用户名: 密码: 验证码:
云南低纬度高原地区随寄主迁飞扩散传播的蚜虫病原真菌以及努利虫疠霉的侵染生物学特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蚜虫是全球性害虫,自然死亡因子很多,尤其侵染蚜虫的病原真菌(主要包括虫霉目真菌)多达30余种,由于蚜虫具有群集和迁飞特性以及其主要病原真菌特殊的流行学特征,成为昆虫流行病学研究的经典对象之一。本研究首次在中缅接壤的低纬度高原地区开展了蚜虫病原真菌资源的调查,通过大量空中诱捕和单头饲养有翅蚜而建立了不同组别迁入有翅蚜(感病、寄生、健康)的定殖能力、传病能力和生殖概率模型,首次研究揭示了努利虫疠霉的侵染生物学和流行学特征,主要结果分述如下:
     云南低纬度高原地区空中迁飞性有翅蚜传带的病原真菌和寄生蜂为了普查中缅接壤的低纬度高原地区的蚜虫病原真菌种类,2006年1-12月在云南勐海县一茶村设点,在一建筑物顶楼平台建立黄色防雨布上放盆载甘蓝苗的诱蚜区,整年不间断从空中诱获萝卜蚜(Lipaphis erysimi)、桃蚜(Myzus persicae)及甘蓝蚜(Brevicoryne brassicae)的有翅蚜共计3553头,分别带回室内在18-22℃和12L:12D的条件下单头饲养观察7-14天。其中,19.2%的有翅蚜(683头)在单头饲养期间发病死亡,病因为9种虫霉目真菌和1种丝状真菌,均为寄主专化性或非专化性蚜虫病原真菌。在发病死亡的有翅蚜中,77.8%系由虫霉目真菌感染,优势种为新蚜虫疠霉[Pandora neoaphidis(占42.7%)]和根虫瘟霉[Zoophthora radicans(14.5%)],其余按发生频率依次为努利虫疠霉[P.nouryi(~5%)]、弗雷生新接霉[Neozygites fresenii(3%)]、普朗肯虫霉[Entomophthoraplanchoniana(2.3%)]、三种耳霉[Conidiobiolus spp.(1.9%)]及蚜虫瘟霉[Z.aphidis(个别)]。属于丝状真菌的蜡蚧菌(Lecanicillium lecanii)多出现在雨季诱获的萝卜蚜有翅蚜中,占总感染数的22.2%。
     另有占总观察数2.8%的有翅蚜(99头)被寄生蜂寄生变成僵蚜,从中羽化出的寄生蜂包括烟蚜茧蜂(Aphidius gifuensis)、菜小脉蚜茧蜂(Diaeretella rapae)、麦蚜茧蜂(Ephedrus plagiator)和苹果绵蚜蚜小蜂(Aphelinus mali),它们在被寄生的有翅蚜中分别占44.4%、46.5%、2.0%和7.1%。旱季诱获较多的甘蓝蚜有翅蚜,感病和寄生的频率都很低。
     迁入带病和寄生有翅蚜的定殖潜能空中诱获的带菌有翅蚜在单头饲养期间,前3天发病死亡的占83%,很少死于第6-7两天,平均潜伏期为2.30±1.26天。被寄生蜂寄生的有翅蚜在单头饲养期间平均存活4.89±1.94天(仅个别超过7天),显著长于感病有翅蚜的存活时间,僵蚜经5.6±1.3天的发育后羽化为寄生蜂。
     从空中诱捕的萝卜蚜、桃蚜、甘蓝蚜有翅蚜,在单头饲养期所产后代的蚜群随定殖天数而增大,但不同组别之间差异很大。在感病有翅蚜组中,萝卜蚜后代蚜群从定殖后第1天的平均2.0±2.0头(n=559)增长到第14天的35.4±51.3头(n=349),桃蚜从平均2.1±2.0头(n=119)增长到72.1±76.5头(n=78),甘蓝蚜从平均4.4±3.7头(n=5)增长到6.3±2.5头(n=5)。相同定殖时间内,寄生组萝卜蚜后代蚜群的平均数量分别从1.7±1.6头(n=58)增长到86.6±73.7头(n=32),桃蚜从1.3±1.4头(n=39)增长到99.5±124.3头(n=22),甘蓝蚜从0.7±1.1头(n=3)增长到23.5±33.2头(n=3)。健康组后代蚜群的平均数量明显多于感病组和寄生组,萝卜蚜从2.6±2.0头(n=959)增长到65.3±125.8头(n=381),桃蚜从2.8±1.8头(n=605)增长到180.3±114.4头(n=378),甘蓝蚜从2.6±2.7头(n=260)增长到69.7±64.5头(n=62)。在感病有翅蚜的后代蚜群中均发生了接触传染,萝卜蚜的后代蚜群占73.4%,桃蚜占58.6%,甘蓝蚜占60%。
     感病组、寄生组和健康组有翅蚜的后代蚜群随定殖天数变化的增长趋势很好地拟合逻辑斯蒂模型(r~2≥0.98),后代蚜群的增长潜能依次是健康组>寄生组>感病组。萝卜蚜、桃蚜和甘蓝蚜三种感病有翅蚜的后代因接触传染的发病死亡率随定殖时间增长的趋势符合Gompertz模型(r~2≥0.92),拟合萝卜蚜和桃蚜后代的最大发病率分别为44.1%和27.0%,与第14天的最大观察值很相近。对不同组别有翅蚜定殖后6天内产m头若蚜的累积概率P(m≤N)通过拟合逻辑斯蒂方程而建立生殖力概率模型(r~2≥0.99),结果显示,健康组更多若蚜的概率远高于感病组或寄生组;而感病组和寄生组相对于健康组而言,产较少若蚜数的概率更高。拟合的模型显示,空中诱捕的有翅蚜无论是被病原真菌侵染还是被寄生蜂寄生,均能在迁入后成功定殖并建立后代蚜群,而且随有翅蚜带入的病害能通过接触传染的方式就地扩散。
     努利虫疠霉的侵染生物学与流行学特征蚜虫病原性虫霉的休眠孢子形成是认识其季节性流行和宿存机制的关键,但对这一生物过程的认识十分缺乏。为了探索休眠孢子形成的可能机制,用从云南低纬度低区空诱带病有翅蚜中分离到的蚜科专化性努利虫疠霉菌株,在既适于病原菌侵染也适于寄主繁衍的条件下((20±2℃,12L:12D)与桃蚜进行互作,观察其侵染生物和流行学特征。将甘蓝叶片上的桃蚜用分离菌株产生的分生孢子进行“孢子浴”接种的有重复生物测定(接种剂量即侵染体密度为7.7-70.2个孢子/mm2),致死中浓度(LC_(50))从接种后第4天的6.7个孢子/mm~2)下降为第7天的0.9个孢子/mm~2,该菌对桃蚜表现出很强的毒力。所获蚜尸产休眠孢子(azygospores)或分生孢子,或两类孢子同时产,且产休眠孢子的蚜尸比例(P_(CFRS))有随侵染体密度(C)增大而长高的趋势。继而在扩大接种剂量范围和增加剂量处理数的延伸试验中,C扩大为0.3-1759.8个孢子/mm~2,处理数增至58个,各剂量下平均处理33(22-42)头蚜虫。所获观察数据的模拟分析结果十分令人鼓舞。P_(CFRS)对C的依赖关系很好地拟合逻辑斯蒂模型(r~2=0.975),拟合的最大P_(CFRS)为0.6774,同240-1760个孢子/mm~2范围内的26个高接种剂量下的P_(CFRS)平均值(0.674±0.124)几乎相等。当C不超过16.2个/mm~2时,仅有0%-3.7%的蚜尸体内有休眠孢子形成。在介于28-240个/mm~2的孢子密度范围内,P_(CFRS)随孢子密度的增加而快速上升,而后便不再随孢子密度的增加而变化,即稳定在最高水平附近。这一结果首次揭示了努利虫疠霉在寄主体内的休眠孢子形成依赖于侵染体密度的定量关系。我们由此提出新的生物学假说,在病原真菌与寄主蚜虫互作系统中或许存在某类生化信号物质,病原菌能从群体水平上“感受”这类信号物质而对即将发生的寄主密度变化作出及时反应,或产生分生孢子继续侵染周围还存在的健康寄主,或形成休眠孢子就地渡过缺乏寄主的季节。
     综上所述,本研究首次查清了中缅接壤低纬度高原地区的蚜虫病原真菌资源,尤其努利虫疠霉完整生活史的发现、菌株分离及其对蚜虫毒力的测定结果,丰富了虫疠霉属既有的科学认识;通过在低纬度高原地区大量空中诱捕和单头饲养有翅蚜的结果分析,建立了感病、寄生、健康有翅蚜迁入后的定殖能力、传病能力和生殖概率模型,有力佐证了寄主迁飞既传播蚜虫病原真菌又传播寄生蜂的观点,丰富了蚜虫迁飞生物学的科学内涵;首次揭示了努利虫疠霉产休眠孢子的蚜尸比例与感染寄主的侵染体密度之间的依赖关系,并由此提出了新的生物学假说。
Aphids are global pests of crops and economic plants and are attacked by varieties of natural mortality agents, which include over 30 species of aphid-pathogenic fungi (mainly Entomophthorales). Aphid mycoses are considered one of classic pathogen-host interactions due to the well-known biology of aphid dispersal flight and dense colonies and the special epizootic features of main pathogens. This study sought to survey for the first time the resources of aphid-pathogenic fungi that occur in the low-latitude plateau of China-Burma border, to examine the potential of pathogen-infected, wasp-parasitized and healthy host alates in colonization, fecundity and mycosis transmission after immigration, and explore for the first time the infective and epizootiological features of obligate aphid pathogen Pandora nouryi found in the plateau. The results are given as follows.
     Pathogenic fungi and parasitoids of aphids present in air captures of migratory alates. To survey fungal pathogens and parasitoids of aphids in the low-latitude plateau of Yunnan, southwest China, 3553 migratory alates of Brevicoryne brassicae, Lipaphis erysimi, Myzus persicae were attracted to a yellow-plus-plant trap from air during a full-year period and individually reared on cabbage leaves for 7-14 days at 18-22℃and L:D 12:12. Among the trapped alates, 19.2% survived averagely for 2.3 (1-7) days before killed by 11 species of aphid-pathogenic fungi. Another 2.8% were mummified by the wasps Aphidius gifuensis, Diaeretella rapae, Ephedrus plagiator and Aphelinus mali after survival of 4.9 (3-13) days. Most of the mycosed alates (77.8%) were attributed to Entomophthorales predominated by Pandora neoaphidis (42.7%) and Zoophthora radicans (14.5%), followed by P. nouryi, Neozygites fresenii, Conidiobiolus spp., Entomophthora planchoniana and Z. aphidis at decreasing frequency. A mitosporic fungus, Lecanicillium lecanii, was found frequently in L. erysimi alates trapped in wet season. However, the B. brassicae alates captured in dry season were infected or parasitized very occasionally. Overall, the fecundity of the infected or parasitized alates before death warranted successful colonization on plants, though greatly reduced, and was well shown by the fitted probability for a given fecundity per capita and the increasing mean size of their progeny colonies. Contagious transmission of the alate-borne mycosis observed in most of the colonies caused high progeny mortalities within 14 days. The results highlight for the first time the diversity of aphid pathogens as well as the spread of both pathogens and parasitoids with host dispersal flight in the low-latitude plateau.
     Colonization potential of infected and parasitized alates trapped from air. Among the infected alates trapped from air, 83% became mycosed during colonization after trapping and a very few survived on day 6 or 7 with a mean (±SD) latent period of 2.30±1.26 days. All the parasitized alates averagely survived 4.89±1.94 days (with a few surviving for >7 days) before being mummified; wasp adults emerged from their mummies after developing for 5.6±1.3 days.
     The sizes of progeny colonies from the trapped alates generally increased over days after colonization but differed among the different groups. Overall mean (±SD) sizes of the colonies (no. nymphs per capita) from the infected alates increased from 2.0±2.0 (n=559) on day 1 to 35.4±51.3 (n=349) on day 14 for L.erysimi, 2.1±2.0 (n=119) to 72.1±76.5 (n=78) for M. persicae, and 4.4±3.7 (n=5) to 6.3±12.5 (n=5) for B. brassicae, respectively. The same observations from the parasitized alates of the three aphid species increased separately from 1.7±1.6 (n=58) to 86.6±73.7 (n=32), 1.3±1.40 (n=39) to 99.5±124.3 (n=22) and 0.7±1.1 (n=3) to 23.5±33.2 (n=3). In contrast, the progeny colonies of the alates free of both fungal infection and parasitism were conspicuously larger during the 14-day colonization, increasing from 2.6±2.0 (n=959) to 165.3±125.8 (n=381) for L. erysimi, 2.8±1.8 (n=605) to 180.3±114.4 (n=378) for M. persicae and 2.6±2.7 (n=260) to 69.7±64.5 (n=62) for B. brassicae.
     The fecundity of the infected or parasitized alates before death warranted successful colonization on plants, though greatly reduced, as was well shown by the fitted cumulative probability [P(m≤N)] for the alates producing≤m nymphs per capita and the increasing mean size of their progeny colonies. The relationship between m and P(m≤N) fit very well to a modified logistic equation for a given group of the alates or an aphid species (r~2≥0.988, P<0.001). Based on the fitted equations, healthy alates from air captures were highly capable of producing more nymphs than those infected or parasitized.
     Infective and epizootiological features of P. nouryi. Resting spore formation of some aphid-pathogenic Entomophthorales is important for the seasonal pattern of their prevalence and survival but this process is poorly understood. To explore the possible mechanism involved in the process, P. nouryi (obligate aphid pathogen) interacted with green peach aphid M. persicae on cabbage leaves under favorable conditions. Host nymphs showered with primary conidia of an isolate (LC_(50): 0.9-6.7 conidia mm~(-2) 4-7 days post-shower) from air captures in the low-latitude plateau produced resting spores (azygospores), primary conidia or both spore types. Surprisingly, the proportion of mycosed cadavers forming resting spores (P_(CFRS)) increased sharply within the concentrations (C) of 28-240 conidia mm~(-2), retained high levels at 240-1760, but was zero or extremely low at 0.3-16. The P_(CFRS)-C relationship fit well the logistic equation P_(CFRS)=0.6774/[1+exp(3.1229-0.0270C)] (r~2=0.975). This clarified for the first time the dependence of in vivo resting spore formation of P. nouryi upon the concentration of infective inocula. A hypothesis is thus proposed that some sort of biochemical signals may exist in the host-pathogen interaction so that the fungal pathogen perceives the signals for prompt response to forthcoming host-density changes by either producing conidia for infecting available hosts or forming resting spores for surviving host absence in situ.
     In summary, 10 species of fungal pathogens were identified for the first time from the alates of three aphid species air-trapped in the low-latitude plateau with the discovery of full infection cycle of P. nouryi enriching our knowledge about Pandora species. Observations and modeling analysis have confirmed that both infected and parasitized alates were able to independently establish progeny colonies after immigration despite their reduced fecundity in comparison with that of healthy alates. Particularly, the alalte-borne mycoses were successfully transmitted to most of the progeny colonies. This further supports a hypothesis that both aphid pathogens and parasitoids may spread with host dispersal flight and provides deep insights into the biology of host flight. A new hypothesis for possible mechanisms involved in resting spore formation of Entomophthorales is proposed based on the first finding of the dependence of P. nouryi resting spore formation on the concentration of its primary conidia as inocula.
引文
冯明光.1997.虫霉流行病及其对害虫种群的自然控制与利用.见:樊美珍等主 编,中国虫生真菌研究与应用,第四卷.北京:中国农业科技出版社.6-17
    
    何春生.2006.热带作物气象学.北京:中国农业出版社.1-236
    
    黄耀坚,郑本暖.1990.福建虫霉的种类、分布、流行及应用策略.福建林学院学 报10(1):49-56
    
    李宏科,康宵文.1989.长沙地区蔬菜蚜虫上虫霉菌研究初报.生物防治通报 5(2):82-83
    
    李增智,1986.蚜虫的病原真菌新种—安徽虫疫霉.真菌学报5(1):1-6
    
    李增智.2000.中国真菌志.北京:科学出版社.1-168
    
    唐启义,冯明光.2002.实用统计分析及其DPS数据处理系统.北京:科学出版 社.1-648
    
    王未名,赵觐,陆文华.1988.蚜虫的寄生真菌诺氏虫疫霉.中国虫生真菌研究与 应用,第一卷.北京:学术期刊出版社.153-155
    
    张广学,钟铁森.1983.中国经济昆虫志,第二十五册,同翅目:蚜虫类(一).北 京:科学出版社.1-387
    
    Akalach M, Fernandez GE, Moore D. 1992. Interaction between Rastrococcus invadens (Hom: Pseudococcidae) and two natural enemies. Entomophaga 37: 99-106
    
    Annette EB, Helen H, Jerry VC, Mike C. 2004. The Common Black Ant, Lasius niger (Hymenoptera: Formicidae), as a Vector of the Entomopathogen Lecanicillium longisporum to Rosy Apple Aphid, Dysaphis plantaginea (Homoptera: Aphididae). Biocontrol Science and Technology 14: 757-767
    
    Baer CF, Tripp DW, Bjorksten TA, Antolin MF. 2004. Phylogeography of a parasitoid wasp (Diaeretiella rapae): no evidence of host-associated lineages. Molecular Ecology 13: 1859-1869
    
    Balazy S. 1993. Flora of Poland, Fungi (Mycota), Vol. 24, Entomophthorales. Polish Academy of Science, 1-356 pp
    
    Barta M. 2004. Fungi of the order Entomophthorales infecting aphids in Slovakia. PhD. Thesis, Nitra, Slovak University of Agriculture, 1-189pp
    
    Barta M, Cag(?) L'. 2003a. Entomophthoralean fungi associated with the common nettle aphid (Microlophium carnosum Buckton) and the potential role of nettle patches as reservoirs for the pathogens in landscapeand. Journal of pest science 76: 6-13
    Barta M, Cagan L'. 2003b. Pandora uroleuconii sp nov (Zygomycetes: Entomophthoraceae), a new pathogen of aphids. Mycotaxon 88: 79-86
    Barta M, Cagan L'. 2006a. Aphid-pathogenic entomophthorales (their taxonomy, biology and ecology). Biologia 61(Suppl. 21): 543-616
    Barta M, Cagan L'. 2006b. Observation on the occurrence of Entomophthorales infecting aphids (Aphidoidea) in Slovakia. Biocontrol 47: 1-14
    Baverstork J, Roy HE, Clark SJ, Alderson PG, Pell JK. 2006. Effect of fungal infection on the reproductive potential of aphids and their progeny. Journal of Invertebrate Pathology 91:136-139
    Ben-ze'ev I, Kenneth RG. 1982. Features-criteria of taxonomic value in the entomophthorales: I. A revision of the Batkoan classification. Mycotaxon 14: 393-455
    Ben-Ze'ev I, Bitton S, Kenneth RG. 1990. Induction and inhibition of germination of Neozygites fresenii (Entomophthorales: Neozygitaceae) zygospores by various time-temperature stimuli. Journal of Invertebrate Pathology 55: 1-10
    Bitton S, Kenneth RG, Ben-Ze' ev I. 1979. Zygospore overwintering and sporulative germination in Triplosporium fresenii (Entomophthoraceae) attacking Aphis spiraecola on citrus in Israel. Journal of Invertebrate Pathology 34: 295-302
    Blackman RL, Eastop VF. 2001. Aphids on the world's crops. John Wiley & Sons. Ltd, New York, 1-466pp
    Brobyn PJ, Wilding N. 1977. Invasive and developmental processes of Entomophthora species infecting aphids. Transactions British Mycological Society 69: 349-366
    Brobyn PJ, Wilding N, Clark SJ. 1985. The persistence of infectivity of conidia of the aphid pathogen E. neoaphidis on leaves in the field. Annals of Applied Biology 107: 365-376
    Brobyn PT, Latge JP, Prevost MC. 1986. Integumental penetration of the pea aphid, Acyrthosiphon pisum, by Conidiobolus obscurus (Entomophthoraceae). Journal of Invertebrate Pathology 48: 34-41
    Butt TM, Beckett A, Wilding N. 1990. A histological study of the invasive and developmental processes of the aphid pathogen Erynia neoaphidis (Zygomycotina: Entomophthorales) in the pea aphid Acyrthosiphon pisum. Canadian Journal of Botany 68: 2153-2163
    Butt TM, Becktt A, Wilding N. 1993. The structure of dry mycelia of the entomophthoralean fungi Zoophthora radicans and Erynia neoaphidis following different preparatory treatments. Mycological Research 97: 1315-1323
    Byford WJ. 1968. Effect of situation of the aphid host at death on the type of spore produced by entomophthora spp. Transactions British Mycological Society 51: 598-600
    Byford WJ, Reeve GJ. 1969. Entomophthora species attacking aphids in England, 1962-1966. Transactions. British Mycological Society 52, 342-346
    Cagan L', Barta M. 2001. Seasonal dynamics and entomophthoralean infection of pea aphid, Acyrthosiphon pisum Harris, in southwestern Slovakia. Plant protection Science 37: 17-24
    Chen C, Feng MG. 2002. Evidence for transmission of aphid-pathogenic fungi by migratory flight of Myzus persicae alates. Chinese Science Bulletin 47: 1987-1989
    Chen C, Feng MG. 2004a. Observation on the initial inoculum source and dissemination of Entomophthorales-caused epizootics in populations of cereal aphids. Science in China Series C- Life 47: 39-44
    Chen C, Feng MG. 2004b. Sitobion avenae alatae infected by Pandora neoaphidis: their flight ability, post-flight colonization, and mycosis transmission to progeny colonies. Journal of Invertebrate Pathology 86: 117-123
    Chen C, Feng MG. 2005. Epizootiological modeling of Pandora neoaphidis mycosis transmission in Myzus persicae colonies initiated by primarily infected alates. Applied and Environmental Microbiology 71:4104-4107
    Chen C, Feng MG. 2006a. Experimental simulation of wide dispersal and local transmission of aphid mycosis with flight and post-flight colonization of infected alatae. Environmental Microbiology 8: 69-76
    Chen C, Feng MG. 2006b. Probability model for the postflight colonization and fecundity of viviparous alatae infected preflight by the obligate aphid pathogen Pandora neoaphidis. Biological Control 39, 26-31.
    Dara SK, Semtner PJ. 2001. Incidence of Pandora neoaphidis (Remaudiere and Hennebert) Humber (Zygomycetes: Entomophthorales) in the Myzus persicae (Sulzer) complex (Homoptera: Aphididae) on three species of Brassica in the fall and winter. Journal of Entomological Science 36: 152-161
    Dromph KM, Pell JK, Eilenberg J. 1997. Sporulation of Erynia neoaphidis from alate Sitobion avenae. Insect Pathogens and Parasitic Nematode. IOBC/WPRS Bulletin 21:91-94
    Eilenberg J, Bresciani J, Olesen U, Olson L. 1995. Ultrastructural studies of secondary spore formation and discharge in the genus Entomophaga. Journal of Invertebrate Pathology 65: 179-185
    Eilenberg J, Pell JK. 2007. Ecology. In Keller S eds. Arthropod-Pathogenic Entomophthorales: Biology, Ecology, Identification. Luxembourg: Office for Official Publications of the European Communities, 7-26pp
    Ekesi S, Shah PA, Clark, SJ, Pell, JK. 2005. Conservation biological control with the fungal pathogen Pandora neoaphidis, implications of aphid species, host plant and predator foraging. Agriculture and forest entomology 7: 21-30
    Feng MG, Chen C. 2002. Incidences of infected Myzus persicae alatae in flight imply place-to-place dissemination of entomophthoralean fungi in aphid populations through migration. Journal of Invertebrate Pathology 81: 53-56
    Feng MG, Chen C, Chen B. 2004. Wide dispersal of aphid-pathogenic Entomophthorales among aphids relies upon migratory alates. Environmental Microbiology 6:510-516
    Feng MG, Chen C, Shang SW, Ying SH, Shen ZC, Chen, XX. 2007. Aphid dispersal flight disseminates fungal pathogens and parasitoids as natural control agents of aphids. Ecological entomology 32: 97-104
    Feng MG, Johnson JB, Halbert SE. 1991. Natural control of cereal aphids (Homoptera: Aphididae) by Entomopathogenic fungi (Zygomycetes: Entomophthorales) and parasitoids (Hymenoptera: Braconidae and Encyrtidae) on irrigated spring wheat in southwestern Idaho. Environmental Microbiology 20: 1699-1710
    Feng MG, Johnson JB, Kish LP. 1990. Survey of entomopathogenic fungi naturally infecting cereal aphids in irrigated cereal crops in southwestern Idaho. Environmental Microbiology 19: 1534-1542
    Feng MG, Johnson JB. 1991. Bioassay of four entomophthoralean fungi (Entomophthorales) against Diuraphis noxia and Metopolophium dirhodum (Homoptera: Aphididae). Environmental Microbiology 20: 338-345
    Feng MG, Liu CL, Xu JH, Xu Q. 1998. Modeling and biological implication of the time-dose-mortality data for the entomophthoralean fungus, Zoophthora anhuiensis on the green peach aphid, Myzus percisae. Journal of Invertebrate Pathology 72: 246-251
    Feng MG, Nowierski RM. 1991. Entomopathogenic fungi (Zygomycotina: Entomophthorales) infecting cereal aphids (Homoptera: Aphididae) in Montana. Pan-Pacific Entomologist 67: 55-64
    Feng MG, Nowierski RM, Johnson JB, Poprawski TJ. 1992a. Epizootics caused by entomophthoralean fungi (Zygomycetes: Entomophthorales) in populations of cereal aphids (Homoptera: Aphididae) in irrigated small grains of southwestern Idaho, USA. Journal of Applied Entomology 113: 376-390
    Feng MG, Nowierski RM , Klein RE, Scharen AL , Sands DC. 1992b. Spherical hyphal bodies of Pandora neoaphidis (Remaudiere & Hennebert) Huraher (Zygomycetes: Entomophthorales) on Acrythosiphon pisum (Harris) (Homoptera: Aphididae). a potential overwintering form. Pan-Pacific Entomologist 68: 100-104
    Feng MG, Johnson JB, Halbert, SE. 1992c. Parasitoids (Hymenoptera: Aphidiidae and Aphelinidae) and their impact on the populations of cereal aphids (Homoptera:
    Aphididae) in grain crops grown under irrigation in southwestern Idaho. Environmental Entomology 21, 1433-1440
    Feng MG, Poprawski TJ, Nowierski RM, Zeng Z. 1999. Infectivity of Pandora neoaphidis (Zygomycetes: Entomophthorales) to Acyrthosiphon pisum (Hom., Aphididae) in response to varying temperature and photoperiod regimes. Journal of Applied Entomology 123: 29-35
    Fuentes-Contreras E, Pell JK, Niemeyer HM. 1998. Influence of host plant resistance at the third trophic level: interactions between parasitoids and entomopathogenic fungi of cereal aphids. Oecologia 117: 426-432
    Furlong MJ, Pell JK. 1996. Interaction between the fungal entomopathogen Zoophthora radicans Brefeld (Entomophthorales) and two hymenopteran parasitoids attacking the diamondback moth, Plutella xylostella L. Journal of Invertebrate Pathology 68: 15-21
    Furlong MJ, Pell JK. 1997. The influence of environmental factors on the persistence of Zoophthora radicans conidia. Journal of Invertebrate Pathology 69: 223-233
    Fuxa JR, Tanada Y. 1987. Epizootictiology of insect diseases. Wiley-Interscience, New York. 1-553 pp
    Glare TR, Chilvers GA, Milner RJ. 1985. Capilliconidia as infective spores in Zoophthora phalloides (Entomophthorales). Transactions British Mycological Society 85: 463-470
    Glare TR, Chilvers GA, Miller RJ. 1986a. The effect of environmental factors on the production, discharge, and germination of primary conidia of Zoophthora phalloides Batko. Journal of Invertebrate Pathology 48:275-283
    Glare TR, Milner RJ, Chilvers GA. 1986b. Influence of temperature on the mortality of Myzus persicea (Sulzer) due to the fungal pathogen Zoophthora phalloides Batko. Journal Australian Entomological Society 25:63-64
    Glare TR, Milner RJ, Chilvers GA. 1989. Factors affecting the production of resting spores by Zoophthora radicans in the spotted alfalfa aphid, Therioaphis trifolii f. maculate. Canadian Journal of Botany 67: 848-855
    Glare TR, Milner RJ. 1991. Ecology of entomopathogenic fungi. In: Arora DK, Mukrrji KG eds. Handbook of applied mycology. Vol.2: Humans, Animals, and insects. New York: Marcel Dekker, 547-612 pp
    Griggs MH, Vandenberg JD, Sawyer, AJ. 1999. Effect of relative humidity on viability of primary eonidia of Zoophthora radicans. Journal of Invertebrate Pathology 73: 315-320
    Gustafsson M. 1965. On species of the genus Entomophthora Fres. in Sweden. I. Classification and distribution. Lantburk-shogskolans Annaler 32: 102-212
    Hajek AE. 1997. Ecology of terrestrial fungal entomophthogens. In: Jones eds. Advances in microbial ecology. vol15. Plenum press, New York, 193-249 pp
    Hajek AE. 1999. Pathology and epizootiology of Entomophage maimaiga infections in forest Lepidoptera. Microbiology and molecular biology review 63: 814-835
    Hajek AE, Bauer L, Mcmanus, ML, Vheeler, MM. 1998. Distribution of resting spores of the Lymantria disparpathogen Entomophaga maimaiga in soil and on bark. Biocontrol 43: 189-200
    Hajek AE, Hunber RA, Elkinton JS. 1995. The mysterious origin of Entomophage maimaiga in North America. American Entomologist 41: 31-42
    Hajek AE, Olsen CH, Elkinton, JS. 1999. Dynamics of airborne conidia of the gypsy moth (Lepidoptera: Lymantriidae) fungal pathogen Entomophaga maimaiga (Zygomycetes: Entomophthorales). Biological Control 16: 111-117
    Hajek AE, Shimazu M.1996. Types of spores produced by Entomophaga maimaiga infecting the gypsy moth Lymantria dispar. Canadian Journal of Botany 74: 708-715
    Hajek AE, St Leger RJ. 1994. Interactions between fungal pathogens and insect hosts. Annual Review of Entomology 39:293-322
    Hall RA, Burges HD. 1979. Control of aphids in glasshouses with the fungus, Verticillium lecanii. Annals of Applied Biology 93: 235-246
    Hall IM, Dunn PH. 1957. Entomophthorous fungi parasitic on the spotted alfalfa aphid. Hilgardia 27:159-181
    Hall IM, Halfhill JC. 1959. The germination of resting spores of Entomophthora virulenta Hall and Dunn. Journal of economic entomology 30-35
    Hatting JL, Poprawski TJ, Miller RM. 2000. Prevalences of fungal pathogens and other natural enemies of cereal aphids (Homoptera: Aphididae) in wheat under dryland and irrigated conditions in South Africa. Biocontrol 45: 179-199
    Hemmati F, Pell JK, McCartney HA, Clark SJ, Deadman ML. 2001a. Conidial discharge in the aphid pathogen Erynia neoaphidis. Mycology Research 105: 715-722
    Hemmati F, Pell JK, McCartney HA, Deadman ML. 2001b. Airborne concentrations of conidia of Erynia neoaphidis above cereal fields. Mycology Research 105, 485-489.
    Hua L, Feng MG. 2003. New use of broomcorn millets for production of granular cultures of aphid-pathogenic fungus Pandora neoaphidis for high sporulation potential and infectivity to Myzus persicae. FEMS Microbiology Letters 227: 311-317
    Humber RA. 1976. The systematics of the genus Strongwellsea (Zygomycetes: Entomophthorales), Mycologia 68: 1042-1060
    Humber RA. 1981. An alternative view of certain taxonomic criteria used in the Entomophthorales (Zygomycetes). Mycotaxon 13: 191-240
    Humber RA. 1989. Synopsis of a revised classification for the entomophthorales (Zygomycotina). Mycotaxon 34: 441-460
    Humber RA. 1991. Fungal pathogens of aphids. In: Peters DC, Webster JA, Chlouber CS eds. Aphid-Plant Interactions: Population to Molecules. Stillwater, Oklahoma State University, 45-56pp
    Hywel-Jones NL, Webster J. 1986. Mode of infection of Simulium by Erynia conica. Transactions British Mycological Society 87: 381-387
    James RR, Buckner JS, Freeman TP. 2003. Cuticular lipids and silverleaf whitefly stage affect conidial germination of Beauveria bassiana and Paecilomyces fumosoroseus. Journal of Invertebrate Pathology 84: 67-74
    Jarrold SL, Moore D, Potter U, Charnley AK. 2007. The contribution of surface waxes to pre-penetration growth of entomopathogenic fungus on host cuticle. Mycological research 111 :240-249
    Keller S. 1987a. Observation on the overwintering of Entomophthora plachoniana. Journal of Invertebrate Pathology 50: 333-335
    Keller S. 1987b. Arthropod-pathogenic Entomophthorales of Switerland. I. Conidiobolus, Entomophaga and Entomophthora. Sydowia 40: 122-167
    Keller S. 1991. Arthropod-pathogenic Entomophthorales of Switzerland. II: Erynia, Eryniopsis, Neozygites, Zoophthora and Tarichinm. Sydowia 43: 39-122
    Keller S. 1997. The genus Neozygites (Zygomycetes, Entomophthorales) with special reference to species found in tropical regions. Sydowia 49:118-146
    Keller S. 2002. The genus Entomophthora (Zygomycetes, Entomophthorales) with a description of five new species. Sydowia. 54:157-197
    Keller S. 2006. Entomophthorales attacking aphids with a description of two new species. Sydowia 58, 38-74.
    Keller S. 2007. Fungal structures and biology, In: Keller S eds. Arthropod-Pathogenic Entomophthorales: Biology, Ecology, Identification. Luxembourg: Office for Official Publications of the European Communities, 27-34pp
    Keller S, Petrini O. 2005. Keys to the identification of the arthropod pathogenic genera of the families Entomophthoraceae and Neozygitaceae (Zygomycetes), with descriptions of three new subfamilies and a new genus. Sydowia 57(1): 23-53
    Keller S, Suter H. 1980. Epizootiologische untersuchungen uber das entomophthoraauftreten bei feldbaulich wichtigen blattlausarten. Acta Oecologica, Oecologica applicata 1: 63-81
    Kenneth R, Wallis G, Gerson U, Plaut HN. 1972. Observations and experiments on Triplosporium floridanum (Entomophthorales) attacking spider mites in Israel. Journal of Invertebrate Pathology 19: 366-369
    Kerwin JL. 1984. Fatty acid regulation of the germination of Erynia variabilis conidia on adults and puparia of the lesser housefly, Fannia canicularis. Canadian Journal of Microbiological 30: 158-161
    Kirk PM, Cannon PF, David JC, Staplers JA. 2001. Ainsworth And Bisby's dictionary of the fungi. 9~(th) Edition. CAB International, Egham, l-650pp
    Latge JP, Sampedro L, Brey P, Diaquin M. 1987. Aggressiveness of Conidiobolus obsurus against the pea aphid: influence of cuticular extracts on ballistore germination of aggressive and non-aggressive strains. Journal of general microbiology 133: 1987-1997
    Latteur G. 1977. Sur la possibilite d'infection directe d'aphides par Entomophthora a partir de sols hebergeant un inoculum natural. Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences 284D: 2253-2256
    Latteur G, Godefroid J. 1983. Trial of field treatments against cereal aphids with mycelium of Erynia neoaphidis (Entomophthorales) produced in vitro. In: Cavalloro R eds. Aphid Antagonists. A.A. Balkema, Rotterdam, Netherlands, 2-10pp
    Latteur G, Randall L. 1989. The survival of inoculum of conidia of Erynia neoaphidis Remaudiere et Hennebert on unsterilized soil. IOBC/WPRS Bulletin 12: 72
    Li W, Xu WA, Sheng CF,Wang HT, Xuan WJ. 2006. Factors affecting sporulation and germination of Pandora nouryi (Entomophthorales: Entomophthoraceae), a pathogen of Myzus persicae (Homoptera: Aphididae). Biocontrol Science and Technology 16: 647-652
    Macleod PJ, Steinkraus DC, Correll JC, Morelock TE. 1998. Prevalence of Erynia neoaphidis (Entomophthorales: Entomophthoraceae) infections of green peach aphid (Homoptera: Aphididae) on spinach in the Arkansas river valley. Environmental Entomology 27(3): 796-800
    Matsui T, Sato H, Shimazu M. 1998. Isolation of an entomogenous fungus, Erynia delphacis (Entomophthorales, Entomophthoraceae), from migratory planthoppers collected over the Pacific ocean. Applied Entomology and Zoology 33: 545-549
    Milner RJ. 1982. On the occurrence of pea aphids, Acrythosiphon pisum, resistant to isolates of the fungal pathogen Erynia neoaphidis. Entomologia Experimentalis et Applicata 32: 23-27
    Milner RJ, Bourne J. 1983. Influence of temperature and duration of leaf wetness on infection of Acyrthosiphon kondoi with Erynia neoaphidis. Annals Applied Biology 102: 19-27
    Milner RJ, Mahon RJ, Brown WV. 1983 A taxonomic study of the Erynia neoaphidis Remaudiere & Hennebert (Zygomycetes:Entomophthoraceae) group of insect pathogenic fungi, together with a description of the new species Erynia kondoiensis. Australian Journal of Botany 31: 173-188
    Milner RJ, Teakle RE, Lutton GG, Dare FM. 1980. Pathogens (Phycornycetes: Entomophthoraceae) of the blue-green aphid Acyrthosiphon kondoi Shinji and other aphids in Australia. Australian Journal of Botany 28: 601-619
    Nadeau MP, Dunphy GB, Boisvert JL. 1996. Development of Erynia conica (Zygomycetes: Entomophthorales) on the cuticle of the adult black flies Simulium rostraturn and Simulium decorum (Diptera:Simuliidae). Journal of Invertebrate Pathology 68:50-58
    Nielsen C. 2002. Interactions between aphids and entomophthoralean fungi. PhD. Thesis, The Royal Veterinary and Agricultural University, Copenhagen, Denmark
    Nielsen C, Eilenberg J, Harding S, Oddsdottir E, Halldorsson G. 2001. Geographical distribution and host range of Entomophthorales infecting the green spruce aphid Elatobium abietinum Walker in Iceland. Journal of Invertebrate Pathology 78: 72-80
    Nielsen C, Hajek AE, Humber RA, Bresciani J, Eilenberg J. 2003. Soil as an environment for winter survival of aphid pathogenic Entomophthorales. Biological Control 28: 92-100
    Nielsen C, Hajek AE. 2005. Control of invasive soybean aphid, Aphis glycines (Hemiptera: Aphididae), populations by exising natural enemies in New York State, with emphasis on entomopathogenic fungi. Environmental Entomology 34: 1036-1047
    Nielsen C, Sommer C, Eilenberg J, Hansen KS, Humber RA. 2001. Characterization of aphid pathogenic species in the genus Pandora by PCR techniques and digital image analysis. Mycologia 93: 864-874
    Nielsen C, Steenberg T. 2004. Entomophthoralean fungi infecting the bird cherry-oat aphid, Rhopalosiphum padi, feeding on its winter host bird cherry, Prunus padus. Journal of Invertebrate Pathology 87: 70-73
    Nowierski R M, Zeng Z, Jaronski S, Delgado F, Swearingen W. 1996. Analysis and modeling of time-concentration-mortality of Melanoplus sanguinipes, Locusta migratoria migratorioides, and Schistocerca gregaria (Orthoptera: Acrididae) from Beauveria, Metarhizium and Paecilomyces isolates from Madagascar. Journal of Invertebrate Pathology 67:236-252.
    Oduor GI, Yaninek JS, Van Der Geest LPS, De Moraes GJ. 1996. Germination and viability of capilliconidia of Neozygites floridana (Zygomycetes: Entomophthorales) under constant temperature, humidity, and light conditions. Journal of Invertebrate Pathology 61: 267-278
    Papierok B, Havukkala I. 1986. Entomophthoraceous fungi parasitizing cereal aphids in Finland. Annales Entomologici Fennici, 52: 36-38
    Pell JK, Pluke R, Clark SJ, Kenward MG, Alderson PG. 1997. Interactions between two aphid natural enemies, the entomopathogenic fungus, Erynia neoaphidis and the predatory beetle, Coccinella septempunctata. Journal of Invertebrate Pathology 69:261-268.
    Pell JK, Wilding N. 1992. The survival of Zoophthora radicans (Zygomycetes: Entomophthorales) isolates as hyphal bodies in mummified larvae of Plutella xylostella (Lep.: Yponomeutidae). Entomophaga 37: 649-654
    Perry DF. 1988. Germination of Erynia bullata resting spores. Journal of Invertebrate Pathology 51: 161-162
    Perry DF, Fleming RA. 1989a. The timing of Erynia radicans resting spore germination in relation to mycosis of Choristoneura fumiferana. Canadian Journal of Botany 67: 1657-1663
    Perry DF, Fleming RA. 1989b. Erynia crustosa zygospore germination. Mycologia 81: 154-158
    Perry DF, Latge JP. 1982. Dormancy and germination of Conidiobolus obscurus azygospores. Transactions British Mycological Society 78: 221-228
    Perry DF, Tyrrell D, Delyzer AJ. 1982. The mode of germination of Zoophthora radicans zygospores. Mycologia 74: 549-554
    Petch T. 1939. Notes on entomogenous fungi. Transactions British Mycological Society 23: 127-148
    Remaudiere G, Hennebert GL. 1980. Revision systematique de Entomophthora aphidis Hoffm. in Fres. Description de deux nouveaux pathogens d'aphides. Mycotaxon 11: 269-321
    Remaudiere G, Keller S. 1980. Reconsideration systematique des genres d'Entomophthoraceae a potentialite entomopathogene. Mycotaxon 11: 323-338
    Remaudiere G, Latge JP, Michel MF. 1981. Ecologie comparee des entomophthoracees pathogenes de pucerons en France littorale et continentale. Entomophaga 26: 157-178
    Remaudiere G, Remaudiere M. 1997. Catalogue of the World's Aphididae. INRA, Paris, 1-473pp
    Robert Y. 1987. Dispersion and migration. In: Minks A K and Harrewijn P eds. Aphids, Their Biology, Natural Enemies and Control, Vol. A. Elsevier, Amsterdam, Netherlands, 299-313pp
    Roy HE, Pell JK. 2000. Interactions between entomopathogenic fungi and other natural enemies, Implications for biological control. Biocontrol science and technology 10: 737-752
    Roy HE, Pell JK, Alderson PG. 2001. Targeted dispersal of the aphid pathogenic fungus Erynia neoaphidis by the aphid predator Coccinella septempunctata. Biocontrol Science and Technology 11: 99-110
    Roy HE, Alderson PG, Pell JK. 2003. Effect of spatial heterogeneity on the role of Coccinella septempunctata as an intra-guild predator of the aphid pathogen Pandora neoaphidis. Journal of Invertebrate Pathology 82: 85-95
    Shah PA, Aebi M, Tuor U. 2002. Effects of constant and fluctuating temperatures on sporulation and infection by the aphid-pathogenic fungus Pandora neoaphidis. Entomologia Experimentalis et Applicata 103: 257-266
    Shah PA, Clark SJ, Pell JK. 2004. Assessment of aphid host range and isolate variability in Pandora neoaphidis (Zygomycetes: Entomophthorales). Biological Control 29: 90-99
    Sivcev I. 1993. Influence of temperatures on the sporulation of aphidopathogenous fungi Pandora neoaphidis (Remaudiere et Hennebert) Humber. Plant Protection 44:133-138
    Sivcev I, Draganic M. 1994. UV rays and Pandora neoaphidis conidia. Plant Protection 45: 203- 207
    Sivcev I, Manojlovic B. 1995. Effects of temperature and relative humidity on the germination of aphidopathogenous fungus Pandora neoaphidis conidia. Plant Protection 46: 51-56
    Snyder WE, Ives AR. 2003. Interactions between specialist and generalist natural enemies: Parasitoids, predators, and pea aphid biocontrol. Ecology 84: 91-107
    Stary P. 1988a. Aphidiidae. In Minks AK, Harrewijn PA eds. Aphids: their biology, natural enemies and control. Vol. 2B. Amsterdam, Elsevier, 171-203 pp
    Stary P. 1988b. Aphelinidae. In Minks AK, Harrewijn PA eds. Aphids: their biology, natural enemies and control. Vol. 2B. Amsterdam, Elsevier, 185-188 pp
    Steenberg T, Eilenberg J. 1995. Natural occurrence of entomopathogenic fungi on an agricultural field site. Czech Mycology 48: 89-96
    Steinkraus DC. 2006. Factors affecting transmission of fungal pathogens of aphids. Journal of Invertebrate Pathology 92: 125-131
    Steinkraus DC, Boys GO, Slaymaker PH. 1993. Culture, storage, and incubation period of Neozygites fresenii (Entomophthorales: Neozygiteaceae) a pathogen of the cotton aphid. Southwestern Entomologist 18: 197-202
    Steinkraus DC, Boys GO, Rosenheim JA. 2002. Classical biological control of Aphis gossypii (Homoptera: Aphididae) with Neozygites fresenii (Entomophthorales: Neozygitaceae) in California cotton. Biological Control 25: 297-304.
    Steinkraus DC, Hollingsworth RG, Boys GO. 1996. Aerial spores of Neozygites fresenii (Entomophthorales: Neozygitaceae): density, periodicity, and potential role in cotton aphid (Homoptera: Aphididae) epizootics. Environmental Entomology 25:48-57
    Steinkraus DC, Howard MN, Hollingsworth RG, Boys GO. 1999. Infection of sentinel cotton aphids (Homoptera:Aphididae) by aerial conidia of Neozygites fresenii (Entomophthorales: Neozygitaceae). Biological Control 14: 181-185
    Steinkraus DC, Kring TJ, Tugwell NP. 1991. Neozygites fresenii in Aphis gossypii on cotton. Southwestern Entomologist 16: 118-122
    Thomsen L, Bresciani J, Eilenberg J. 2001. Formation and germination of resting spores from different strains from the Entomophthora muscae complex produced in Musca domestica. Canadian Journal of Botany 79: 1076-1082
    Uziel A, Kenneth RG. 1991. Survival of primary conidia and capilliconidia at different humidities in Erynia (subgen.Zoophthora) spp. and in Neozygites fresenii (Zygomycotina: Entomophthorales), with special emphasis on Erynia radicans. Journal of Invertebrate Pathology 58: 118-126
    Uziel A, Shtienberg D. 1993. Effect of meteorological variates on persistence of primary conidia and capilliconidia of Erynia radicans (Zygomycetes: Entomophthorales) under natural conditions. Annals of Applied Biology 122: 441-450
    Vickers RA, Furlong MJ, White A, Pell JK. 2004. Initiation of fungal epizootics in diamondback moth populations within a large field cage: Proof of concept of auto-dissimination. Entomologia Experimentalis et Applicata 111:7-17
    Villacarlos LT, Mejia BS. 2004. Philippine Entomopathogenic Fungi I. Occurrence and Diversity .Philippine Agricultural Scientist 87: 249-265
    Wallace DR, MacLeod DM, Sullivan CR, Tyrrell D, DeLyzer AJ. 1976. Induction of resting spore germination in Entomophthora aphidis by long-day light conditions. Canadian Journal of Botany 54:1410-1418
    Weiser J, Batko A. 1966. A new parasite of Culex pipiens L, Entomophthora destruens sp. nov. (Phycomycetes, Entomophthoraceae). Folia Parasitologica 13: 144-149
    Westbrook JK, Isard SA. 1999. Atmospheric scales of biotic dispersal. Agricultural and Forest Meteorology 97: 263-274
    White A, Watt AD, Hails RS, Hartley SE. 2000. Patterns of spread in insect-pathogen systems, the importance of pathogen dispersal. Oikos 89: 137-145
    Wilding N. 1969. Effect of humidity on the sporulation of Entomophthora aphidis and E. thaxteriana. Transactions British Mycological Society 53: 126-130
    Wilding N. 1970. The effect of temperature on the infectivity and incubation periods of the fungi Entomophthora aphidis and E. thaxteriana for the pea aphid Acyrthosiphon pisum. In: Proceedings of the 4th International Colloquium of Insect Pathology, Maryland. 84-88pp
    Wilding N. 1971. Discharge of conidia of Entomophthora thaxteriana Petch from the pea aphid Acyrthosiphon pisum Harris. Journal of General Microbiology 69: 417-422
    Wilding N. 1973. The survival of Entomophthora spp. in Mummfied Aphids at different temperatures and humidities. Journal of Invertebrate Pathology 21: 309-311
    Wilding N, Perry JN. 1980. Studies on Entomophthora in populations of Aphis fabae on field beans. Annals of Applied Biology 94: 367-378
    Wraight SP, Butt TM, Galaini-Wraight S, Allee LL, Soper RS, Roberts DW. 1990. Germination and infection processes of the entomophthoralean fungus Erynia radicans on the potato leafhopper, Empoasca fabae. Journal of Invertebrate Pathology 56: 157-174
    Wraight SP, Poprawski WL, Meyer WL, Peairs FB. 1993. Natural enemies of Russian wheat aphid (Homoptera: Aphididae) and associated cereal aphid species in spring-planted wheat and barley in Colorado. Environmental Entomology 22: 1383-1391
    Zare R, Gams W. 2001. A revision of Verticillium section Prostrata. IV. The genera Lecanicillium and Simplicillium. Nova Hedwigia 73, 1-50.
    Zhang GZ, Feng MG, Chen C, Ying, SH. 2007. Opportunism of Conidiobolus obscurus stems from depression of infection in situ to progeny colonies of host alatae as disseminators of the aphid-pathogenic fungus. Environmental Microbiology 9: 859-868

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700