用户名: 密码: 验证码:
强侧风作用下列车运行安全性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
强侧风作用下,列车在特大桥梁、高路堤或风口线路上极有可能造成列车倾覆等重大行车事故。对强侧风作用下列车运行安全性进行研究,找出车辆在强风作用时的倾覆机理,并找出具体防范措施,对于预防大风事故的发生,确保铁路运输的正常进行具有重要的现实意义。
     从车速—风速—线路—车辆耦合情况下车辆的气动性能出发,建立了车辆在瞬态突变载荷和稳态载荷下车辆在轨道上倾覆以及车体在转向架上倾覆的数学模型,最终得出了列车在不同载重、不同线路条件(路堤或桥梁)下风速与临界车速的关系,并提出了提高车辆在强侧风下运行的安全措施,完整地建立了在风—车—路三者耦合条件下研究车辆行车安全性的方法体系。
     较为系统地、完整地建立了采用不同结构形式的转向架(一系或二系悬挂、钢簧或空气弹簧、摆式或非摆式转向架、有无摇动台等)的车辆在强突变风载荷及稳态风载荷情况下车辆在轨道上倾覆、车体在转向架上倾覆的数学模型。研究表明:车辆在突变载荷情况下更容易发生倾覆事故;列车的倾覆不仅与列车在运行中的受力有关,还与车体与转向架之间的相对位置有关;车体与转向架之间发生振动时的相对横向偏移量越小,则车辆越不容易发生倾覆。
     得到了在强侧风作用时车—路耦合条件下车辆的气动性能。研究表明:车辆受到的气动力均随着车速和风速的增大而增大,在风向角为90°左右时,车辆受到的气动力最大;在同样外界条件(车速、风速和风向角)的情况下,车辆受到的气动力均随着路堤和桥梁高度的增高而增大;路堤迎风面结构形式对车辆的气动性能影响较小,但背风面的结构形式对列车气动性能影响较大,随着路堤背风面斜率的增大,车辆受到的气动力显著减小;对在峡谷中桥梁上的车辆来说,同样标准风速情况下,两座山之间的间距越短,列车受到的气动力越大。
     得到了风—车—路三者耦合条件下车辆的速度限值。研究表明:棚车和集装箱车的外形流线化最差,在同样风速条件下会承受较大的气动力,车辆的临界运行车速较低,而罐车的流线型外形最好,在同样风速时受到的气动力较小,则车辆的临界运行车速相对较高;车辆的自重越大,其临界允许车速就越高;随着桥梁和路堤的增高,车辆的临界车速迅速下降,若在线路上加挡风墙,则可以有效降低车辆受到的气动力,进而提高车辆的临界运行车速;车辆在曲线上运行时由于受离心力的影响,其临界车速会迅速降低;车辆的重心越高,则相同的离心力会产生较大的倾覆力矩,降低车辆的临界运行车速;横向振动惯性力对系统影响较大,加装阻尼器、改善踏面形状等可有效的降低振动的频率和幅值,进而降低横向振动加速度,最终提高车辆的临界运行车速。根据对单节车的研究结果,给出了一列车的限速准则:即整列车所处的位置中的所有危险点上、所有车辆的最小的临界运行车速为列车的限速。
     提出了大风对行车安全影响因素的改善措施。对车辆自身而言,降低车辆重心高、降低车辆在运行时的横向振动加速度能提高车辆在强侧风下的临界倾覆风速。但根本上来说,降低车辆在强侧风下受到的气动力能有效的提高车辆的抗倾覆性能,主要措施为改善车辆在强侧风下的气动外形、在线路上加设挡风墙。以棚车为例给出了棚车在强横风作用时的最佳侧壁及车顶的外形轮廓;给出了路堤上采用不同类型的挡风墙时挡风墙的最优参数;给出了桥梁上单侧透风式挡风墙最佳结构参数(挡风墙高度、透风率、挡风墙位置)。
     提出了风区风速的预测方法。即针对原始风速时间序列,首先进行滑动平均,然后采用卡尔曼滤波求出真值,最后采用时间序列或神经网络的方法建立风速的预测模型。时间序列预测主要针对单个测点,该方法需要较多的历史数据,能够对将来很好的预测,并能给出预测误差。针对距离较近、风速相关性较强的几个测点,可以采用神经网络预测的方法,这种方法充分考虑系统的非线性,采用较少的历史数据就能给出比较精确的预测。
Serious accidents such as train capsizing always happened in special areas such as large bridge and high embankment and railway line in wind region under strong side wind. It is significantly important to ensure the safety of railway transportation by researching on the train operation safety under strong side wind and by finding the mechanism of train capsizing under strong side wind and at the same time by finding the solid protecting measurement.
     Start from researching the train aerodynamic under the situation that wind speed and train speed and railway line and vehicle coupled together, set up the math model of train capsizing on rail and model of carboy capsizing on bogie when train bearing transmit load or steady load, and get the relation between wind speed and critical train speed when train in different load condition and different railway situation. Based on the method related above, a method system on train safety has been set up fully under the situation that wind and train and railway line coupling together.
     Math model of train capsizing on track and carboy capsizing on bogie bearing transmit load or steady load has been built systematically and fully when train using different structure bogie, such as one suspension or two suspensions , steel spring or air spring, pendulum bogie or normal bogie, with or without shaker. The results show that the probability of capsizing is large when train bearing transmit load, and that train's capsizing not only relate to loads train bearing but also relate to relatively location of bogie and carboy. If the relative displacement between bogie and carboy is smaller, the train will be hard to capsize.
     Train aerodynamic performance is gotten. The results show that: aerodynamic forces of train bearing increase when wind speed or train speed increasing and that when wind angle is near 90 degree the aerodynamic forces are largest. In the same situation (wind speed and train speed and wind angle) aerodynamic forces improve with the increasing of height of bridge or embankment, structure of windward surface of embankment effect lightly to train's aerodynamic performance while structure of leeward surface effects significantly to train aerodynamic performance and train's aerodynamic forces decrease significantly when slope of leeward surface of embankment improves. To train in bridge in gorge train aerodynamic forces improve if the distance between the two hills decreases at the same wind speed.
     The limit value of train critical speed under the situation is gotten when wind speed and vehicle and railway line coupled together. Results as follow: the figure of box car and container car is almost not streamlined and they will bear large aerodyne forces and so the train critical speed is lower, while the figure of tank car is better waterline and it will bear little aerodynamic force at the same wind speed, so train's critical speed is higher. Train critical speed will decrease when height of bridge and embankment improves while the train critical speed can be improved if installing wind fence in railway line to decreasing the aerodynamic force, train critical speed will decrease sharply when train is running in curve line for the huge centrifugal force. Higher the center of gravity of train and higher the capsizing moment in same centrifugal force and which will decrease train critical speed. Lateral inertia force has significant influence to the whole system and installing dampers in bogie and reforming tread figure can effectively slow down the frequency and range of lateral vibration and can slow down acceleration of lateral vibration which will improve train critical speed. Based on the results of a single car, a speed limiting law of a train is put forward at last that the limiting speed value is the smallest train critical speed of the whole train in all dangerous point and the smallest train critical speed of all the single train.
     The reformed measurement is put forward to ensure train operation safety. To the train, decreasing its height of center of gravity and minimizing its lateral vibrating acceleration when in operation can improve train critical speed under strong side wind. But fundamentality speaking, reducing the aerodynamic force under strong side wind can improve train speed significantly, and the main measurements is to reform the train's figure and to set up wind fence in railway line. Taking box car for example the best aerodynamic figure of side wall and ceiling is given when train bearing strong side wind. Put forward the optimization parameters of all the types of wind fence in embankment. Put forward the optimization parameters such as height of wind fence and wind leaking ratio and its location of single side wind fence in bridge.
     The prediction model of wind speed is put forward in wind region. Pointing to the initial wind speed time serial, the first step is to average the initial data using moving average model, then get the true data using Kalman filter, the last is to built the wind prediction model using wind data serial or Neural Networks. Wind speed data serial prediction model is mainly pointing to the single point and predictes well and can also give the prediction error but need much more history data. Pointing to adjacent measurement points whose wind speeds correlating strongly, Neural Networks prediction model can be used which considers the nonlinear of the whole system fully and can give precious precision only using little history data.
引文
[1]Anderson,H.L.Investigation of the Forces on Bluff Bodies Near the Ground,M.Sc.dissertation,Department of Aeronautics,Imrperial College,1977
    [2]葛盛昌,尹永顺.新疆铁路风区列车安全运行标准现场试验研究.铁道技术监督,2006.39(4):9-11
    [3]Fujii T.Maeda T,Ishida H.Wind-induced Accidents of Train/Vehicles and Their Measure in Japan.Quarterly Report of Railway Technical Research Institute,1999,(1):50-55
    [4]Coleman,S.A.,Baker,C.J.,High Sided Road Vehicles in Crosswinds.Journal of wind Engineering and Industrial Aerodynamics,1990,36(2):1383-1392
    [5]任建.青藏铁路客车的几点思考.铁道车辆,2003,41(10):4-8
    [6]邱道成.青藏铁路格拉段高原冻土站场设计的特点.冰川冻土,2003,25(S1):133-135
    [7]白虎志,李栋梁,董安祥.青藏铁路沿线的大风特征及风压研究.冰川冻土.2005,27(1):111-116
    [8]京沪高速铁路技术研究总体组.京沪高速铁路侧向风、强降雨对行车的影响及安全限值的调查研究.北京:铁道部科学研究院,2002.6
    [9]国家发展和改革委员会交通运输司.国家《中长期铁路网规划》内容简介.交通运输系统工程与信息,2005,5(4):1-4
    [10]Uwe Hoppmann,Stefan Koenig,Thorsten Tielkes,Gerd Matschke.A short-term Strong Wind Prediction Model for Railway Application:Design and Verification.Journal of Wind Engineering and Industrial Aerodynamics,2002,90(10):1127-1134
    [11]Makoto SHIMAMURA,noritoshi KOBAYASHI.Development of Strong Wind Warning System.Japan Railway Engineering.2003,43(1):13-15
    [12]Matschke G.,Tielkes Th.,Schulte-Werning B.A Short-Term Wind Warning System to Counteract the Effects of Cross Wind on High Speed Trains.5th International Conference on Probabilistic Safety Assessment and Management,Osaka,Japan,2000.p.2047-2052
    [13]Noritoshi Kobayashi,Makoto Shimamura.Study of a Strong Wind Warning System.JR EAST Technical Review.2003,(2):61-65
    [14]前田达夫,江慧.高速铁路的空气动力学现象与环境问题.变流技术与电力牵引,2000,(2):35-37
    [15]种本腾二,铃木実,前田达夫.横风に对する车両の空力学的特性风洞试验.铁道缏研报告,1999,13(12):47-52.
    [16]王之宏.风荷载的模拟研究.建筑结构学报.1994,15(1):44-52
    [17]中华任命共和国国家标准.GB 50009-2001,建筑结构载荷规范.北京:中国建筑工业出版社.2001
    [18]吴相庭.结构风压和风振计算.上海:同济大学出版社,1985
    [19]小野纯朗.提高列车速度的理论和实践.徐涌译.北京:中国铁道出版社,1992
    [20]今井俊昭.对铁道强风管制风速评定的探讨.铁道综研报告-环境防灾技术特集.1997.10
    [21]Matschke G.,Schulte-Werning B.Measures and Strategies to Minimize the Effect of Strong Cross Winds on High Speed Trains.Proceedings of WCRR World Congress of Railway Research,Florence,Italy,Vol.E,569-575,1997
    [22]British Railway Group Standard.GM/RT2141.Resistance of RailwayVehicles to Oerturning in Gales.Derby:Safety & Standards Directorate,1994
    [23]Quinn,A.D.An Investigation of the Wind-induced Rolling Moment on a Commercial Vehicle in the Atmospheric Boundary Layer.Proceedings of the Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering,2007,21(11):1367-1379
    [24]Coleman,S.A.Experimental Study of the Aerodynamic Behavior of High Sided Lorries in Cross Winds.Journal of Wind Engineering and Industrial Aerodynamics,1994,54(3):401-429
    [25]Baker,C.J.Behaviour of Road Vehicles in Unsteady Cross Winds.Journal of Wind Engineering and Industrial Aerodynamics,1993,49(1):439-448
    [26]Baker,C.J.Assessment of Wind Tunnel Testing Techniques for Ground Vehicles in Cross Winds.Journal of Wind Engineering and Industrial Aerodynamics,1990,33(1):429-438
    [27]Brockie,N.J.W.Aerodynamic Drag of High Speed Trains.Journal of Wind Engineering and Industrial Aerodynamics,1990,34(3):273-290
    [28]Baker,C.J.High Sided Articulated Board Vehicles in Strong Cross Winds.Journal of Wind Engineering and Industrial Aerodynamics,1988,31(1):67-85
    [29]Coleman,S.A.High Sided Road Vehicles in Cross Winds.Journal of Wind Engineering and Industrial Aerodynamics,1990,36(2):1383-1392
    [30]Baker,C.J.Problems of Road Vehicles in Cross Winds.Highways and Transportation,1991,38(5):8-9
    [31]Baker,C.J.Wind Tunnel Tests to Obtain Train Aerodynamic Drag Coefficients.Journal of Wind Engineering and Industrial Aerodynamics,1991,38(1):23-28
    [32]Coleman,S.A Reduction of Accident Risk for High Sided Road Vehicles in Cross Winds.Journal of Wind Engineering and Industrial Aerodynamics,1992,44(4):2685-2695
    [33]Humphreys,N.D.Forces on Vehicles in Cross Winds from Moving Model Tests.Journal of Wind Engineering and Industrial Aerodynamics,1992,44(4):2673-2684
    [34]Chen,S.R.,Cai,C.S.Dynamic Performance of Driving Vehicles on Long Span Bridges under Hurricane Induced Strong Winds.11th International Conference on Wind Engineering,Lubbock,Texas,2003
    [35]Guo,W.H.,Xu,Y.Safety of High Sided Vehicles Running over a Cable Stayed Bridge Subject to a Sudden Cross Wind Gust.11th International Conference on Wind Engineering,Lubbock,Texas,2003
    [36]尹永顺,王厚雄等.兰新复线防风安全工程研究报告.乌鲁木齐铁路局,1994,2
    [37]中南大学.强侧风影响下车辆运行稳定性研究报告.中南大学,2003
    [38]刘凤华,加筋土式挡风墙优化研究.铁道工程学报,2006,(1):96-99
    [39]刘凤华.挡风墙气动外形及位置优化[硕士学位论文].中南大学,2006
    [40]中南大学.强侧风条件下车体表面压力分布现场测试.中南大学,2006
    [41]叶文军等.铁路沿线灾害性天气监测、预测、预警系统.新疆气象,2001,26(6):25-27
    [42]中南大学.青藏高原铁路大风下行车安全保障系统总结报告.中南大学,2006
    [43]周丹,田红旗,杨明智.强侧风作用下不同类型铁路货车在青藏线路堤上运行时的气动性能比较.铁道学报,2007,29(5):32-37
    [44]周丹,田红旗,鲁寨军.大风对路堤上运行的客运列车气动性能的影响.交通运输工程学报,2007,7(4):7-10
    [45]祝志文,陈伟芳,陈政清.侧风中双层客车车辆的风荷载研究.国防科技大学学报,2001,5(2):117-121
    [46]张健,陈南翼.侧风对电动车组中各车辆气动特性影响的试验研究.机车电传动,1998,44(1):28-31
    [47]曾剑明.高速列车周围流畅数值模拟[硕士论文].长沙铁道学院,1998
    [48]熊小惠.横风作用下青藏铁路列车横断面气动外形优化研究[硕士论文].中南大学,2004
    [49]梁习锋.实车表面空气压力分布试验技术研究.铁道学报,2002,24(3):95-98
    [50]张斌,梁习锋.准高速列车表面压力分布测量实车试验研究.铁道车辆,2000,38(10):14-17
    [51]Klein,Richard H.Effects of Crosswinds on Vehicle Response-Full Scale Tests and Analytical Predictions.SAE Preprints.1980
    [52]蔡国华.高速列车受电弓低速风洞试验技术.铁道工程学报,2006,(4):67-70
    [53]梁习锋,田红旗,邹建军.动力车纵向气动力风洞试验及数值模拟.国防科技大学学报,2003,25(6):101-105
    [54]田红旗,高广军.270km/h高速列车气动力性能研究.中国铁道科学,2003,24(2):14-18
    [55]田红旗,梁习锋.“中华之星”高速列车综合空气动力性能研究.机车电传动,2003,(5):40-45
    [56]田红旗,卢执中.200km/h电动旅客列车组控制车风洞试验研究.铁道车辆,1999,37(7):15-17
    [57]Robinson,C.G..Effect of Atmospheric Turbulence on Trains.Journal of Wind Engineering and Industrial Aerodynamics,1990,34(3):251-272
    [58]Ido,A.;Kondo,Y.;Matsumura,T.;Suzuki,M.Wind Tunnel Tests to Reduce Aerodynamic Drag of Trains by Smoothing the Under-floor Construction.Quarterly Report of RTRI(Railway Technical Research Institute)(Japan),2001,42(2):94-97
    [59]Maeda,T.;Kondo,Y.RTRI's Large-scale Low-noise Wind Tunnel and Wind Tunnel Tests.Quarterly Report of RTRI(Railway Technical Research Institute)(Japan),2001,42(2):65-70
    [60]Hammitt,Andrew.G.Wind Tunnel Tests of Trailer and Container Models.Federal Railroad Administration,Office of Research and Development,1980
    [61]Willemsen,E.High Reynolds Number Wind Tunnel Experiments on Trains.Journal of Wind Engineering and Industrial Aerodynamics,1997,69-71:437-447
    [62]卢执中.为列车提速和发展高速建设“列车气动性能及撞击动模型试验装置”论证报告,长沙:长沙铁道学院,1996
    [63]C.W.Pope,the Simulation of Flows in Railway Tunnels Using a 1/25th Scale Moving Model Facility,British Railways Board:Aerodynamics and Ventilation of Vehicle Tunnels,1991,pp 709-737
    [64]Lorea,A.Wind-tunnel Method for Evaluating the Aerodynamic Noise of Cars.SAE Special Publications,1986,p 149-158
    [65]Paul,James C.Wind Tunnel Test of 3/10-scale Skeletonized and Well-type Intermodel Rail Cars.American Society of Mechanical Engineers(Paper),1984,14p
    [66]Poncini,G.F.Experimental Methods for Wind-tunnel Testing of Racing Car With Ground Effect.Technological Advances in Vehicle Design,Special Publication SP,1983,p 480-492
    [67]Cogotti,A.Comparison Tests Between sone Full-scaled European Automotive Wind Tueenls-Pininfarina Reference Car.SAE Preprints,n 800139,1980,31p
    [68]Hayashida,C.Wind Tunnel Experiments on Electric Container Cars for the SHIN-KANSEN.Quarterly Report of the Railway Technical Research Institute,1972,(13)2:117-135
    [69]Milner,P.J.Graphical Presentation of the Sensitivity of Cars to Windy Conditions Using Basic Wind Tunnel and Chassis Data.I Mech E Conference Publications (Institution of Mechanical Engineers),1983,p 119-128
    [70]杨俊杰,李强,王斌杰.200km/h电力机车气动性能风洞试验与数值模拟.北京交通大学学报,2007,31(4):14-17
    [71]中南大学.侧风作用下车辆空气动力性能风洞实验研究.中南大学,2006
    [72]李燕飞,梁习锋,刘堂红.环境风对路堤上快运集装箱平车气动力性能影响.铁道科学与工程学报,2007,4(5):78-82
    [73]梁习锋,沈娴雅.环境风与列车交会耦合作用下磁浮列车横向气动性能.中南大学学报(自然科学版),2007,38(4):751-757
    [74]熊小慧,梁习锋,高广军.兰州.新疆线强侧风作用下车辆的气动特性.中南大学学报(自然科学版),2006,37(6):1183-1189
    [75]梁习锋,熊小慧.4种车型横向气动性能分析与比较.中南大学学报(自然科学版),2006,37(3):607-612
    [76]舒信伟,谷传纲,梁习锋.高速磁浮列车气动阻力性能数值模拟与参数化评估.交通运输工程学报,2006,6(2):6-11
    [77]何华,田红旗,熊小慧.横风作用下敞车的气动性能研究.中国铁道科学,2006,27(3):73-79
    [78]梁习锋,熊小慧,易仕和.强侧风作用下棚车气动外形优化.国防科技大学学报,2006,28(2):26-30
    [79]姜翠香,梁习锋,.挡风墙高度和设置位置对车辆气动性能的影响.中国铁道科学,2006,(2).
    [80]梁习锋,舒信伟.列车风挡对空气阻力影响的数值模拟研究.铁道学报,2003,25(1)34-37
    [81]5.Maeda,Tatsuo AERODYNAMIC DRAG OF SERIES 200 SHINKANSEN TRAIN.Quarterly Reports - Railway Technical Research Institute(Japan),1984:25(4):140-143
    [82]A study on reducing aerodynamic drag of trains by smoothing the under-floor surface.B Hen/Transactions of the Japan Society of Mechanical Engineers,Part B,2005,(71)703817-824 Language:Japanese
    [83]李人宪,刘应清,翟婉明.高速磁悬浮列车纵向及垂向气动力数值分析.中国铁道科学,2004,25(1):8-12
    [84]李人宪,翟婉明.磁悬浮列车横风稳定性的数值分析.交通运输工程学报,2001,11(1):99-101
    [85]李人宪,刘应清.高速列车紊态外流场的数值模拟研究.应用力学学报,2001,18(1):6-14
    [86]李人宪,刘应清.Pressure Distribution Characters of Flow Field around High-Speed Train.Journal of Southwest Jiaotong University,2000,8(2):114-122
    [87]gao G,J.Speed Regulation of Passenger Car Based on Side Wind Speed and Direction.International Conference on Transportation Engineering 2007,ICTE 2007,2007,p 455-460
    [88]中南大学.青藏铁路大风对行车安全影响研究报告.中南大学.2006
    [89]中南大学.强侧风条件下车体表面压力分布现场测试研究报告.中南大学,2006
    [90]乌鲁木齐铁路局.强侧风条件下列车运行安全性现场试验研究.乌鲁木齐铁路局.2006
    [91]池茂儒,张卫华,曾京,戴焕云,邬平波.空重车混编对列车稳定性的影响.交通运输工程学报,2007,7(2):10-13
    [92]洪华杰,李杰,张锰.EMS型磁浮列车系统滚动稳定性研究.控制工程,2006,13(4):314-316
    [93]曾京,邬平波.高速列车的稳定性.交通运输工程学报,2005,5(2):1-4
    [94]刘宏友,曾京.列车系统蛇行运动稳定性研究.铁道学报,2004,26(5):41-45
    [95]王开云,翟婉明,蔡成标.轮轨结构参数对列车运动稳定性的影响.中国铁道科学,2003,24(1):43-48
    [96]王开云,翟婉明,蔡成标.车辆在弹性轨道结构上的横向稳定性分析.铁道车辆,2001,39(7):1-5
    [97]杨文韬,刘作义,.新型行李车倾覆稳定性的计算.铁道货运,2006,(6):20-24
    [98]高广军,田红旗,张健.横风对双层集装箱平车运行稳定性的影响.交通运输工程 学报,2004,4(2):45-48
    [99]高广军,田红旗,姚松,刘堂红,毕光红.兰新线强侧风对车辆倾覆稳定性的影响.铁道学报,2004,26(4):36-40
    [100]严隽髦.车辆工程.北京:中国铁道出版社,2003
    [101]王成国.MSC.ADAMS/Rail基础教程-数码工程师系列丛书.北京:科学出版社.2005
    [102]李新立.货车摆动式转向架及侧架摆动角分析.铁道车辆.2002,40(8):1-3
    [103]邓建中.计算方法.西安:西安交通大学出版社,1998
    [104]田红旗.列车空气动力学.北京:中国铁道出版社,2007
    [105]刘凤华.加筋土式挡风墙优化研究.铁道工程学报,2006,(1):96-99
    [106]刘凤华.不同类型挡风墙对列车运行安全防护效果的影响.中南大学学报(自然科学版),2006,37(1):176-182
    [107]]姜翠香,梁习锋.挡风墙高度和设置位置对车辆气动性能的影响.中国铁道科学,2006,27(2):66-71
    [108]王福天.车辆系统动力学.北京:中国铁道出版社,1994.
    [109]罗文俊,雷晓燕.后轮对独立回转新型转向架曲线通过性能的研究.中国铁道科学,2006,27(2):93-97
    [110]王孔明,李芾,卜继玲.货车转向架悬挂参数与运行性能研究.铁道机车车辆,2005,25(5):4-9
    [111]池茂儒,张洪,黄其祯,虞大联.新型独立车轮低地板转向架曲线通过性能研究.铁道车辆,2005,43(3):1-6
    [112]舒信伟,谷传纲,梁习锋.具有流线型头部的高速磁浮列车气动性能数值模拟.上海交通大学学报,2006,40(6):1034-1037
    [113]金安帆,宋文萍.基于阻力气动特性计算的飞艇艇身外形研究.航空计算技术,2006,36(2):100-103
    [114]刘传超,张彬乾,孙静.大型载货车气动阻力计算与流场分析.汽车科技,2005,(4):24-26
    [115]傅强,金国栋.厢式货车的气动阻力及气动附加装置的应用.专用汽车,2002,(2):3-6
    [116]纪峻岭,赵致宽,潘可耕.气动阻力对燃料经济性的影响.交通科技与经济,2000,(3):25-26
    [117]姚曙光,许平.国产磁浮列车外形气动性能分析.铁道机车车辆,2007,2(3):25-26
    [118]许平,田红旗,姚曙光.流线型列车头部外形设计方法.中国铁道科学,2007,27(1):33-35
    [119]周丹,田红旗,鲁寨军.国产磁浮列车气动外形的优化.中南大学学报(自然科学版),2006,36(3):613-617
    [120]田红旗,周丹,许平.列车空气动力性能与流线型头部外形.中国铁道科学,2006,27(3):47-55
    [121]张健.高速列车最佳头部外形的进一步研究.电力机车与城轨车辆,2005,28(2):5-8
    [122]张经强,梁习锋.高速列车外形的气动性能数值计算和头部外形的改进.计算力学 学报,2003,20(5):631-635
    [123]刘堂红,田红旗,王承尧.不同磁浮列车外形的气动性能比较.国防科技大学学报,2006,28(3):94-99
    [124]中南大学.青藏高原铁路大风下行车安全保障系统研究报告.中南大学.2006
    [125]王厚雄,林荣生.列车的横风倾覆力矩特性.空气动力学学报,1983,(3):72-77
    [126]王厚雄,尹永顺,高注.车顶外形对车辆气动横向稳定性等气动特性的影响.空气动力学学报,1993,11(1):98-101
    [127]田红旗,苗秀娟,高广军.强侧风环境下棚车侧壁外形气动性能.交通运输工程学报,2006,6(3):6-9
    [128]刘堂红,田红旗,梁习锋,.“长白山”高速列车与货车交会试验研究.中国铁道科学,2006,27(3):56-61
    [129]赵宇,高波,张兆杰.隧道压力波的三维数值模拟.路基工程,2007,(4):12-14
    [130]刘洪涛,梅元贵,刘坤.高速铁路隧道长度对压缩波波前变形的影响研究.现代隧道技术,2007,44(3):6-10
    [131]骆建军,王梦恕,高波.列车进入隧道时产生涡流的数值模拟.北京交通大学学报,2007,31(1):63-68
    [132]岳楹沁,高波.横通道对隧道出口微压波影响的数值模拟研究.华东交通大学学报,2006,23(5):20-23
    [133]骆建军,王梦恕,高波.高速列车穿越有竖井隧道流场的特性研究.计算力学学报,2006,23(4):464-469
    [134]张兆杰,高波,王英学.磁悬浮列车穿越隧道引起的压力波传播规律研究.石家庄铁道学院学报,2005,18(4):10-13
    [135]王潇芹,梅元贵.高速铁路隧道压缩波问题的理论分析.甘肃科技纵横,2004,33(6):124-125
    [136]赵文成,高波,王英学.高速列车突入隧道引起的压缩波的理论研究。西南交通大学学报,2004,39(4):447-450
    [137]刘海兰,赵跃英,刘钟毅.从磁浮列车的噪声谱变化中观察多普勒效应.实验室研究与探索,2007,26(3):46-48
    [138]王学楷.兰新铁路提速改造工程挡风墙的设计与施工.路基工程,2005,(6):62-64
    [139]Tatsuo Noguchi.Minimizing the effect of natural disasters.Japan Railway & Transport Review.2000(3):52-59
    [140]盛其平.高速铁路上的侧风问题.铁道标准设计,2006,(4):19-21
    [141]曾广勇.兰新线大风地区挡风墙的勘测与设计.路基工程.1998,(6):24-29
    [142]徐春林,李涛,黄雪梅,蒋亚平,卢暾.基于人工免疫原理的天气预报系统.四川大学学报(工程科学版),2005,(37)5:125-129
    [143]段婧,苗春生.人工神经网络在梅雨期短期降水分级预报中的应用.气象,2005,(31)8:30-35.
    [144]吴清佳,张庆平,万健.遗传神经网络的智能天气预报系统.计算机工程,2005,31(14):176-179
    [145]靳冰凌,周官辉,郭魁英,孙日丁,牛红伟,芦阿咪.鹤壁市地质灾害预报预警系统. 河南气象,2005,(2):23-24
    [146]吴建生,金龙,农吉夫.遗传算法BP神经网络的预报研究和应用.数学的实践与认识,2005,35(1):83-88
    [147]胡江林,张德山,王志斌,陈正洪.北京地区未来1-3天昼夜气温预报模型.气象,2005,31(1):67-68
    [148]金龙.人工神经网络技术发展及在大气科学领域的应用.气象科技,2004,32(6):385-390
    [149]路志英,赵智超,郝为,林孔元,刘还珠.基于人工神经网络的多模型综合预报方法.计算机应用,2004,(24):50-52
    [150]赵翠光.人工神经元网络方法在沙尘暴短期预报中的应用.气象,2004,30(4):39-41
    [151]金龙,罗莹,李永华.长期天气的人工神经网络混合预报模型研究.系统工程学报,2003,18(4).:331-338
    [152]劳小青.神经网络在天气预报上的应用研究.广西气象,2001,22(2):23-25
    [153]夏昌浩,胡翔勇,刘涤尘.神经网络短期负荷预报模糊化改进.电力学报,2001,16(1):17-15
    [154]冯利华.神经网络在天气预报中的应用.信息与控制,2001,30(4):365-367
    [155]郭陵之.标准BP网络在降雨预报上的应用研究.计算机应用与软件,2000,(9):64-68
    [156]夏昌浩,向学军,何胜雄.基于MATLAB神经网络工具箱的电力系统负荷预报.武汉水利电力大学(宜昌)学报,2000,22(4).:304-308
    [157]王海兵,王涛,伍良富,樊宏伟,彭康.智能神经网络及其在天气预报中的应用.计算机工程与设计,1999,20(3):47-44
    [158]张立祥,陈力强,韩秀君,刘文明.辽宁神经网络降水预报系统.辽宁气象,1999,(1):16-19
    [159]崔春光,冯光柳,孙续刚.神经网络降水预报系统及其应用.湖北气象,1999,(3).:14-16
    [160]欧建平,李丽娟.人工神经网络在电力系统短期负荷预测中的应用.广东电力,1999,12(2):4-7
    [161]王成刚,吴宝俊,朱官忠.BP网络在鲁西南地区西南涡降水量级预报中的应用试验.气象科学,1999,19(2):157-165
    [162]冯民学,陈必云,袁瑞琴,韩桂荣,周曾奎.人工神经网络西太平洋副热带高压预报业务系统.气象科学,1998,18(4):396-402
    [163]蔡志慧,丁晓群,周玲.人工神经网络进行电力系统短期负荷预报的几个问题的探讨.河海大学学报(自然科学版),1998,26(4):87-87
    [164]朱定真,韩桂荣,周戎.人工神经网络与符号推理在江淮气旋预报中的应用研究.气象科学,1997,17(2):176-180
    [165]周曾奎,韩桂荣,朱定真,耿慧,陈必云,周戌.人工神经网络台风预报系统.气象,1996,(1):17-21
    [166]张承福.人工神经网络在天气预报中的应用研究.气象,1994,(20)6:43-47
    [167]]Barbounis,T.G.;Theocharis,J.B.Locally Recurrent Neural Networks for Long-term Wind Speed and Power Prediction.Neurocomputing,2006,69(4):466-496
    [168]]Fonte,P.M.;Silva,Goncalo Xufre;Quadrado,J.C.Wind Speed Prediction Using Artificial Neural Networks WSEAS Transactions on Systems.2005,4(4):379-383
    [169]Bechrakis,D.A.;Sparis,P.D.Wind Speed Prediction Using Artificial Neural Networks.Wind Engineering.1998,22(6):287-295
    [170]]Mohandes,Mohamed A.,Rehman,Shafiqur.Neural Networks Approach for Wind Speed Prediction.Renewable Energy.1998,13(3):345-354
    [171]陈豫英,陈晓光,马筛艳,马金仁,丁建军.精细化MOS相对湿度预报方法研究.气象科技,2006,34(2):143-146
    [172]周伟隆,陈往溪,肖巍.粤东海面冷空气强风的统计分析与预报.广东气象,2005,(4):20-22
    [173]杨林,潘启学,陈熹.用逐日滚动多元回归方法制作黔南地区中、短期温度预报.广西气象,2005,26(S1):157-160
    [174]罗晓丹,洪冠中.清远市区24小时低温灾害预报.广东气象,2003,(4):31-32
    [175]王迎春,孟燕军,赵习方.北京市空气污染业务预报方法.气象科技,2001,(4):47-46
    [176]朱桂林,牛叔超,李燕.多级降水概率回归集成预报方法.山东气象,2000,20(3):27-28
    [177]高荐.阿克苏机场夏季高温初步分析和统计预报.新疆气象,1999,(5)15-17
    [178]白爱娟,方建刚.陕西省分县滚动预报的方法与应用.陕西气象,1999,(2):1-2
    [179]张海清,袁文良,王宗贝.中长期天气预报方法探讨.河南气象,1999,(3):15-15
    [180]龙利民,饶传新,于大峰,付晓辉,仇苏宁.清江流域6-8月面平均雨量的影响因子与预报.湖北气象,1999,(2):17-19
    [181]王永忠,曾昭磐.混沌时间序列的局域线性回归预测方法.厦门大学学报(自然科学版),1999,38(4):636-640
    [182]沈如松,龙宝森,王钟.一个预报福建省北部地区台风大风的回归模式.海洋学报(中文版),1997,19(2):32-37
    [183]李丽.韶关市高温天气统计分析和ARIMA模型预测.广东气象,2004,(3):1-3
    [184]曹杰,董慧林.高维多门限时间序列模型在西太平洋副高预报中的应用.云南大学学报(自然科学版),2003,25(3):247-233
    [185]郭化文,尹爱芹.时间序列分析预测法在气象上的应用.泰山学院学报,2002.24(6):1-5
    [186]王晛,张少华.一种应用时间序列技术的短期电力负荷预测模型.上海大学学报(自然科学版),2002,8(2):133-136
    [187]李开乐.单站PTE逐日时间序列相似分析预报系统简介.广东气象,1999,(3):37-39
    [188]秦俊义.用时间序列的主成分叠加作大板地区年降水量预报.内蒙古气象,1995,(5):14-16
    [189]《公路桥梁抗风设计指南》编写组.公路桥梁抗风设计指南.北京:人民交通出版社,1996.
    [190]陈艾荣,黄鹏,项海帆.桥梁阵风风速系数研究.同济大学学报(自然科学版),1998, 26(2):241-245
    [191]邓自立.卡尔曼滤波与维纳滤波:现代时间序列分析方法.哈尔滨:哈尔滨工业大学出版社,2001
    [192]安鸿志等著.时间序列的分析与应用.北京:科学出版社,1983
    [193]戴葵.神经网络实现技术.长沙:国防科技大学出版社,1998
    [194]高隽.人工神经网络原理及仿真实例.北京:机械工业出版社,2003.7
    [195]蒋宗礼.人工神经网络导论.北京:高等教育出版社,2001.8
    [196]杨建刚.人工神经网络实用教程.杭州:浙江大学出版社,2001.1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700