的作用;其他如缺血再灌注损伤、类风湿关节炎、支气管哮喘、动脉粥样硬化、溃疡性结肠炎、老年性痴呆、肿瘤细胞抗凋亡及艾滋病(AIDS)等的发生和发展也都与NF-κB的过度活化直接相关。NF-κB是一个进化高度保守的在许多生命过程中发挥重要作用并主要对环境变化产生应答的转录因子,主要是以p50/p65异二聚体形式普遍存在于细胞浆中的一种快反应转录因子,与NF-κB抑制蛋白(IκB)结合而呈非活性状态。研究表明它可以被多种刺激剂,如内毒素(LPS)、TNF-α(tumor necrosis factor-alpha )、IL-1(interleukin 1)、神经生长因子、蛋白激酶C(Protein Kinase C,PKC)激活剂、有丝分裂原、氧化剂、细菌、病毒、免疫刺激剂、自由基以及紫外线等激活。激活的NF-κB与IκB解离后转位入核与靶基因启动子/增强子上的κB位点结合,从而调节许多靶基因的表达,因此被誉为控制早期基因表达的开关。通过靶基因表达产物,NF-κB参与了感染、炎症、免疫反应、细胞凋亡和肿瘤等病理过程以及细胞周期调控与细胞分化等。调节和控制NF-κB活性是缓解组织损伤的一种有力策略,因此深入研究NF-κB信号转导通路,探索细胞内NF-κB活化阻断剂,可能为临床治疗开辟新途径。
     近年来,研究发现NF-κB信号系统受到许多金属元素的影响。如金、锌、铜等不同化合物均可通过抑制IKK(sIκB kinases, IκB激酶)的活性来阻断NF-κB的活化;金精三羧酸主要通过强烈抑制NF-κB与DNA结合来控制艾滋病毒HIV活性;许多金属如金、钯、镍及汞亦可影响NF-κB与DNA结合从而调节靶基因的激活。
     镧是一种化学性质十分活跃的稀土金属,研究证实稀土具有抗菌、促进创面愈合、调节细胞免疫功能等作用。临床上,稀土已经在磁共振、时间分辨检测、放射性同位素诊断中用作诊断试剂,铈浴法还用于治疗烧伤患者;2004年10月,碳酸镧被美国FDA批准用于临床治疗磷酸水平高的血透患者。我们的前期研究工作证明稀土化合物氯化镧对LPS引起的体内效应有明显的拮抗作用。实验表明镧可降低内毒素血症小鼠炎症介质水平,减轻内毒素对机体主要脏器的损伤,对致死量内毒素攻击小鼠具有明显的保护作用。本课题拟通过分析氯化镧对多种细胞内NF-κB上游相关信号分子以及NF-κB系统内部的信号分子表达及活化的影响,并观察氯化镧对LPS诱导NF-κB所调控的下游炎症反应介质表达的影响,探索镧抑制NF-κB活化的可能机制,为临床感染性休克(脓毒症)、多脏器功能衰竭等疾病的治疗提供新思路,并为开发稀土的药用价值提供实验依据。
     第I部分氯化镧对内毒素诱导NF-κB上游信号分子的作用目的分析氯化镧对LPS诱导NF-κB上游信号分子的表达和活化的影响。
     方法:
     1.细胞培养及分组:RAW264.7巨噬细胞:以含5%胎牛血清的DMEM/F12液体培养基稀释细胞密度为1×106个/ml,分别接种于去热原培养瓶中及预先放置无菌去热源盖玻片的24孔培养板中,于5%CO2、37℃恒温培养,实验随机分组如下:①LPS组:以含1μg/ml LPS的无血清DMEM/F12液体培养基培养RAW264.7细胞。②氯化镧+LPS组:以含氯化镧2.5μmol/L(经预实验证明该浓度可以有效抑制NF-κB的活化)的无血清培养基培养RAW264.7细胞4h后,弃培养基并以无热原生理盐水漂洗细胞三遍,再加入含1μg/ml LPS的培养基继续培养。③空白对照组:培养基为不含血清的DMEM/F12,不加氯化镧和LPS。④氯化镧对照组:以含氯化镧2.5μmol/L的无血清DMEM/F12培养基培养RAW264.7细胞。按检测指标要求分别于不同时间段收集培养上清、细胞及细胞爬片待检。
     2.检测指标:
     (1)观察氯化镧对LPS诱导RAW264.7细胞表面Toll样受体4(TLR4)基因表达(转录和翻译)的作用:利用流式细胞术及逆转录多聚酶链式反应(RT-PCR)技术分析TLR4基因表达情况;
     (2)氯化镧对LPS活化NF-κB上游部分信号通路的影响:
     ①观察氯化镧对LPS诱导RAW264.7细胞p38MAPK蛋白表达和磷酸化的作用:采用细胞免疫荧光染色分析p38MAPK/p-p38MAPK在巨噬细胞细胞中的分布与表达;免疫印迹技术(Western blot)测定巨噬细胞内p38MAPK蛋白表达和磷酸化水平的改变。
     ②观察氯化镧对LPS诱导RAW264.7巨噬细胞中PKC蛋白表达和磷酸化的作用:采用细胞免疫荧光染色分析PKC在巨噬细胞的表达和磷酸化转位情况; Western blot测定巨噬细胞内PKC蛋白表达和磷酸化水平的改变。
     结果:
     (1)氯化镧对NF-κB上游信号膜受体(TLR4)表达的作用:利用流式细胞术及逆转录多聚酶链式反应(RT-PCR)技术分析1μg/ml LPS刺激后巨噬细胞表面TLR4的表达及氯化镧的影响,结果表明LPS能够显著上调巨噬细胞TLR4基因和胞膜TLR4蛋白的表达,尽管氯化镧(2.5μmol/L)本身不上调巨噬细胞TLR4基因的表达,氯化镧亦不能抑制LPS诱导巨噬细胞表面受体TLR4的基因的表达。
     (2)氯化镧对LPS活化NF-κB上游部分信号通路的影响:
     ①p38 MAPK信号通路:1μg/ml LPS能够有效激活RAW264.7巨噬细胞的p38MAPK信号通路,氯化镧(2.5μmol/L)自身不激活该信号通路同时也不能阻断LPS介导的p38蛋白的表达和磷酸化。
     ②PKC信号系统:1μg/ml LPS同样能够有效激活RAW264.7巨噬细胞的PKC信号,令PKC蛋白表达和磷酸化水平显著升高,并从胞浆转位至胞膜。2.5μmol/L氯化镧即能够有效阻断LPS诱导的PKC蛋白表达和磷酸化水平升高及膜易位。结论:氯化镧通过阻断NF-κB上游PKC信号通路,从而可能部分抑制NF-κB信号通路的活化。
     第II部分氯化镧对NF-κB信号通路中关键分子活化作用的分析
     目的观察不同激活机制下(激活物分别为LPS及TNF-α,靶细胞分别为RAW264.7及Hela细胞及NF-κB组成性活化细胞株U266),氯化镧对各细胞中NF-κB信号通路关键分子的蛋白表达和磷酸化及NF-κB/p65亚基与靶基因结合能力的影响,探索氯化镧抑制NF-κB活化的可能作用位点。
     方法
     1.细胞培养及分组:
     (1)RAW264.7细胞:(同上)
     (2)Hela细胞:以1×106个/ml接种细胞于含10%胎牛血清的RMPI 1640液体培养基中,于5%CO2、37℃恒温培养,随机分组如下:①TNF-α组:以含TNF-α20ng/ml的无血清RMPI 1640液体培养基培养Hela细胞。②氯化镧+TNF-α组:分别以含氯化镧5 , 25, 50和100μmol/L的RMPI 1640培养基培养Hela细胞4h后弃培养基并以无热原生理盐水漂洗细胞三遍,再加入含TNF-α20ng/ml的培养基继续培养。③空白对照组:培养基为不含血清的RMPI 1640,不加氯化镧和TNF-α。④氯化镧对照组:以含氯化镧100μmol/L的RMPI 1640培养基培养Hela细胞。各组细胞根据检测方法的要求分别培养于24孔培养板(孔中预先放置无菌盖玻片)或培养瓶中,于30min后,收集培养上清、细胞及盖玻片待检。
     (3) U266细胞:以1×106个/ml接种细胞于含15%胎牛血清的RMPI 1640液体培养基的培养瓶中,于5%CO2、37℃恒温培养,细胞悬浮生长,隔天半量换液,实验分组如下:①空白对照组:培养基为不含血清的RMPI 1640,不给予任何干预和刺激。②氯化镧对照组:分别以含氯化镧2.5, 5 ,25,50和100μmol/L的无血清培养基培养U266细胞。各组细胞根据检测方法的要求分别培养于培养瓶中,30min后收集培养细胞待检。
     2.检测指标:
     (1)Western blot技术测定IκB上游激酶IKKα, IKKβ的表达和磷酸化情况;
     (2)Western blot技术测定胞浆提取物中IκBα蛋白表达和磷酸化水平;
     (3)细胞免疫荧光染色技术分析NF-κB/p65蛋白在细胞中的表达和分布;
     (4)Western blot技术测定胞核提取物中NF-κB /p65蛋白表达水平;
     (5)Transcription Factor Assay kit试剂盒(酶联免疫吸附技术(ELISA))测定胞核提取物中p65蛋白与DNA靶序列结合能力。
     结果
     1.氯化镧对LPS诱导的巨噬细胞NF-κB信号通路中关键分子表达和/或活化的影响:
     (1)氯化镧对LPS诱导的NF-κB活化的抑制作用:氯化镧(2.5μmol/L)能够显著抑制LPS诱导NF-κB/p65自胞浆转位到细胞核,并且显著减弱NF-κB/p65与靶DNA结合活性。
     (2)氯化镧对LPS诱导的IκBα降解的抑制作用:氯化镧显著抑制LPS诱导的胞浆IκBα降解,从而抑制了NF-κB/p65自胞浆转位到细胞核。
     (3)氯化镧对LPS诱导的IκBα磷酸化的抑制作用:氯化镧不能阻断LPS介导的RAW264.7巨噬细胞中IκBα的磷酸化。
     (4)氯化镧对LPS诱导的IKKs活性的影响:氯化镧不影响RAW264.7巨噬细胞中IKKα/β表达和磷酸化水平,从而不能阻断LPS介导的IκBα的磷酸化。
     在RAW264.7细胞株中,NF-κB激活剂LPS诱导IKKβ及IκBα磷酸化,令IκBα降解,最终使NF-κB/p65转位入核与靶基因结合。氯化镧虽然不能阻断IKKβ及IκBα磷酸化,但是能够阻止RAW264.7细胞中IκBα的降解,并抑制NF-κB/p65转位入核并抑制NF-κB/p65与靶基因的结合活性,最终阻断NF-κB信号转导通路。
     2.氯化镧对TNF-α诱导的Hela细胞NF-κB信号通路中关键分子表达和/或活化的影响:
     (1)氯化镧对TNF-α诱导的NF-κB活化的抑制作用:25-100μmol/L氯化镧能够显著抑制TNF-α诱导NF-κB/p65蛋白表达水平并抑制其自胞浆转位到细胞核,5-100μmol/L氯化镧还能显著减弱Hela细胞中NF-κB/p65与靶DNA结合活性,上述抑制效应呈剂量依赖关系。
     (2)氯化镧对TNF-α诱导的IκBα磷酸化和降解的抑制作用:TNF-α能够诱导Hela细胞中IκBα的磷酸化和降解。随着氯化镧处理的浓度不断升高,IκBα表达水平逐步升高,而磷酸化水平不断降低。表明氯化镧能够抑制TNF-α诱导的IκBα的磷酸化和表达水平的降低,且该效应随着随着氯化镧浓度的升高而逐步增强。
     (3)氯化镧对LPS诱导的IKKs活性的影响:氯化镧不影响Hela细胞中IKKα/IKKβ蛋白的表达水平。静息状态的Hela细胞几乎不表达p-IKKβ,而在TNF-α诱导下p-IKKβ水平则明显升高,随着氯化镧处理浓度的逐渐升高,p-IKKβ水平逐步下降,50-100μmol/L氯化镧能够显著抑制TNF-α诱导Hela细胞中IKKβ的磷酸化。
     NF-κB的另一个激活剂TNF-α,亦通过磷酸化IKKβ及IκBα,导致IκBα降解,最终亦使NF-κB/p65转位入核与靶基因结合,启动相关基因的表达。在Hela细胞株中,氯化镧不仅能够抑制IκBα的降解和NF-κB/p65转位入核,阻断NF-κB/p65与靶基因的结合,还能够阻断IKKβ及IκBα磷酸化。可见在不同细胞及激活条件下,氯化镧抑制NF-κB信号通路的靶点不完全相同。
     3.氯化镧对U266细胞中NF-κB的组成性活化(constitutive activation)的影响:
     (1)氯化镧对NF-κB组成性活化的作用:0-100μmol/L的氯化镧不能抑制NF-κB的组成性活化,逆转p65蛋白的移位。
     (2)氯化镧对U266细胞中IκBα蛋白的表达和磷酸化的作用:0-100μmol/L氯化镧亦不能影响IκBα蛋白的表达和磷酸化水平。
     (3)氯化镧对U266细胞中IKKs活性的影响:0-100μmol/L的氯化镧对U266细胞中IKKα/IKKβ蛋白的表达和磷酸化水平影响不明显。
     (4)氯化镧在胞外条件下,对U266细胞核提取物中NF-κB/p65与DNA的结合能力的影响:实验表明在细胞外条件下,5μmol/L氯化镧即能够显著抑制p65蛋白与靶DNA结合活性,并且该抑制效应随着氯化镧浓度的增高不断增强,100μmol/L氯化镧能够完全抑制胞核提取物中NF-κB/p65与靶DNA的结合。研究结果提示:对于NF-κB组成性活化U266细胞,氯化镧不影响IKKβ的磷酸化及IκBα的磷酸化和降解,并无法逆转NF-κB转位,但能够在细胞外条件下阻断NF-κB/p65与靶DNA的结合。
     第III部分氯化镧对LPS诱导NF-κB调控的炎症介质表达的影响目的通过观察氯化镧对LPS诱导的炎性因子TNF-α、NO及诱导型一氧化氮合成酶(iNOS)表达水平及活性的作用,了解氯化镧对LPS诱导NF-κB下游靶基因表达的影响。
     方法
     (1)实验分组:(同第I部分)。
     (2)逆转录-多聚酶链式反应(RT-PCR)测定TNF-α及iNOS基因表达水平。
     (3)酶联免疫吸附技术(ELISA)测定细胞上清中TNF-α含量。
     (4)细胞免疫荧光染色技术分析iNOS蛋白在细胞中的表达和分布。
     (5) Western blot技术测定细胞中iNOS蛋白表达水平。
     (6)硝酸还原酶法检测培养上清NO含量。
     结果
     (1)氯化镧对LPS诱导的NF-κB下游炎症介质TNF-α表达和释放的抑制作用:2.5μmol/L氯化镧不仅能够下调静息状态下巨噬细胞TNF-α基因的表达和多肽的释放还能够显著抑制LPS上调TNF-α基因表达和多肽释放。
     (2)氯化镧对LPS诱导NF-κB下游基因iNOS表达的抑制作用:2.5μmol/L氯化镧能明显下调iNOSmRNA的表达水平,减少iNOS蛋白的生成,显著降低产物NO的生成。研究结果提示氯化镧可通过抑制iNOS基因及蛋白的表达水平而控制NO的生成。
     结论:本研究结果(第I-第III部分)提示,氯化镧可通过阻断NF-κB上游PKC信号通路,从而部分抑制NF-κB信号通路的活化;氯化镧还能阻断IKKβ及IκBα磷酸化,抑制IκBα的降解和NF-κB/p65转位入核,并抑制NF-κB/p65与靶基因的结合,最终阻断NF-κB信号转导,从而下调炎性介质基因的表达和释放。
Background
     Nuclear factor-κB (NF-κB) is a ubiquitous rapid response transcription factor that controls the expression of genes involved in immune responses, apoptosis, and cell cycle. Incorrect regulation of NF-κB,which plays an important role in the development of complications such as septic shock and multiple organ dysfunction syndrome, may cause inflammatory and autoimmune diseases, viral infection and cancer. NF-κB involves apparently in a variety of human diseases including ischaemia-reperfusion injury , rheumatoid arthritis , bronchial asthma ,artherosclerosis, colitis gravis,alzheimer's disease and Acquired Immune Deficiency Syndrome. NF-κB family members have been identified to share a highly conserved Rel homology domain, responsible for their dimerization and binding to DNA and IκB (inhibitor of NF-κB). The transcription factor NF-κB works only when two members form a dimer. The most abundant activated form consists of a p50 or p52 subunit and a p65 subunit. NF-κB can be activated by a variety of stimuli, including bacterial LPS (Lipopolysaccharide), cytokines (such as TNF-α and IL-1β), nerve growth factor, activators of PKC (Protein Kinase C,PKC), T and B cell mitogens, viral proteins, and stress inducers (such as reactive oxygen species or UV radiation). In the cytoplasm, NF- κB is inhibited by IκB. Upstream activating signal may cause phosphorylation of IκB by IKK (IκB kinase). This triggers the degradation of IκB through the ubiquitin system, where the target molecule is masked by a chain of ubiquitins for degradation by the 26S protesome. The free NF-κB can then translocate to the nucleus, and regulate expression of a large number of genes that are critical for the regulation of apoptosis, viral replication, tumorigenesis, inflammation, and various autoimmune diseases. The activation of NF-κB is thought to be part of a stress response as it is activated by a variety of stimuli that include growth factors, cytokines, lymphokines, UV, pharmacological agents, and stress. Therefore, NF-κB takes part in pathology process such as infection, inflammation, immune reaction, cell apoptosis and cancer. Therapeutic interventions aimed at limiting NF-κB activation could prove to be a powerful strategy for attenuating tissue injury.
     NF-κB signaling pathway has been reported to be affected by various metal elements recently. Gold, zinc and copper compounds can block the activation of NF-κB by inhibiting the activity of IKKs. It was reported that Aurine tricarboxylic acid attenuating the viability of AIDS virus by decreasing DNA binding activity of NF-κB intensively. Metals such as gold, palladium, nickel and mercury all regulate the activation of target gene by inhibiting the NF-κB–DNA binding activity.
     Lanthanum, a representative of lanthanides with extremely active physical and chemical property, evidenced to possess antibacterial effect and regulating cellular immunity, has lower toxicity than synthetic drug and some ove-metals.
     Lanthanides have already been employed as diagnostic reagent in clinical examination such as magnetic resonance, Time-resolved Fluorescence Immunoassay and radio active isotope. Lanthanides compounds are also applied in the treatment of various diseases. For example, Lanthanum carbonate is well tolerated and is effective for the long-term maintenance of serum phosphorus control in patients with end-stage renal disease. Studies also show the greater efficacy of sulfadiazine combined with cerium nitrate in the treatment of burns patients. We have previously reported that lanthanum chloride is able to bind LPS and reduce its toxicity, inhibit LPS-induced apoptosis of thymocyte and damage of liver and lungs, markedly decrease the level of TNF-αin plasma and TNF-αmRNA expression in mice challenged with LPS,thus protect mice from lethal dose of LPS challenge. The present study was designed to elucidate the mechanism of lanthanum on activation of NF-κB and its related signaling molecules and pathways as well as the expression of its down-stream inflammatory media in various cells .
     Part I The effects of lanthanum on the LPS mediated NF-κB related upstream signaling molecules and pathways
     Object To analyze the effects of lanthanum on the LPS mediated NF-κB related upstream signaling molecules and pathways.
     Methods
     1. Cell culture and Sample treatment: The RAW264.7 macrophages were maintained in DMEM/F12 supplemented with 5% heat-inactivated FBS at 37℃in a humidified 5% CO2 atmosphere. To prevent interference from FBS (FBS may bind with LPS and/or lanthanum chloride), cells were washed triplicate with PBS (phosphate buffered saline, PH7.4) before incubation with LaCl3 or LPS, fresh DMEM/F12, rather than DMEM/F12 containing 5% FBS, was added to the cells; and the cells were divided at random into 4 groups: control group, LPS group, LaCl3 group and LaCl3 + LPS group. In control group, the cells were cultured with DMEM/F12; the cells from LPS group were incubated with DMEM/F12 containing 1μg/ml LPS; In LaCl3 group, cells were incubated with 2.5μmol/L of LaCl3 for indicated time; Post lanthanum exposure, the cells from LaCl3 + LPS group were washed triplicate with PBS to remove LaCl3 and treated with subsequent LPS (1μg/ml) activation. Then the cells and culture supernatants were collected to analyze the expression and activation of NF-κB related singaling molecules and pathways at various time points accordingly.
     2. Content and Methods:
     (1) The expression of Toll-like receptor 4 (TLR4): TLR4 mRNA level in RAW264.7 cells were examined by RT-PCR (reverse transcription polymerase chain reaction). Membrane TLR4 expression was detected by flow cytometry (FCM).
     (2) Expression and phosphorylation of p38 MAPK: Expression and location of p38 MAPK and phosphorated p38 MAPK were detected by IF (immunofluorescence) and western blot.
     (3) Expression and phosphorylation of PKC: Expression and location of PKC and phosphorated PKC were detected by IF (immunofluorescence) and western blot.
     Results
     (1) The effects of Lanthanum on the expression of TLR4: RT-PCR and FCM results showed that LPS upregulated TLR4 expression, 2.5μmol/L LaCl3 had no effect on the expression itself , it had no effect on LPS- induced TLR4 expression, either.
     (2) The effects of Lanthanum on the LPS-mediated activation of upstream signaling pathways of NF-κB:
     ①p38 MAPK signaling pathway: p38 MAPK signaling pathway of RAW264.7 cells was activated by 1μg/ml LPS. 2.5μmol/L LaCl3 had no effect on the expression and phosphorylation of p38MAPK itself , it had no effect on LPS- induced expression and phosphorylation of p38MAPK, either.
     ②PKC signaling pathway: PKC signaling pathway of RAW264.7 cells was also activated in RAW264.7 cells by 1μg/ml LPS. LPS-mediated PKC expression and phosphorylation as well as membrane traslocation was significantly inhibited by 2.5μmol/L of LaCl3.
     Conclusion:
     Lantanum may block NF-κB signaling partly via PKC signaling pathway.
     Part II The effects of lanthanum on key molecules of NF-κB pathway Object To explore the possible inhinitory sites of lanthanum on NF-κB activation by detecting the expression and phosphorylation of key molecules of NF-κB and the NF-κB/p65-DNA binding activity in various stimuli-actived cell lines.
     Methods
     1. Cell culture and Sample treatment:
     (1) The RAW264.7 macrophages:(The same as above)
     (2) Hela cervical carcinoma cells: the cells were maintained in RMPI 1640 supplemented with 10% heat-inactivated FBS at 37℃in a humidified 5% CO2 atmosphere. To prevent interference from FBS (FBS may bind with lanthanum chloride), cells were washed triplicate with PBS before incubation with LaCl3/TNF-α, fresh RMPI 1640, rather than RMPI 1640 containing 10% FBS, was added to the cells. The cells were divided at random into 4 groups: control group, TNF-αgroup, LaCl3 group and LaCl3 + TNF-αgroup. In control group, the cells were cultured with RMPI 1640; the cells from TNF-αgroup were incubated with 20ng/ml TNF-α; in LaCl3 group, cells were incubated with 100μmol/L of LaCl3 for 30min; Post 2h 5, 25, 50 and 100μmol/L lanthanum exposure, the cells from LaCl3 +TNF-αgroup were washed triplicate with PBS to remove LaCl3 and treated with subsequent TNF-α(20ng/ml) activation for 30 min. Then the cells were collected to analyze the expression and activation of key singaling molecules and the NF-κB/p65-DNA binding activity of NF-κB pathway.
     (3) Multiple myeloma u266 cells: the cells were maintained in RMPI 1640 supplemented with 15% heat-inactivated FBS at 37℃in a humidified 5% CO2 atmosphere. To prevent interference from FBS, cells were washed triplicate with PBS before incubation with LaCl3, fresh RMPI 1640, rather than RMPI 1640 containing 15% FBS, was added to the cells. The cells were divided at random into 2 groups: control group, and LaCl3 group. In control group, the cells were cultured with RMPI 1640; in LaCl3 group, cells were incubated with 2.5, 5 ,25,50 and 100μmol/L of LaCl3 for 2h, respectively. Then the cells were collected to analyze the expression and activation of key singaling molecules and the NF-κB/p65-DNA binding activity of NF-κB pathway.
     2. Content and Methods:
     (1) The expression and phosphorylation of IκB upstream kianse IKKα, IKKβwere detected by western blot;
     (2) The expression and phosphorylation of IκBαwere also detected by western blot;
     (3) Immunofluorescence was employed in detecting the expression and localization of NF-κB /p65;
     (4) NF-κB /p65 in the nuclear extract was detected by western blot.
     (5) NF-κB /p65-DNA binding activity of nuclear extract was detected by Transcription Factor Assay kit
     Results and conclusion
     1. The effects of lanthanum on expression and/or activation of key signaling molecules in NF-κB pathway of LPS- induced macrophages:
     (1) NF-κB activation: LaCl3 (2.5μmol/L) can inhibit LPS-mediated NF-κB/p65 overexpression, translocation and decrease the NF-κB/p65-DNA binding activity significantly.
     (2) Degradation of IκBα: LaCl3 (2.5μmol/L) can inhibit LPS-mediated IκBαdegradation, thus inhibited the nuclear translocation of NF-κB/p65.
     (3) Phosphorylation of IκBα: LaCl3 (2.5μmol/L) can not inhibit LPS-mediated IκBαphosphorylation.
     (4) Phosphorylation of IKKs: LaCl3 (2.5μmol/L) can not inhibit LPS-mediated expression and phosphorylation of IKKα/β.
     LPS, an activator of NF-κB, induces IKKβand IκBαphosphorylation, causes degradation of IκBαand leads to the nuclear translocation of NF-κB/p65 protein, which ultimately bind with target DNA. Although lanthanum can not block the phosphorylation of IKKβand IκBα, it can inhibit IκBαdegradation, NF-κB/p65 protein translocation and its DNA binding activity, thus blocks NF-κB signaling pathway in microphages.
     2. The effects of lanthanum on expression and/or activation of key signaling molecules in NF-κB pathway of TNF-α- induced Hela cervical carcinoma cells:
     (1) NF-κB activation: LaCl3 (25-100μmol/L) can inhibit TNF-α-mediated NF-κB/p65 expression and translocation remarkably. 5-100μmol/L LaCl3 decrease the NF-κB/p65-DNA binding activity significantly. The inhibitory effects are dose-dependent.
     (2) Phosphorylation and degradation of IκBα: Phosphorylation and degradation of IκBαwas induced by TNF-α, LaCl3 can inhibit TNF-α-mediated IκBαphosphrylation and degradation dose-dependently.
     (3) Phosphorylation of IKKs: IKKαand IKKβexpression was not affected by TNF-αand /or LaCl3 treatment. TNF-α-induced IKKβphosphorylation was attenuated by LaCl3 dose-dependently. 50-100μmol/L LaCl3 decreased TNF-α-mediated IKKβphosphorylation significantly.
     Another activator of NF-κB, TNF-α, induces IKKβand IκBαphosphorylation, causes degradation of IκBαand leads to the nuclear translocation of NF-κB/p65 protein, which ultimately bind with target DNA in Hela cells. Lanthanum can not only block the phosphorylation of IKKβand IκBαbut also inhibit NF-κB/p65 protein translocation and its DNA binding activity; thus blocks NF-κB signaling pathway in Hela cells.
     3. The effects of lanthanum on constitutive activation of key signaling molecules in NF-κB pathway of multiple myeloma u266 cells.
     (1) NF-κB activation: LaCl3 (0-100μmol/L) can not inhibit constitutive NF-κB/p65 expression and translocation of p65 subunit from the nuclear back into cytoplasm.
     (2) Phosphorylation and degradation of IκBα: LaCl3 (0-100μmol/L) can not inhibit IκBαphosphrylation and degradation
     (3) Phosphorylation of IKKs: IKKαand IKKβexpression and phosphorylation was not affected by LaCl3 (0-100μmol/L) treatment.
     (4) At the presence of 5μmol/L LaCl3, DNA binding activity of NF-κB/p65 from nuclear extract of U266 cells decreased significantly. With increasing LaCl3 dosage, the inhibitory effects progressively increased and the binding activity was completely abolished at the highest dose (100μmol/L).
     The rescults show that in NF-κB constitutive activation U266 cells, lanthanum can not inhibit phosphorylation of IKKβand IκBα, degradation of IκBαand the nuclear translocation of NF-κB/p65 protein. However, Lanthanum can block the DNA binding activity of NF-κB/p65 from the nuclear extract of U266 cells in a dose-dependent manner.
     Part III The effects of lanthanum on the expression of NF-κB regulated inflammatory media
     Object To explore the effects of lanthuanum on LPS-induced NF-κB -dependent gene expression in RAW264.7 cells, level of inflammatory media (TNF-αand NO) was detected and the gene expression of TNF-αand inducible nitric oxide synthase (iNOS) was measured.
     Methods
     (1) Cell culture and Sample treatment: The same as part I, briefly, RAW264.7 macrophages were maintained in DMEM/F12 supplemented with 5% heat-inactivated FBS at 37℃in a humidified 5% CO2 atmosphere. The cells were divided at random into 4 groups: control group, LPS group, LaCl3 group and LaCl3 + LPS group.
     (2) The expression of TNF-αand iNOS mRNA: RT-PCR was employed to detect TNF-αand iNOS mRNA level in RAW264.7 cells.
     (3) TNF-αin the culture supernatants was detected by ELISA (Enzym kinked immunosorbent assay).
     (4) Expression and localization of iNOS: Expression and location of iNOS was detected by both IF (immunofluorescence) and western blot.
     (5) NO production in culture supernatant was determinded by nitrate reductase assay. Results and conclusion
     (1) TNF-αexpression: LaCl3 at low concentration (2.5μmol/L) can remarkably inhibit the expression of TNF-α, one of LPS-induced NF-κB-dependent inflammatory media, in both rest and LPS activated RAW264.7 cells.
     (2) iNOS expression : Immunofluorescence analysis and western blotting detection showed LaCl3 (2.5μmol/L) can remarkably inhibit the expression of iNOS protein in LPS-induced RAW264.7 macrophages. The results of RT-PCR showed the LPS-induced expression of iNOS mRNA can be decreased by LaCl3 significantly. NO production assay indicated LaCl3 can also reduce the NO production significantly in macrophages induced by LPS.
     In summary (PartI-III), NF-κB signal pathway can be blocked by lanthanum chloride via blocking the PKC signal pathway partly; And lanthanum chloride can inhibit the phosphorylation of IKKβand IκBα, suppress IκBαdegradation and nuclear translocation of NF-κB/p65 as well as attenuat NF-κB/p65-DNA binding activitaty, all these result in blockage of NF-κB signial pathway and inhibition of inflammatory media expression and release.
引文
1. Bohrer, H., F. Qiu, T. Zimmermann, et al., Role of NFkappaB in the mortality of sepsis. J Clin Invest, 1997. 100(5):972-85.
    2. 王静, 乔万海, 全身炎症反应综合征和多器官功能不全综合征的基因调控和治疗进展. 中国全科医学, 2006. 9(19):1634-6.
    3. 姜建青, 唐旭东, 赁常文等, 心肌缺血再灌注中核因子-κB 活性变化及其对中性粒细胞黏附的影响. .中国胸心血管外科临床杂志, 2003. 9(1):44-6.
    4. 唐旭东, 姜建青, 刘宝玉等, 心肌缺血再灌注中肿瘤因子-α表达及与核因子-κB 活化的关系. 华西医学, 2003. 18(2):161-3.
    5. Rayet, B, C Gelinas, G Celine, et al., Aberrant rel/nfkb genes and activity in human cancer. Oncogene, 1999. 18(49):6938-47.
    6. Wang, Cy, Mw MayoMarty Wm, TNF-and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science, 1996. 274(5288):784-7.
    7. Mercurio, FAm Manning, NF-kappa B as a primary regulator of the stress response. Oncogene, 1999. 18(45):6163-71.
    8. Lind, Ds, Sn HochwaldJ Malaty, Nuclear factor-kappa B is upregulated in colorectal cancer. .Surgery, 2001. 130(2):363-9.
    9. Jo, H, R ZhangH Zhang, NF-kappa B is required for H-ras oncogene incduced abnormal cellproliferation and tumorigenesis. Oncogene, 2000. 19(7):841-9.
    10. Jeon, K. I., M. S. ByunD. M. Jue, Gold compound auranofin inhibits IkappaB kinase (IKK) by modifying Cys-179 of IKKbeta subunit. Exp Mol Med, 2003. 35(2):61-6.
    11. 徐宁, 欧阳钦, Toll 样受体,NF-KB 与炎性肠病. 国外医学. 消化系疾病分册, 2003. 23(5):264-7.
    12. Mattson, Mp, Culmsee,CYu,Z, Roles of nuclear factor kappa B in neural survival and plasticity. Neurochem, 2000. 74:443-56.
    13. Bonizzi, G.M. Karin, The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol, 2004. 25(6):280-8.
    14. Hatada, E. N., A. Nieters, F. G. Wulczyn, et al., The ankyrin repeat domains of the NF-kappa B precursor p105 and the protooncogene bcl-3 act as specific inhibitors of NF-kappa B DNA binding. Proc Natl Acad Sci U S A, 1992. 89(6):2489-93.
    15. Nelson, De, Aec Ihekwaba, M Elliott, et al., Oscillations in NF-kB signaling control the dynamics of gene expression Science, 2004. 306: 704-8.
    16. Rothwarf, D. M.M. Karin, The NF-kappa B activation pathway: a paradigm in informationtransfer from membrane to nucleus. Sci STKE, 1999. 1999(5):RE1.
    17. Ghosh, S.M. Karin, Missing pieces in the NF-kappaB puzzle. Cell, 2002. 109 Suppl:S81-96.
    18. Hu, Y., V. Baud, M. Delhase, et al., Abnormal morphogenesis but intact IKK activation in mice lacking the IKKalpha subunit of IkappaB kinase. Science, 1999. 284(5412):316-20.
    19. Tanaka, M., M. E. Fuentes, K. Yamaguchi, et al., Embryonic lethality, liver degeneration, and impaired NF-kappa B activation in IKK-beta-deficient mice. Immunity, 1999. 10(4):421-9.
    20. Clohisy, J. C., T. Hirayama, E. Frazier, et al., NF-kB signaling blockade abolishes implant particle-induced osteoclastogenesis. J Orthop Res, 2004. 22(1):13-20.
    21. 胡坚, 苏海, 核因子-kappa B 与动脉粥样硬化. 实用老年医学, 2004. 18(1):43-5.
    22. May, M. J., F. D'acquisto, L. A. Madge, et al., Selective inhibition of NF-kappaB activation by a peptide that blocks the interaction of NEMO with the IkappaB kinase complex. Science, 2000. 289(5484):1550-4.
    23. Meng, L., R. Mohan, B. H. Kwok, et al., Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc Natl Acad Sci U S A, 1999. 96(18):10403-8.
    24. Karin, M.Y. Cao, Role of IKK alpha in Mammary Gland Development. Nat Rev Cancer, 2002. 2(4):301-10.
    25. 秦俊法, 陈祥友, 李增禧等, 稀土的毒理学效应. 广东微量元素科学, 2002. 9(5):1~10.
    26. 纪云晶, 栗建林, 我国稀土某些生物学效应的研究概况. 卫生毒理学杂志, 2000. 14(1):23-8.
    27. 杨维东, 稀土生物效应研究进展 稀土 2000. 21(3):62-70.
    28. Deveci, M., M. Eski, M. Sengezer, et al., Effects of cerium nitrate bathing and prompt burn wound excision on IL-6 and TNF-alpha levels in burned rats. Burns, 2000. 26(1):41-5.
    29. 易先锋, 宋春红, 唐世杰等, 氟哌酸银、硝酸铈及氧化锌联合外用治疗烧伤的实验研究. 广东医学, 2004(1):28-.
    30. 方勇, 陈玉林, 李富财等, 烧伤早期切痂和创面硝酸铈湿敷对大鼠存活率和淋巴细胞亚群变化的影响. 第二军医大学学报, 1995(6):535-7.
    31. 方勇, 陈玉林, 韦多等, 烧伤创面应用硝酸铈的实验研究. 中华整形烧伤外科杂志, 1996(4):265-7.
    32. Manolov, I., S. Raleva, P. Genova, et al., Antihuman Immunodeficiency Virus Type 1 (HIV-1) Activity of Rare Earth Metal Complexes of 4-Hydroxycoumarins in Cell Culture. Bioinorg Chem Appl, 2006:71938.
    33. Shigematsu, T., Lanthanum Carbonate Effectively Controls Serum Phosphate Without Affecting Serum Calcium Levels in Patients Undergoing Hemodialysis. Ther Apher Dial, 2008. 12(1):55-61.
    34. 汪泱, 袁铿, 曹勇等, 氯化镧对内毒素诱导小鼠腹腔巨噬细胞 TNF-α表达的影响. 中华烧伤杂志 2002. 18(2):102-4.
    35. 汪泱, 胡峰, 郭菲等, 氯化镧拮抗内毒素效应的小鼠体内研究. 中华医学杂志, 2004. 84(3):242-7.
    36. 汪泱, 镧拮抗内毒素激发单核巨噬细胞产生细胞因子的机制. 博士研究生毕业(学位)论文, 2002.
    37. 郭菲, 氯化镧对内毒素激活的单核巨噬细胞信号转导的影响. 硕士研究生学位论文, 2004.
    38. Sharma, R. K., B. S. Garg, H. Kurosaki, et al., Aurine tricarboxylic acid, a potent metal-chelating inhibitor of NFkappaB-DNA binding. Bioorg Med Chem, 2000. 8(7):1819-23.
    39. Kudrin, A. V., Trace elements in regulation of NF-kappaB activity. J Trace Elem Med Biol, 2000. 14(3):129-42.
    40. Wang, Y., F. Guo, F. Hu, et al., Lanthanum inhibited the binding of LPS with monocyte and CD 14 expression upregulation. Cell Mol Immunol, 2004. 1(5):392-4.
    41. Guo, F., Y. Wang, G. H. Li, et al., [Effects of lanthanum on inhibition of lipopolysaccharide induced NF-kappaB activation]. Zhonghua Shao Shang Za Zhi, 2007. 23(2):117-21.
    42. Lou, Y. L., F. Guo, Y. Wang, et al., [Inhibitory effect of lanthanum chloride on the expression of inducible nitric oxide synthase in RAW264.7 macrophages induced by lipopolysaccharide]. Zhonghua Shao Shang Za Zhi, 2007. 23(4):280-3.
    43. Wolfs, T. G., W. A. Buurman, A. Van Schadewijk, et al., In vivo expression of Toll-like receptor 2 and 4 by renal epithelial cells: IFN-gamma and TNF-alpha mediated up-regulation during inflammation. J Immunol, 2002. 168(3):1286-93.
    44. Mirlashari, M. R.T. Lyberg, Expression and involvement of Toll-like receptors (TLR)2, TLR4, and CD14 in monocyte TNF-alpha production induced by lipopolysaccharides from Neisseria meningitidis. Med Sci Monit, 2003. 9(8):BR316-24.
    45. Yang, J., L. New, Y. Jiang, et al., Molecular cloning and characterization of a human protein kinase that specifically activates c-Jun N-terminal kinase. Gene, 1998. 212(1):95-102.
    46. Means, T. K., E. Lien, A. Yoshimura, et al., The CD14 ligands lipoarabinomannan and lipopolysaccharide differ in their requirement for Toll-like receptors. J Immunol, 1999. 163(12):6748-55.
    47. Medzhitov, R., P. Preston-HurlburtC. A. Janeway, Jr., A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature, 1997. 388(6640):394-7.
    48. Zhang, D.L., Li J.S.Jiang Z.W., The mechanism of Sepsis. Surgery Fascicule of Foreign Medical Science, 2002. 29(1):1-4.
    49. Chou, K. C.D. W. Elrod, Prediction of membrane protein types and subcellular locations.Proteins, 1999. 34(1):137-53.
    50. Hoshino, K., O. Takeuchi, T. Kawai, et al., Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol, 1999. 162(7):3749-52.
    51. Muzio, M., N. Polentarutti, D. Bosisio, et al., Toll-like receptors: a growing family of immune receptors that are differentially expressed and regulated by different leukocytes. J Leukoc Biol, 2000. 67(4):450-6.
    52. Yang, Q., P. Zhu, Z. Wang, et al., Lipopolysaccharide upregulates the expression of Toll-like receptor 4 in human vascular endothelial cells. Chin Med J (Engl), 2002. 115(2):286-9.
    53. Takeda, K., T. KaishoS. Akira, Toll-like receptors. Annu Rev Immunol, 2003. 21:335-76.
    54. Johnson, G. L.R. Lapadat, Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 2002. 298(5600):1911-2.
    55. Saccani, S., S. PantanoG. Natoli, p38-Dependent marking of inflammatory genes for increased NF-kappa B recruitment. Nat Immunol, 2002. 3(1):69-75.
    56. Ge, Z. Q., S. YangY. J. Yuan, Ce(4+) induced down-regulation of ERK-like MAPK and activation of nucleases during the apoptosis of cultured Taxus cuspidata cells. J Inorg Biochem, 2006. 100(2):167-77.
    57. 陈红梅, 许瑞龄, 张磊等, 封闭枯否细胞对 LPS 诱导激活丝裂原活化蛋白激酶的影响. 中国病理生理杂志, 2007. 23(10):1942-6.
    58. Lallena, M. J., M. T. Diaz-Meco, G. Bren, et al., Activation of IkappaB kinase beta by protein kinase C isoforms. Mol Cell Biol, 1999. 19(3):2180-8.
    59. Hofmann, J., The potential for isoenzyme-selective modulation of protein kinase C. Faseb J, 1997. 11(8):649-69.
    60. Parker, P. J.J. Murray-Rust, PKC at a glance. J Cell Sci, 2004. 117(Pt 2):131-2.
    61. Ogata, N., H. Yamamoto, K. Kugiyama, et al., Involvement of protein kinase C in superoxide anion-induced activation of nuclear factor-kappa B in human endothelial cells. Cardiovasc Res, 2000. 45(2):513-21.
    62. Trushin, S. A., K. N. Pennington, E. M. Carmona, et al., Protein kinase Calpha (PKCalpha) acts upstream of PKCtheta to activate IkappaB kinase and NF-kappaB in T lymphocytes. Mol Cell Biol, 2003. 23(19):7068-81.
    63. 林明群, 张宗粱, LPS 和 PMA 诱导小鼠腹腔巨噬细胞的 PKC α和 PKC ε的激活及转位 实验生物学报, 1996. 29(4):429-34.
    64. Saito, N., U. KikkawaY. Nishizuka, The family of protein kinase C and membrane lipid mediators. J Diabetes Complications, 2002. 16(1):4-8.
    65. Steffan, N. M., G. D. Bren, B. Frantz, et al., Regulation of IkB alpha phosphorylation by PKC- and Ca(2+)-dependent signal transduction pathways. J Immunol, 1995. 155(10):4685-91.
    66. Zhang, J. S., W. G. Feng, C. L. Li, et al., NF-kappa B regulates the LPS-induced expression of interleukin 12 p40 in murine peritoneal macrophages: roles of PKC, PKA, ERK, p38 MAPK, and proteasome. Cell Immunol, 2000. 204(1):38-45.
    67. 黎庶,汪正清, PKC 在 LPS 激活大鼠肺巨噬细胞核转录因子-κB 中的作用. 第三军医大学学报, 2003. 25(19):1755-8.
    68. Zhao, Y.H. W. Davis, Endotoxin causes phosphorylation of MARCKS in pulmonary vascular endothelial cells. J Cell Biochem, 2000. 79(3):496-505.
    69. 李霞,刘会雪,扬晓达等, 稀土离子 La3+、Ce3+、Tb3+、Y3+对肌醇磷脂信号系统中蛋白激酶 C 的作用. 北京大学学报, 2004. 36(4):445-7.
    70. Sen, R.D. Baltimore, Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell, 1986. 47(6):921-8.
    71. 张劲松, 王兴宇, 单佑安等, 转录因子κB的研究进展. 科学通报, 2002. 47(5):,47:323-9.
    72. Lewis, J. B., J. C. Wataha, V. Mccloud, et al., Au(III), Pd(II), Ni(II), and Hg(II) alter NF kappa B signaling in THP1 monocytic cells. J Biomed Mater Res A, 2005. 74(3):474-81.
    73. 汪泱,胡峰,郭菲, 氯化镧拮抗内毒素效应的小鼠体内研究. 中华医学杂志, 2004. 84(3):242-7.
    74. Pandey, Mk, Sk Sandur, B Sung, et al., Butein, a Tetrahydroxychalcone, Inhibits Nuclear Factor (NF)-κB and NF-κB Regulated Gene Expression Through Direct Inhibition of IκB Kinase β on Cysteine-179 Residue. The journal of biological Chemistry, 2007.
    75. Ghosh, S, Mj MayEb Kopp, NF-κB and Rel proeins: Evolutionarily conserved mediators of immune responses. Annu Rev Immunol, 1998. 16:225-60.
    76. Adams, J, Vj PalombellaEa Sausville, Proteinsome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res, 1999. 59(11):2615-22.
    77. Nelson, D. E., A. E. Ihekwaba, M. Elliott, et al., Oscillations in NF-kappaB signaling control the dynamics of gene expression. Science, 2004. 306(5696):704-8.
    78. Cheng , Y, Y LiRc Li, The uptake of cerium by erythrocytes and the changes of membrane permeability in CeCl3 feeding rats. Progress in Natural Science, 1999. 9(8):610-6.
    79. 邹仲之, 栗振宝, 王晓辉等, 钐在小鼠肝细胞中的分布、沉积和影响的电镜与 X 线微区分析.. 科学通报, 1991. 36(2):140 ~ 2.
    80. 凤志慧,王玺,张孙曦, 稀土元素 La 、Gd 和 Ce 对培养大鼠细胞生物学效应的研究.. 中华核医学杂志, 2001. 21(2 ):111 ~ 4.
    81. Sanghera, J. S., S. L. Weinstein, M. Aluwalia, et al., Activation of multiple proline-directed kinases by bacterial lipopolysaccharide in murine macrophages. J Immunol, 1996. 156(11):4457-65.
    82. Hambleton, J., M. McmahonA. L. Defranco, Activation of Raf-1 and mitogen-activatedprotein kinase in murine macrophages partially mimics lipopolysaccharide-induced signaling events. J Exp Med, 1995. 182(1):147-54.
    83. Zhong, H., H. Suyang, H. Erdjument-Bromage, et al., The transcriptional activity of NF-kappaB is regulated by the IkappaB-associated PKAc subunit through a cyclic AMP-independent mechanism. Cell, 1997. 89(3):413-24.
    84. Chang, Z. L., M. Q. Lin, M. Z. Wang, et al., [Studies on cell signaling immunomodulated murine peritoneal suppressor macrophages: LPS and PMA mediate the activation of RAF-1, MAPK p44 and MAPK p42 and p38 MAPK]. Shi Yan Sheng Wu Xue Bao, 1997. 30(1):73-81.
    85. Lin, M. Q.Z. L. Chang, [LPS and PMA induced PKC-alpha and PKC-epsilon activation and translocation in murine peritoneal macrophages]. Shi Yan Sheng Wu Xue Bao, 1996. 29(4):429-34.
    86. Schwartz, M. D., E. E. Moore, F. A. Moore, et al., Nuclear factor-kappa B is activated in alveolar macrophages from patients with acute respiratory distress syndrome. Crit Care Med, 1996. 24(8):1285-92.
    87. Philippart, F.J. M. Cavaillon, Sepsis mediators. Curr Infect Dis Rep, 2007. 9(5):358-65.
    88. Flierl, M. A., D. Rittirsch, M. S. Huber-Lang, et al., Molecular Events in the Cardiomyopathy of Sepsis. Mol Med, 2008.
    89. Nahrevanian, HMj Dascombe, Expression of inducible nitric oxide synthase (iNOS) mRNA in target organs of lethal and non-lethal strains of murine malaria. Parasite Immunology, 2002. 24:471-8.
    90. Baeuerle, P. A.T. Henkel, Function and activation of NF-kappa B in the immune system. Annu Rev Immunol, 1994. 12:141-79.
    91. Xie, Q. W., Y. KashiwabaraC. Nathan, Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J Biol Chem, 1994. 269(7):4705-8.
    92. Tracey, KjA Cerami, Tumor necrosis factor: a pleiotropic cytokine and therapeutic target. . Annu Rev Med, 1994. 45:491-503.
    93. Martin, Tr, Jc MathisonPs Tobias, Lipopolysaccharide binding protein enchances the responsiveness of alveolar macrophage to bacterial lipopolysaccharide: implications for cytokine production in normal and injured lungs. J Clin Invest., 1992. 90(6):2209-19.
    94. Gearing, Aj, P BeckettM Christodoulou, Matrix metaloproteinases and processing of pro-TNF-alpha. J Leukoc Biol, 1995. 57(5):774-7.
    95. Tracey, Kj, B BeutlerSf Lowry, Shock and tissue injury induced by recombinant human cachectin. Science, 1986. 234:470.
    96. Damas, P, A ReuterP Gysen, Tumor necrosis factor and interleukin-1 serum levels during severe sepsis in humans. Crit Care Med 1989. 17:975.
    97. Tracey, Kj, Y FongDg Hesse, Anti-cachectin/TNF monoclonal antibodies prevent septic shockduring lethal bacteraemia. Nature,, 1987. 330:662.
    98. Hall, A. V., H. Antoniou, Y. Wang, et al., Structural organization of the human neuronal nitric oxide synthase gene (NOS1). J Biol Chem, 1994. 269(52):33082-90.
    99. Nadaud, S., A. Bonnardeaux, M. Lathrop, et al., Gene structure, polymorphism and mapping of the human endothelial nitric oxide synthase gene. Biochem Biophys Res Commun, 1994. 198(3):1027-33.
    100. Marsden, P. A., H. H. Heng, C. L. Duff, et al., Localization of the human gene for inducible nitric oxide synthase (NOS2) to chromosome 17q11.2-q12. Genomics, 1994. 19(1):183-5.
    101. Kroncke, K. D., K. FehselV. Kolb-Bachofen, Nitric oxide: cytotoxicity versus cytoprotection--how, why, when, and where? Nitric Oxide, 1997. 1(2):107-20.
    102. 高峰, 水泉祥, 地塞米松对大鼠星形胶质细胞诱导型一氧化氮合酶表达的影响. 中华儿科杂志, 2000. 38(1):20-3.
    103. Calderon, C. L., M. Torroella-Kouri, M. R. Dinapoli, et al., Involvement of protein kinase C and not of NFkappaB in the modulation of macrophage nitric oxide synthase by tumor-derived phosphatidyl serine. Int J Oncol, 2008. 32(3):713-21.
    104. Lee, S. J.K. T. Lim, Phytoglycoprotein inhibits interleukin-1beta and interleukin-6 via p38 mitogen-activated protein kinase in lipopolysaccharide-stimulated RAW 264.7 cells. Naunyn Schmiedebergs Arch Pharmacol, 2008. 377(1):45-54.
    105. Zhu, X., Y. Liu, S. Liu, et al., Lipopolysaccharide primes macrophages to increase nitric oxide production in response to Staphylococcus aureus. Immunol Lett, 2007. 112(2):75-81.
    106. Kim, J. B., A. R. Han, E. Y. Park, et al., Inhibition of LPS-induced iNOS, COX-2 and cytokines expression by poncirin through the NF-kappaB inactivation in RAW 264.7 macrophage cells. Biol Pharm Bull, 2007. 30(12):2345-51.
    107. Chen, C., Y. H. ChenW. W. Lin, Involvement of p38 mitogen-activated protein kinase in lipopolysaccharide-induced iNOS and COX-2 expression in J774 macrophages. Immunology, 1999. 97(1):124-9.
    108. Chen, C. C.J. K. Wang, p38 but not p44/42 mitogen-activated protein kinase is required for nitric oxide synthase induction mediated by lipopolysaccharide in RAW 264.7 macrophages. Mol Pharmacol, 1999. 55(3):481-8.
    109. Bhat, N. R., D. L. Feinstein, Q. Shen, et al., p38 MAPK-mediated transcriptional activation of inducible nitric-oxide synthase in glial cells. Roles of nuclear factors, nuclear factor kappa B, cAMP response element-binding protein, CCAAT/enhancer-binding protein-beta, and activating transcription factor-2. J Biol Chem, 2002. 277(33):29584-92.
    110. Lahti, A, H KankaanrantaE Moilanen, P38 mitogen-activated protein kinase inhibitor SB203580 has a bi-directional effect on iNOS expression and NO production. . Eur J Pharmacol 2002. 454:115-23.
    111. 刘辉, 姚咏明, 细胞内炎症信号通路交汇作用研究进展. 中国病理生理杂志, 2005. 21(8):1067-74.
    112. Ogata,NYamamoto,H, Involvement of protein kinase C in superoxide anion2induced activation of nuclear factor-kappa B in human endothelial cells. Cardiovasc Res 2000. 45(2):513-21.
    113. Trushin, S AK N Pennington, Protein kinase C alpha (PKC alpha) acts upstream of PKC theta to activate IkappaB kinase and NF-kappaB in T lymphocytes. Mol Cell Biol ,, 2003. 23(19):7062-81.
    114. Moscat, JM T Diaz-Meco, NF-kappaB activation by protein kinase C isoforms and B-cell function. EMBO Rep ,, 2003. 4(1):312-36.
    115. Guan, Z., L. D. BaierA. R. Morrison, p38 mitogen-activated protein kinase down-regulates nitric oxide and up-regulates prostaglandin E2 biosynthesis stimulated by interleukin-1beta. J Biol Chem, 1997. 272(12):8083-9.
    116. Chan, EdDw Riches, IFN-gamma + LPS induction of iNOS is modulated by ERK, JNK/SAPK, and p38(mapk) in a mouse macrophage cell line. . Am J Physiol Cell Physiol, 2001. 280:C441-C50.
    117. Chan, Ed, Kr Morris, Jt Belisle, et al., Induction of inducible nitric oxide synthase-NO* by lipoarabinomannan of Mycobacterium tuberculosis is mediated by MEK1-ERK, MKK7-JNK, and NF-kappaB signaling pathways. . Infect Immun 2001. 69:2001-10.
    118. Chan, Ed, Bw Winston, St Uh, et al., Rose DM, Riches DW: Evaluation of the role of mitogen-activated protein kinases in the expression of inducible nitric oxide synthase by IFN-gamma and TNF-alpha in mouse macrophages. . J Immunol, 1999. 162:415-22.
    119. Cho, Mk, Sh SuhSg Kim, JunB/AP-1 and NF-kappa B-mediated induction of nitric oxide synthase by bovine type I collagen in serum-stimulated murine macrophages. . Nitric Oxide, 2002. 6:319-32.
    120. 刘会雪, 胡健, 刘湘陶等, 稀土离子促进人红细胞膜磷脂酰肌醇水解的效应. 科学通报, 2000. 45(20):2178-81.
    121. 杨维东, 刘洁生, 王艇等, Ce( NO3 )3 对大鼠内脏组织和大脑一氧化氮及合成酶的影响. 稀土, 2000. 21(2):46-8.
    〔1〕 童世沪, 卢国埕。稀土的生物效应. [J]. 稀土, 1987;4: 42-49.
    〔2〕 黄可欣,李冬梅,聂毓秀等。口服低剂量硝酸镧对小鼠心脏抗氧化能力的影响. [J]. 微量元素与健康研究,2003;20(4):1-2。
    〔3〕 刘颖,陈东,陈爱军等。长期口服硝酸镧对大鼠肝脏的影响. [J].中华预防医学杂志,2003;37(4): 263-265.
    〔4〕 杨维东, 刘洁生, 王艇等。Ce( NO3 )3 对大鼠内脏组织和大脑一氧化氮及合成酶的影响. [J].稀土,2000;21(2):46-48.
    〔5〕 袁兆康 ,刘勇 ,俞慧强等。血稀土负荷水平与居民健康状况关系的研究. [J].中国公共卫生,2003; 19 (2):133-135.
    〔6〕 钟晓春,戴育成,曹勇等。氯化镧对创口组织中不同型胶原蛋白表达的影响。[J].中华整形外科杂志,2004;20(1):60-62.
    〔7〕 Vankos J. Study of the antiphlogistic action of sulfosalicylic acid samarium. [J].Orv Hetil,1966;107(19):885-887
    〔8〕 Balogh G. Phlogosol in the therapy of inflammatory changes in the mouth mucosa. [J]. Fogorv Sz, 1974; 67(6):185-187.
    〔9〕 左玉萍,贾敬肖,杨一心等。混合稀土活性测定及与抗生素联用效果。[J].稀土。1996;17(4):34-36.
    〔10〕 杨波,王国清。La、Ce、Nd-氧氟沙星配合物的制备及抗菌活性。[J].沈阳药科大学学报,2001;18(4):268-270.
    〔11〕 徐书显,陈崇智。轻稀土硝酸盐对肠道菌生长的影响。[J].微生物学通报,1988;15(1):24-27.
    〔12〕 刘杰,王恩波。 稀土杂多配合物的合成及抗流感病毒的活性研究。[J]. 药学学报,1998; 33(7):544 - 547.
    〔13〕 刘杰, 梅文杰, 李安兴等. 混合价态钨硼稀土杂多蓝化合物在 MDCK 细胞内抑制流感病毒的活性。 [J ] .高等学校化学学报, 2004 ; 25 (1) : 1-6.
    〔14〕 Manolov, I., S. Raleva, P. Genova, et al., Anti-human Immunodeficiency Virus Type 1 (HIV-1) Activity of Rare Earth Metal Complexes of 4-Hydroxycoumarins in Cell Culture. [J]. Bioinorg Chem Appl, 2006; 719-738.
    〔15〕 刘术侠, 李阳先, 韩正波等。 新型稀土杂多蓝的合成及其抗艾滋病病毒(HIV-1)活性和毒性研究。 [J]. 高等学校化学学报, 2002; 23(05):777-782.
    〔16〕 梁兆玲,曾涛,汪旭, 贲昆龙。八种稀土金属配合物和铂配合物抗 HIV 活性的研究。 [J]. 云南师范大学学报,2005; 25(1):40-43。
    〔17〕 Kremer B, Allgower M,Graf M, et al. The present status of research in burn toxin. [J].Intensive Care Med.1981;7:77-81.
    〔18〕 Scheidegger D, Sparkes BG, Luscher N,et al. Survival in major burn injuries treated by one bathing in cerium nitrate. [J].Burns, 1992;18:296-300.
    〔19〕 Verlyn MP, John FH, Xue WW, et al. Topical cerium nitrate prevents postburn immunosuppression. [J]. J Trauma. 1985;25(11):1039-1044.
    〔20〕 方勇, 陈玉林,韦多等。 烧伤创面应用硝酸铈的研究。 [J]. 中华整形烧 伤外科杂志。1996;12(4):265-267.
    〔21〕 Kennedy JA, Lewis H, Clements WD, et al. Kupffer cell blockade, tumor necrosis factor secretion and survival following endotoxin challenge in experimental biliary obstruction. [J]. Br J Surg ,1999;86:1410-1414.
    〔22〕 Roland CR, Nakafusa Y, Flye MW. Gadolinium chloride inhibits LPS-induced mortality and in vivo prostaglandin E2 release by splenic macrophages. [J]. Gastrointest Surg , 1999;3:301-307.
    〔23〕 Hamada E, Nishida T, Uchiyama Y, et al. Activation of kupffer cells and caspase-3 involved in rat hepatocyte apoptosis induced by endotoxin. [J]. Hepatol, 1999;30:807-818.
    〔24〕 Kono H , Fujii H ,Asakawa M, et al.Functional heterogeneity of the kuffer cell population is involved in the mechanism of gadolinium chloride in rats administered endotoxin. [J]. Sur Res, 2002;106:179-187.
    〔25〕 Yee SB, Ganey PE, Roth RA. The role of kuffer cells and TNF-alpha in monocrotaline and bacterial lipopolysaccharide-induced liver injury. [J].Toxincol Sci, 2003;71:124-132.
    〔26〕 Wang Y,Yuan K, Cao Y, et al. Antiendotoxic effect of lanthanum chloride. [J]. Journal of the Chinese Rare Earth Society, 2002;20:190-192.
    〔27〕 汪泱,胡峰,郭菲等。氯化镧拮抗内毒素效应的小鼠体内研究。[J].中华医学杂志,2004;84(3):242-247。
    〔28〕 刘强,张永模,李国辉等。氯化镧对烫伤鼠肠道细菌移位的防治研究。[J].中华烧伤杂志,2002;18(2):81-83。
    〔29〕 邓汝温,张仲生。稀土药物和药学性质。[J].稀土,1987;8(3):36-37.
    〔30〕 Evans CH, Drouven BJ.The promotion of collagen polymerization by lanthanide and calcium ions. [J]. Biochem J, 1983;213(3)751-758.
    〔31〕 Beijns. CAL.[J].Chem Abst.1981;(95):35-38.
    〔32〕 吴集贵,邓汝温,曾正志等。稀土在医药中的应用概况.[J].有色金属与稀土应用.1994;(1):19-28.
    〔33〕 Blie KL. Inorglporsped:distribution of calcium in the rat due to chronic,renal failure.[J].Bio Med,1977;(1):101-106.
    〔34〕 聂毓秀。稀土生物无机化学.科学出版社,1995;331.
    〔35〕 聂毓秀,黄可欣,周莉。 低剂量三氯化钐对糖尿病大鼠胰岛细胞分泌功能的调节作用. [J].白求恩医科大学学报.1997;23(6):588-590.
    〔36〕 肖纫秋,朱向红,吴家祥等。低剂量三氯化钐对实验性非胰岛素依赖型糖尿病大鼠胰岛的影响。[J].中国稀土学报.1997;15(3):239-242.
    〔37〕 倪嘉瓒。稀土生物无机化学.科学出版社,1995,50-51.
    〔38〕 纪云晶,栗建林等。稀土与肿瘤关系的探讨. [J].卫生毒理学杂志.1994;8:164.
    〔39〕 崔明珍,肖白,卢庆生等。稀土抗诱变抗癌作用体外实验研究.[J].癌变·畸变·突变.1995;7:219.
    〔40〕 肖白,纪云晶,崔明珍等。镧对癌细胞恶性增殖及其相关基因表达的影响。[J].中华预防医学杂志.1997;31(4):228-230.
    〔41〕 纪云晶,肖白,王宗惠等。轻稀土元素抑癌作用机理研究.[J].卫生毒理学杂志.1996;10(4):223-227.
    〔42〕 栗建林。氯化稀土抑制氨基甲酸乙脂诱发肺癌的研究.[J].卫生毒理学杂志.1997;11(2):158-160.
    〔43〕 刘建中,栗建林,张丽帼等。稀土对二甲基肼诱发大鼠肠癌的影响. [J]. 卫生毒理学杂志.1998;12(3):171-172.
    〔44〕 黎植昌,刘帜清,谭克俊等。谷氨酸硫酸镧固体配合物的合成、性质及抗癌活性。[J].中国药学化学杂志.1999;9(1):13-15.
    〔45〕 李晓滨,周爱儒,俞文华等.柠檬酸镧对人肺癌 PG 细胞、人胃癌 BGC-823细胞的作用。[J].中国稀土学报.2000;18(2):156-159.
    〔46〕 姜文华,陈东,孟晓婷等。 硝酸镧对大鼠肝脏癌前病变发展的抑制作用及机制的初步探讨。[J]. 中国稀土学报, 2004; 22(2): 292-294.
    〔47〕 李勤喜, 宋玉民, 王流芳等。Y(RA) 3·4H2O 的合成及其抗白血病 HL260 细胞的研究。 [J ] . 兰州大学学报(自然科学版), 2004; 40 (1) : 45-49.
    〔48〕 Block GA , Hulbert-shearon T E. Improving phosphate-binder therapy as a way forward [J ] . Nephrol Dial Transplate , 2004; 19(Suppl 1) :i19-i24.
    〔49〕 Hartmut H , Malluch E , Hanna M. Management of hyper-phosphatemia of chronic kidney disease : lessons from the past and future directions [ J ] . Nephrol Dial Transplant , 2002; 17 :1 170-1 175.
    〔50〕 Coladonato J A. Control of hyperphosphatemia among patients with ESRD [J ] . J Am Soc Nephrol , 2005; 16( Suppl 2) :S107-114.
    〔51〕杨剑辉, 孟建中。 新型磷酸盐结合剂萨佛拉莫 [J ] . 国外医学泌尿系统分册,2005;3(25) :340-343.
    〔52〕 Shigematsu, T., Lanthanum Carbonate Effectively Controls Serum Phosphate Without Affecting Serum Calcium Levels in Patients Undergoing Hemodialysis. [J]. Ther Apher Dial, 2008; 12(1):55-61.
    〔53〕 Shigematsu T; Lanthanum Carbonate Research Group. Lanthanum carbonate effectively controls serum phosphate without affecting serum calcium levels in patients undergoing hemodialysis. [J]. Ther Apher Dial. 2008;12(1):55-61.
    〔54〕 Cozzolino M, Brancaccio D. Clinical consequences and novel therapy of hyperphosphatemia: Lanthanum carbonate for dialysis patients. Recent Patents Cardiovasc. [J]. Drug Discov. 2007 ; 2(1):29-34.
    〔55〕 Sprague SM. A comparative review of the efficacy and safety of established phosphate binders: calcium, sevelamer, and lanthanum carbonate. [J]. Curr Med Res Opin. 2007 ;23(12):3167-3175.
    〔56〕 Cozzolino M, Brancaccio D. Optimising the treatment of hyperphosphatemia and vascular calcification in chronic kidney disease. [J]. Expert Opin Emerg Drugs. 2007 ;12(3):341-34 3.
    〔57〕 Drüeke TB. Lanthanum carbonate as a first-line phosphate binder: the "cons". [J].Semin Dial. 2007;20(4):329-332.
    〔58〕潘明明,苗华,洪虹,朱竹先。聚苯乙烯磺酸镧治疗慢性肾功能衰竭大鼠高磷血症的研究。 [J] 山东大学学报(医学版) , 2007;45(9):906-909.
    〔59〕Caravan P. Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. [J].Chem Soc Rev. 2006 ;35(6):512-523.
    〔60〕Caravan P, Amedio JC Jr, Dunham SU, Greenfield MT, Cloutier NJ, McDermid SA, Spiller M, Zech SG, Looby RJ, Raitsimring AM, McMurry TJ, Lauffer RB. When are two waters worse than one? Doubling the hydration number of a Gd-DTPA derivative decreases relaxivity. [J].Chemistry. 2005 ;11(20):5866-5874.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700