用户名: 密码: 验证码:
空间结构智能稳定控制的基本理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间钢结构是目前应用最广泛的工程结构形式之一。由于钢材具有轻质高强的特性,截面比较开展纤细,所以常常造成结构发生失稳破坏,并且这种破坏一旦发生,结构将随之坍塌,导致灾难性后果。因此,研究空间钢结构的静/动力稳定问题具有重要的理论意义和实用价值。
     目前,避免或防止结构失稳的主要方法是增大杆件的截面面积或控制杆件的长细比等,是一种被动的设防方法。为此,本文基于结构控制的思想,提出了应用压电主元杆件进行空间钢结构智能稳定监测与控制的方法,进行了相应的理论和试验研究,主要工作包括:
     (1)根据压电材料的电力学特性,提出了一种适用于空间钢结构稳定监测与控制的压电主元杆件的构造方法,其主要原理是在普通杆件的适当部位集成压电堆以形成压电主元杆件,并将其集成在结构的关键部位,从而满足承载、监测和驱动的功能要求。
     (2)以本文提出的压电主元杆件为计算模型,研究了压电主元杆件的静力稳定控制性能,探讨了不同长度比、刚度比以及驱动力等因素对其控制性能的影响,同时还研究了压电主元杆件的动力稳定控制性能,分别考虑了突加荷载、简谐荷载以及地震作用等对其控制性能的影响,提出了相应的静/动力稳定控制理论分析模型。
     (3)采用自编的Matlab程序,以简谐荷载为例,研究了压电主元杆件考虑机电耦合作用和不考虑机电耦合作用时的动力稳定控制性能,并通过对其前三个主要动力失稳区域的跟踪,探讨了压电堆长度、压电堆夹持力以及外部激励特性等对其动力稳定控制性能的影响,得出了压电主元杆件动力稳定控制性能的一般规律。
     (4)进行了122根两种不同材料、17种长细比、2种类别的空间结构杆件稳定性能试验,同时进行了相应的理论分析,建立了根据结构构件显式响应进行失稳判别的双参数准则,得到了相应的简化计算公式。此外,还研究了压电主元杆件中压电堆的最优长度和最优位置等,设计、制作了2根试验用压电主元杆件,并进行了相应的稳定控制试验,检验了其静/动力稳定控制效果。
     (5)根据压电材料的机电耦合效应以及本文提出的失稳判别准则与稳定控制方程等,编写了能够进行波形发生、数据采集、阈值判别和驱动等多功能的Visual Basic程序,并且自主设计开发了能够适用于空间钢结构失稳监测和稳定控制的专用智能控制器,实现了结构状态数据采集与控制的同步进行。
     (6)根据优化控制理论,研究了空间结构设置压电主元杆件的优化分析理论模型,提出了相应的实用优化设计方法,即最大相对位移法,讨论了最大贡献率的计算方法和步骤以及压电主元杆件的最优设置位置等,并以此为依据设计、制作了2个含压电主元杆件的空间结构模型。
     (7)考虑压电主元杆件的机电耦合作用和非机电耦合作用,进行了2个空间结构模型无控和有控时的振动台试验,分别输入El-centro地震波和简谐波等,其中地震波激励时的峰值加速度为200gal-1200gal,简谐波激励时的驱动电压放大倍数分别为1倍、10倍、20倍和30倍等,以探讨压电主元杆件的稳定监测/控制规律和效果。
     (8)以非线性有限元方法为基础,考虑压电主元杆件的机电耦合作用和非机电耦合作用两种情况,分别对空间钢结构试验模型进行了X方向和Y方向,以及X-Y-Z三向同时激励时的动力时程分析,其结果与振动台试验结果吻合较好。
     (9)根据模型结构的动力时程分析结果,基于B-R准则和本文提出的双参数准则,分别进行了模型结构的动力失稳判别,得出了模型结构有控和无控时的动力失稳临界峰值加速度,计算结果精度较高,说明文中的双参数显式失稳准则判别结果可靠,可供工程应用时参考。
Space steel structure is one of the most widely used architectural forms for the time being. Because the steel is of lightweight yet of high strength, and has a slender section, as a result, what causes the failure of this kind of structure is not the lack of strength, but the occurrence of a special state of instability, that is to say the buckling of the structure. Due to the sudden failure of buckling for structure or member, once the buckling develops, the structure will immediately collapse and lead to disastrous consequences. So the research on the dynamic and static stability for space steel structure becomes rather theoretically significant and of practical value.
     Nowadays the principal methods to prevent buckling of the structure include the increase in area of cross-section and on the control of slenderness ratio, etc, which belong to a kind of passive fortification method. For this reason, based on the thought of control over structure, this paper puts forward a new method, which utilizes the piezoelectric pivot member bar to realize intelligent stability monitoring and control over the space steel structure; meanwhile, in this paper the corresponding theoretical and experimental researches are conducted, and the main work is as following:
     (1) First of all, according to the basic electro-mechanical behavior of piezoelectric material, this paper deals with details of pivot element bar appropriate to control over the buckling of skeleton steel structure; the bar is laminated from slices of piezoelectric ceramic; it is mechanically tandem and electrically parallel, thus which can realize a requirement for big driving force and displacement, and at the same time reduce the requirement for too high driving voltage. Therefore, both the requirement for bearing capacity of structure can be satisfied, and test and drive of structure can be synchronously implemented.
     (2) Taking the piezoelectric pivot element bar addressed here as a calculation model, this paper studies the static stability of the pivot element bar, analyzes influences of such factors as different length ratios, stiffness ratios, and driving forces etc, and then obtains laws of numerical relation between them; this paper also investigates the dynamic stability of the pivot element bar, considers the dynamic stability respectively under the action of shock load, simple harmonic load, and random load of earthquake, and furthermore proposes theoretical analysis models corresponding to the control of static and dynamic stability.
     (3) By the use of self-compiling Matlab program, taking the simple harmonic load as an example, this paper researches behaviors of dynamic stability control in considering and neglecting the electro-mechanical coupling of the pivot element bar, through tracking its former three zones of dynamic buckling, this paper investigates the influence of such factors on behaviors of dynamic stability control as the length of piezoelectric pile, the gripping force of piezoelectric pile and the characteristic of external excitation etc., and also obtains a general law of the behavior of dynamic stability control of the piezoelectric pivot element bar.
     (4) This paper performs an experimental research on 122 ordinary member bars with 17 slenderness ratios, comprising two different materials, makes a theoretical derivation, thus puts forward a double-parameter criterion of stability break based on explicit responses of the structural members, yields corresponding simplified calculation formulae. Additionally, this paper still studies the optimal length and placement of piezoelectric pile in the pivot element bar, designs and fabricates two piezoelectric pivot element bars for tests; meanwhile, the corresponding tests of stability control are conducted to verify the effectiveness of its static and dynamic stability control.
     (5) On the basis of the electro-mechanical coupling effect of piezoelectric materials, buckling criterion and stability control equations presented in this paper, the Visual Basic program is compiled, which integrates multifunction including wave generation, data acquisition, threshold judgment and driving function etc. In the meanwhile, the special intelligent controller suitable for the monitoring of buckling and stability control for space steel structure is designed and exploited, and realizes the synchronous data acquisition and control of structure states.
     (6) According to the theory of optimum control, this paper explores theoretical model of optimum analysis for space structure with the piezoelectric pivot element bars set, advances the corresponding practical optimum design method, that is the method of the maximum relative displacement, discusses the calculation method of the maximum contribution rate and procedures as well as the optimal placement of the piezoelectric pivot element bars; besides, this paper designs and fabricates 2 space structure models with the piezoelectric pivot element bar.
     (7) Considering the electro-mechanical and non-electro-mechanical coupling effect, this paper conducts shaking table tests on 2 space structures with or without control. Respectively input El-centro earthquake wave and simple harmonic wave etc. Here, the peak acceleration of earthquake excitation is 200gal-1200gal, the magnification times of driving voltage at the excitation of simple harmonic wave is respectively 1, 10, 20 and 30 so as to investigate stability monitoring/ stability control law and effectiveness of the piezoelectric pivot element bar.
     (8) Based on the nonlinear finite element method, considering the electro-mechanical and the non-electro-mechanical effect of the piezoelectric pivot element bar, this paper performs a dynamic time-history analysis under the excitation of X, Y and X-Y-Z axis. The analysis results are in a good agreement with experimental results of shaking table.
     (9) In accordance with the results of dynamic time-history analysis for the model structures, based on B-R criterion and the double-parameter criterion advanced here, this paper discriminates the dynamic stability break of model structures respectively, obtains critical peak accelerations of model structures with and without control. The calculation results have a high precision, which demonstrates the reliability of discriminant results obtained by the use of explicit double-parameter buckling criterion and these results can provide reference for engineering application.
引文
[1]Ahmed Ghobarah.Performance-based design in earthquake engineering state of development[J].Engineering Structures,2001(3):878-884
    [2]Ishikawa K and Kato S.Elastic-plastic dynamic buckling analysis of reticular domes subjected to earthquake motion[J].International Journal of Space Structures,1998(3):205-215
    [3]Kato S and Ueki T Mukaiyama.Study of dynamic collapse of single layer reticular domes subjected to earthquake motion and the estimation of statically equivalent seismic forces[J].International Journal of Space Structures,1997(3):191-204
    [4]沈世钊,支旭东.球面网壳结构在强震下的失效机理[J].土木工程学报,2005,38(1):11-20
    [5]王社良主编.抗震结构设计[M].武汉:武汉理工大学出版社,2007
    [6]陈绍蕃.钢结构稳定设计指南[M].北京:中国建筑工业出版社,1996
    [7]陈绍蕃.钢结构[M].北京:中国建筑工业出版社,1996
    [8]陈骥.钢结构稳定理论与设计[M].北京:科学出版社,2003
    [9]李忠学,沈祖炎.广义位移控制法在动力稳定问题中的应用[J].同济大学学报,1998,26(6):609-612
    [10]李忠学,沈祖炎等.杆系钢结构非线性动力稳定性识别与判定准则[J].同济大学学报,2000,28(2):148-151
    [11]周毅锋.杆系结构动力稳定性实用判别准则[D].上海:同济大学,2003
    [12]陈务军,董石麟,周岱等.不稳定空间展开折叠桁架结构稳定过程分析[J].工程力学,2000,17(5):1-6
    [13]戴国欣,王浩科,刘海鑫等.国产轧制H型钢梁整体稳定几何控制条件[J].钢结构,2004,19(4):62-64
    [14]郭海山.单层球面网壳结构动力稳定性及抗震性能研究[D].哈尔滨:哈尔滨工业大学,2002
    [15]钱宏亮.单层球面网壳在地震作用下的动力稳定性[D].哈尔滨:哈尔滨工业大学,2002
    [16]曲淑英.空间结构动力不稳定区域的确定[J].应用力学学报,1999,16(2):108-111
    [17]徐闻,孙建恒,姚洪涛等.单层柱面正交异型网壳结构的动力特性研究[J].河北农业大学学报,2005,28(1):83-87
    [18]Shiro,Kato,Shoji.Earthquake response reduction of recticular domes by using inclined bracing elements with stable stress-strain characteristics[C].Extended Abstracts of International Symposium on New Olympics New Shell and Spatial Structures,Beijing:China,2006
    [19]Shiro KATO,Shoji Mukaiyama.Estimation of static seimic loads for latticed domes supported by substructure frames installed with braces of deterioration due to buckling[C].Extended Abstracts of International Symposium on New Olympics New Shell and Spatial Structures,Beijing:China,2006
    [20]林智斌,钱若军.单层球壳结构在简单荷载作用下的动力稳定性分析[J].工程力学,2006,23(6):6-11
    [21]高伟.随机参数智能桁架结构主动控制[D].西安:西安电子科技大学,2001
    [22]Chateau X,Nguyen Q S.BucEing of elastic structures in unilateral contact with or without friction[J].Eur J Mech,A/Solids,1991,10(1):71-89
    [23]丁红丽.钢衬壳弹性和塑性热屈曲和后屈曲问题的理论分析和实验研究[D].北京:清华大学,1996
    [24]Martins J A C,Pinto da Costa A.Stability of finite-dimensional nonlinear elastic systems with unilateral contact and friction[J].International Journal of Solids and Structures,2000,37(18):124-135
    [25]Piero Villaggio.Buckling under unilateral constrained[J].Int J Solids Structures,1978.
    [26]Domokos G,Holmes,Royce B.Constrained Euler buckling[J].J of Nonlinear Science,1997.12(2):79-85
    [27]Chai H.The post-buckling behavior of a bi-laterally constrained column[J].Journal of the Mechanics and Physics of Solid,1998,21(2):66-78
    [28]Holmes P,Domokos G,Schmitt J,Szeberenyi I.Constrained Euler buckling:an interplay of computation and analysis[J].Computer Methods in Applied Mechanics and Engineering,1999,21(2):176-188
    [29]Piaut R H,Suherman S,Dillard D A.Deflections and buckling of a bent elastic in contact with a flat surface[J].International Journal of Solids and Structures,1979,45(2):376-382
    [30]陈在铁,范钦珊,彭栋军.能碍法研究点铆固钢衬壳局部热屈曲问题[J].苏州大学学报,2001,17(4):82-86
    [31]刘燕,范钦珊,李冰.点铆固壳环热屈曲能碍及后屈曲性态[J].清华大学学报,2002,42(11):1519-1523
    [32]郭英涛.关于限制失稳的研究进展[J].力学进展,2004,32(1):41-52
    [33]欧进萍.结构振动控制[M].科学出版社,2004
    [34]孙慷,张福学.压电学(上册)[M].北京:国防工业出版社,1984
    [35]王社良,苏三庆.压电类智能结构的力学特性及其工程应用[J],工业建筑,2000,30(3):43-46
    [36]陶宝祺.智能材料结构[M].北京:国防工业出版社,1999
    [37]杜善义,冷劲松,王殿富.智能材料系统和结构[M].北京:科学出版社,2001
    [38]Mason,W.P.Piezoelectricity,its history and applications[J].J.Acoust.Soc.Am.,1981,70(2):1561-1566
    [39]Cady WG.piezoelectricity[M].New York:Dover Pub,1964
    [40]Tiersten,H.F.Linear piezoelectric plate vibrations[M].New York:Plenum Press,1969
    [41]王社良,田鹏刚.压电功能材料在智能桁架结构稳定控制中的应用[C].西安国际建筑大会论文集,2006
    [42]李俊宝.智能桁架结构设计、建模与阻尼控制的理论和实验研究[D].南京:南京航空航天大学.1996
    [43]Allik,Hughes.Finite element method for piezoelectric vibration[J].Journal of Acoust Soc Am.,1994,(56):1782-1791
    [44]聂润兔.智能桁架结构静/动态分析与控制研究[D].哈尔滨:哈尔滨工业大学,1999
    [45]聂润兔,邵成勋,邹振祝.压电桁架结构动力学建模与振动控制[J].宇航学报,1998,19(4):8-14
    [46]Tzou H.S.,and Tseng C.I.Distributed Piezoelectric Sensor/Actuator Design for Dynamic Measurement/Control of Distributed Parameter System:A Piezoelectric Finite Element Approach.J.Sound & Vibration[J].1990,13(8):17-34
    [47]Ha S.K.,Keilers C.,and Chang F.K.,Finite Element analysis of Composite Structures Containing Distributed Piezoceramic Sensors and Actuators[J],AIAA,1992,30(3):772-780
    [48]HwangW S.,and Park H.C.Vibration Control of a Laminated Plate With Piezoelectric Sensor/Actuator:Finite Element Formulation and Modal Analysis[J].J.Intel.Mater.Sys.&Struc.1993,4(4):317-329
    [49]H wangW.S.,and Park H.C.Finite Element Modeling of Piezoelectric Sensors & Actuators[J].AIAA 1993,31(5):930-937
    [50]H wangW.S.,et al.Integration of Composite Structure Design with the Intelligent System Concept[J].AIAA 1993,17(6):3534-3539
    [51]Chandrashekhara K.,and Agarwal A.N.,Active Vibration Control of laminated Composite Plate Using Piezoelectric Devices:A Finite Element Approach[J].Journal of Intelligent Material Systems and Structures.1993,14(10):496-508
    [52]M.C.Ray,R.Bhatacharyya and B.Samanta.Static Analysis of An Intelligent Structures By the Finite Element Method[J].Computers & Structures,1994,52,(4):617-631
    [53]Crawleya,J.L.Fanson,B.K.Wad,杨一栋,肖征.自适应结构[J].振动、测试与诊断,1991,52(1):17-31
    [54]Crawleya,Craig A.Intelligent Material System-The Dawn of a New Materia Age.Journal of Intelligent Material Systems and Structures.1993,4(1):4-12
    [55]Chen,L.W.,Hwang,J.R.,Axiymmetric dynamic stability of transversely isotropic mindlin circular plates[J].,J.Sound Vib.,1988,12(1):307-315
    [56]Chen,L.W.,Hwang,J.R.Axiymmetric dynamic stability of polar orthotropic thick circular plates[J].J.SoundVib.,1988,12(5):555-563
    [57]何永超.直接力反馈控制原则下智能桁架结构的性能研究[D].上海:同济大学,2002
    [58]E.F.Crawley,K.B.Lazarus.Induced strain actuation of isotropic and anisotropic plates[J].AIAA Journal,1991,29(6):944-951
    [59]P.F.Pai,A.H.Nayfei,K.Oh.A nonlinear theory of laminated piezoelectric plates[J].AIAA Paper No.92-2407,Proceedings of the 33nd SDM Conference,Dallas:TX,577-585
    [60]岳林,刘福强.柔性智能桁架结构的独立模态空间控制方法的实验研究[J].机械科学与技术,2001,20(3):456-459
    [61]尚福林,王子昆,李中华.压电层合热屈曲问题的精确分析[J].固体力学学报,1997,18(1):1-10
    [62]王子昆,尚福林.压电层合板柱形屈曲[J].固体力学学报,1997,18(1):101-108
    [63]Shen,H.S.Postbuckling analysis of axially-loaded laminated cylindrical shells with piezoelectric actuators.[J].Eur.J.Mech.A/Solids 2001,20:1007-1022
    [64]Shen,H.S.Thermal postbuckling analysis of laminated cylindrical shells with piezoelectric actuators[J]..Composite Struct,2002,55:13-22
    [65]Cheng,C.Q.,Shen,Y.P.Stability analysis of piezoelectric circular cylindrical shells[J].ASME J.Appl.Mech,1997,64:847-852
    [66]Chert,C.Q.,Shen,Y.P.,Tian X.G.Variational principles of non-liners piezothermoelastic media[J].Acta Mech.Solida Sinica,1998,11:12-27
    [67]田晓耕.支架的振动控制和压电板的屈曲及后屈曲研究[D].西安:西安交通大学,1998
    [68]Bodner,V.A.,Stability of plates under the action of periodic force,Prikladnaya Matematika I Mekhanika,1938,2:87-94(in Russian)
    [69]Tani,J.,Doki.H.,Dynamic stability of orthotropic annular plate under pulsating radial loads[J].J.Acoustic.Soc.Am.,1982,72:845-850
    [70]Bert,C.W.,Birman,V.,Dynamic instability of shear deformable antisymmetric angle-ply plates[J].Int.J.Solids Struct.,1987,23:1053-1061
    [71]Chen,L.W.,Hwang,J.R.,Doong,J.L.,Axiymmetric dynamic stability of thick annular plates based on a high-order plate theory[J].J.Sound Vib.,1989,130:425-437
    [72]Chen,L.W.,Hwang,J.R.,Axiymmetric dynamic stability of transversely isotropic mindlin circular plates[J].J.Sound Vib.,1988,121:307-315
    [73]Chen,L.W.,Hwang,J.R.Axiymmetric dynamic stability of polar orthotropic thick circular plates[J].J.Sound Vib.,1988,125:555-563
    [74]Krizhevsky,G.,Stavsky,Y.,Refined dynamic stability theory of laminated isotropic circular plates[J].ASME J.Appl.Mech.,1998,65..334-340
    [75]Ishihara,Noda A.Stability of finite-dimensional nonlinear elastic systems with unilateral contact and friction[J].International Journal of Solids & Structures,2000,37(18)..226-231
    [76]Tylikowski,A.,Frischmuth,K.Stability and stabilization of circular plate parametric vibrations[J].Int.J.Solids Struct.,2003,40..5187-5196
    [77]Bolotin,V.V.The Dynamic Stability of Elastic Systems[M].San Francisco..Holden-Day,1964
    [78]武际可,苏先越.弹性系统的稳定性[M].北京:科学出版社.1991
    [1]张福学.现代压电学(上)[M].北京:科学出版社,2001
    [2]程耕国.压电材料新应用[M].武汉:武汉水利电力大学出版社,1998
    [3]杜善义等.智能材料系统和结构[M].北京:科学出版社,2001
    [4]王社良,田鹏刚.压电功能材料在智能桁架结构稳定控制中的应用[C].西安国际建筑大会论文集,2006
    [5]Wang She-liang,Tian Peng-gang,Zhu Jun-qiang.Study on the basic mechanical performance of primary active spar member included piezoelectric material[J].建筑科学与工程学报,2007,4
    [6]李俊宝,吕刚.智能桁架结构振动控制中的主动构件的研究:(一)压电主动构件设计[J].压电与声光,1998,(2):89-94
    [7]李俊宝,吕刚.智能桁架结构振动控制中的主动构件的研究:(二)压电主动构件的实验[J].压电与声光,1998,(3):180-185
    [8]高伟,陈建军,马洪波.随机参数智能桁架结构振动控制中主动杆件的优化配置[J].振动工程学报,2003,(3):89-94
    [9]S.R铁摩辛柯,J.M.盖莱著,张福范译.弹性稳定理论[M].北京:科学出版社,1965
    [10]陈骥.钢结构稳定理论与设计[M].北京:科学出版社,2001
    [11]徐芝纶.弹性力学简明教程[M].北京:人民教育出版社,1980
    [12]凌复华等.常微分方程数值方法及其在力学中的应用[M].重庆:重庆大学出版社,1990
    [13]Timoshenko,S.,Einige stabilitaE tsprobleme der elastizitaE tstheorie[J].Z.Math.Physik,1910,58(2):337-385
    [14]Lorenz R.Die nicht Achensymmetrische Knickung dunnwandiger Hohlzylinder[J].Physikal Zeitschrift,Bd.1911,12(7):241-260
    [15]R.Zoelly,Ueber ein Krichungra Problem und der Kugclschale[D].Switzerland,1915
    [16]Karman V,Tsien H S.The buckling of thin cylinders under axial compression[J].J Aeron Soc,1941,8:303-313
    [17]Donnell L.A new theory for the buckling of thin cylinders under axial compression and bending[J].TransAm Soc Mech Engs,1934,56:795-806
    [18]Koiter W T.On the Stability of Elastic Equilibrium[D](in Dutch).Delft,Amsterdam,1945,English transformation issued as NASA TTF10,1967,833-842
    [19]J.M.T.,Thompson.Basic principles in the general theory of elastic stability[J]J.Mechanics and Physics of Solids,1963,11:13-20
    [20]IEEE.IEEE Standard on piezoelectricity,IEEE/ANSI Std.1978
    [1]鲍罗金,符·华著.林砚田等译.弹性体系的动力稳定性[M].北京:高等教育出版社,1960
    [2]刘光栋,罗汉泉.杆系结构稳定[M].北京:人民交通出版社,1988
    [3]杨平,孙兰.偏心周期荷载作用下薄壁杆件的动力稳定性[J].武汉交通大学学报,1998.22(4):403-406
    [4]杨岳民,刘伯权.杆系结构的动力几何非线性分析[J].地震工程与工程振动,1998.18(1):22-28
    [5]张其林等.任意激励下弹性结构的稳定性分析[J].土木工程学报,1998.31(1):26-32
    [6]傅衣铭,宋丽霞.开口薄壁杆件的非线性动力稳定分析[J].湖南大学学报,1998.25(4):9.14
    [7]孙强.变截面杆的动力稳定性研究[J].四川建筑科学研究,1999.94(2):9-14
    [8]孙强.直杆的动力稳定性分析(1)[J].安徽建筑工业学院学报,1996.4(1):38-43
    [9]孙强.直杆的动力稳定性分析(2)[J].安徽建筑工业学院学报,1996.4(2):14.18
    [10]吴亚平等.考虑重力条件下变截面圆形杆件的弹性稳定计算[J].工程力学增刊,1999,604-608
    [11]马乾瑛.拟小波法进行杆件结构的动力稳定性研究[D].西安:西安建筑科技大学,2007
    [12]杨茀康.结构动力学[M].北京:人民交通出版社,1987
    [13]S.E铁摩辛柯,J.M.盖莱著,张福范译.弹性稳定理论[M].北京:科学出版社,1965
    [14]陈骥。钢结构稳定理论与设计[M].北京:科学出版社,2001
    [15]徐芝纶.弹性力学简明教程[M].北京:人民教育出版社,1980
    [16]Timoshenko,S.,Einige stabilita~ tsprobleme der elastizitaE tstheorie[J].Z.Math.Physik,1910,58(2):337-385
    [17]Lorenz R.Die nicht Achensymmetrische Knickung dunnwandiger Hohlzylinder[J].Physikal Zeitschrift,Bd.1911,12(7):241-260
    [18]R.Zoelly,Ueber ein Krichungra Problem und der Kugctschale[D].Switzerland,1915
    [19]Karman V,Tsien H S.The buckling of thin cylinders under axial compression[J].J Aeron Soc,1941,8:303-313
    [20]Donnell L.A new theory for the buckling of thin cylinders under axial compression and bending[J].Trans Am Soc Mech Engs,1934,56:795-806
    [21]Koiter W T.On the Stability of Elastic Equilibrium[D](in Dutch).Delft,Amsterdam,1945,English transformation issued as NASA TTF10,1967,833-842
    [22] J.M.T., Thompson. Basic principles in the general theory of elastic stability[J] J. Mechanics and Physics of Solids, 1963, 11: 13-20
    [23] Baumhauer, J.C. and Tiersten, H.F., Nonlinear electroelastic equations for small fields superposed on a bias[J]. J.Acoust. Soc. Am., 1973, 54: 1017-1033
    [24] Chen W.Q., Ding H.J. and Liang J. The exact elasto-electric field of a rotating piezoelectric spherical shell with a functionally graded property[J]. Int. J. Solids and Struct, 2001, 38: 7015-7027
    [25] Chen W.Q. and Ding H.J. Bending of functionally graded piezoelectric rectangular plates[J]. Acta Mechanica Solida Sinica, 2000, 13(4): 312-319
    [26] Soldatos, K. P. Hadjigeorgiou, V. P. Three-dimensional solution of the vibration problem of homogeneous isotropic cylindrical shells and panels. J. Sound Vib., 1992, 137: 369-384
    [27] Siao, J. C. T., Dong, S. B., Song, J., Frequency spectra of laminated piezoelectric cylinders[J].ASMEJ. Vib.Acoust., 1994, 116: 364-370
    [1]S.E铁摩辛柯,J.M.盖莱著,张福范译.弹性稳定理论[M].北京:科学出版社,1965
    [2]Edward L.Wilson.Three-Dimensional Static and DynamicAnalysis of Structures[J](Third Edition).Computers and Structures,he.Berkeley,California,USA.Reprint January 2002
    [3]陈绍蕃.钢结构稳定设计指南[M].北京:中国建筑工业出版社,1996
    [4]陈绍蕃.钢结构[M].北京:中国建筑工业出版社,1996
    [5]陈骥.钢结构稳定理论与设计[M].北京:科学出版社,2003
    [6]童根树.钢结构的平面内稳定[M].北京:中国建筑工业出版社,2005
    [7]刘光栋,罗汉泉.杆系结构稳定[M].北京:人民交通出版社,1988
    [8]荆广生,孙锁泰著.材料力学[M].南京:东南大学出版社,1994
    [9]刘鸿文.材料力学(第三版)[M].北京:高等教育出版社,1992
    [10]李鹏松,吴柏生.Euler杆大挠度屈曲的解析逼近[J].力学与实践,2003,25(6):27.28
    [11]Madhow U.MMSE interference suppression for dsspread spectrum CDMA[J].EEE.Trans.on Commu,1994,42(2):272-277
    [12]Duel Hallen A.Decorrelatingd decision-feedback multiuser detector for synchronous code division multiple access channels[J].IEEE Trans.Commuth 1993,41(2):285-290
    [13]张仲毅.临界压力下压杆挠度的分析讨论[J].力学与实践,1995,17(4):73-74
    [14]朱华满.屈曲杆最大挠度近似公式的再改进[J].力学与实践,1994,16(1):60-61
    [15]陈家骏.关于细长压杆稳定问题的注记[J].力学与实践,1994,16(1):62
    [16]陈家骏.关于细长压杆稳定性问题的讨论[J].力学与实践,1997,19(5):65.67
    [17]Holden JT On the finite deflection ofthin beams.Int J Solids Structures,1972,8:1051-1055
    [18]张仲毅.细长压杆临界挠度的一级非线性解[J].力学与实践,1995,(17):67-68
    [19]张仲毅.细长压杆临界挠度确定性的简单解释[J].力学与实践,1992,14(5):60-62
    [20]Bert CW,Malik M.Differential quadrature method in computional mechanics.Appl Mech Rev,1996,49(1):1-26
    [21]谈梅兰.压杆临界力实验方法[J].力学与实践,2001,23(2):66-67
    [22]Timoshenko SP,Gere JM.Theory of Elastical Stability.MCGraw-Hill,1961
    [23]HASOFER A H.Exact and invariant Second Moment Format[J].Journal of Mechanical Division ASCE,1974,100:111-121
    [24]鲍罗金,符·华著,林砚田等译.弹性体系的动力稳定性[M].北京:高等教育出版社,1960
    [25]李杰,郑凯锋.考虑大挠度效应及初偏心的压杆稳定性分析[J].昆明理工大学学报,2005,30(4)61-64
    [26]Bolotin,V.V.The Dynamic Stability of Elastic Systems[M].San Francisco:Holden-Day,1964
    [27]武际可,苏先越.弹性系统的稳定性IMl.北京:科学出版社.1991
    [28]陈占清,孙明贵,李天诊.从非线性动力学的视角认识细长压杆稳定性[J].力学与实践,2005,27(2):40-43
    [29]Mazzolani F M.Aluminum Alloy Structure[M].Boston:Pitman,1985
    [30]Timoshenko SP.Strength of Materials[M].Van Nostrand Company,1957
    [31]Verdu S.Multiuser detection[M].Cambridge,U.K:Cambridge University Press,1998:344-368
    [32]Lupas R,Verdu S.Linear multiuser detectors for synchronous code division multiple access channels[J].IEEE Trans.Inform.Theory,1989,35(1):123-136
    [33]Lupas R,Verdu S.Near-far Resistance of multiuser detectors in asynchronous channels[J].IEEE Trans.Commun,1990,38(4):496-508
    [34]王安稳.弹性压应力波下直杆动力失稳的机理和判据[J].力学学报,2001,33(6):812-820
    [35]熊仲明,王社良主编.土木工程结构试验[M].北京:中国建筑工业出版社,2006
    [36]姚振纲,刘祖华.建筑结构试验[M].上海:同济大学出版社,1996
    [1]王社良,田鹏刚.压电功能材料在智能桁架结构稳定控制中的应用[C].西安国际建筑大会论文集,2006
    [2]高伟.随机参数智能桁架结构主动控制[D].西安:西安电子科技大学,2001
    [3]陈常青.压电类机敏结构力学分析的基本理论及其应用[D].西安:西安交通大学,1997
    [4]李俊宝.智能桁架结构设计、建模与阻尼控制的理论和实验研究[D].南京:南京航空航天大学,1996
    [5]沈世钊,陈昕.网壳结构稳定性[M].科学出版社,1999
    [6]秦荣.智能结构力学[M].科学出版社,2004
    [7]王社良.抗震结构设计[M].武汉:武汉理工大学出版社,2007
    [8]王刚.带缝空心R.C.剪力墙结构试验研究[D].西安:西安建筑科技大学,2005
    [9]郝文化.ANSYS7.0实例分析与应用[M].北京:清华大学出版社,2001
    [10]张朝晖.ANSYSS.0结构分析及实例解析[M].北京:机械工业出版社,2006
    [11]陈绍蕃.钢结构稳定设计指南[M].北京:中国建筑工业出版社,1996
    [12]陈绍蕃.钢结构[M].北京:中国建筑工业出版社,1996
    [13]陈骥.钢结构稳定理论与设计[M].北京:科学出版社,2003
    [14]熊仲明,王社良主编.土木工程结构试验[M].北京:中国建筑工业出版社,2006
    [15]姚振纲,刘祖华.建筑结构试验[M].上海:同济大学出版社,1996
    [16]于铁强.智能结构机电耦合最优控制[D].北京工业大学,2004
    [17]Tani,J.,Doki.H.,Dynamic stability of orthotropic annular plate under pulsating radial loads[J].J.Acoustic.Soc.Am.,1982,72:845-850
    [18]Bert,C.W.,Birman,V.,Dynamic instability of shear deformable antisymmetric angle-ply plates[J].Int.J.Solids Struct.,1987,23:1053-1061
    [19]Chert,L.W.,Hwang,J.R.,Doong,J.L.,Axiymmetric dynamic stability of thick annular plates based on a high-order plate theory[J].J.Sound Vib.,1989,130:425-437
    [20]Chen,L.W.,Hwang,J.R.,Axiymmetric dynamic stability of transversely isotropic mindlin circular plates[J].J.Sound Vib.,1988,121:307-315
    [21]Chert,L.W.,Hwang,J.R.Axiymmetric dynamic stability of polar orthotropic thick circular plates[J].J.Sound Vib.,1988,125:555-563
    [22]李忠学,沈祖炎.广义位移控制法在动力稳定问题中的应用[J].同济大学学报,1998,26(6):609-612
    [23]李忠学,沈祖炎等.杆系钢结构非线性动力稳定性识别与判定准则[J].同济大学学报,2000,28(2):148-151
    [24]周毅锋.杆系结构动力稳定性实用判别准则[D].上海:同济大学,2003
    [25]陈务军、董石麟、周岱等.不稳定空间展开折叠桁架结构稳定过程分析[J].工程力学,2000,17(5):1-6
    [26]戴国欣、王浩科、刘海鑫等.国产轧制H型钢梁整体稳定几何控制条件[J].钢结构,2004,19(4):62-64
    [27]Ishihara,Noda A.Stability of finite-dimensional nonlinear elastic systems with unilateral contact and friction[J].International Journal of Solids & Structures,2000,37(18):226-231
    [28]Tylikowski,A.,Frischmuth,K.Stability and stabilization of circular plate parametric vibrations[J].Int.J.Solids Struct.,2003,40:5187-5196
    [29]Bolotin,V.V.The Dynamic Stability of Elastic Systems[M].San Francisco:Holden-Day,1964
    [30]郭海山.单层球面网壳结构动力稳定性及抗震性能研究[D].哈尔滨:哈尔滨工业大学,2002
    [31]边兆伟.钢结构智能稳定控制的理论研究[D].西安:西安建筑科技大学,2007
    [32]Krizhevsky,G.,Stavsky,Y.Refined dynamic stability theory of laminated isotropic circular plates[J].ASME J.Appl.Mech.,1998,65:334-340
    [1]沈士钊.网壳结构动力稳定性[J].建筑结构(增刊),2004,1-9
    [2]郭海山.单层球面网壳结构动力稳定性及抗震性能研究[D].哈尔滨:哈尔滨工业大学,2002
    [3]鲍罗金,符·华著,林砚田等译.弹性体系的动力稳定性[M].北京:高等教育出版社,1960
    [4]刘光栋,罗汉泉.杆系结构稳定[M].北京:人民交通出版社,1988
    [5]郝文化主编.ANSYS7.0实例分析与应用IN].北京:清华大学出版社,2001
    [6]张朝晖主编.ANSYS8.0结构分析及实例解析[M].北京:机械工业出版社,2006
    [7]李黎明著.ANSYS有限元分析实用教程IN].北京:清华大学出版社,2005
    [8]李权著.ANSYS在土木工程中的应用[M].北京:人民邮电出版社,2005
    [9]白葳,喻海良著.通用有限元分析ANSYS8.0基础教程[M].北京:清华大学出版社,2005
    [10]Martins J A C,Pinto da Costa A.Stability of finite-dimensional nonlinear elastic systems with unilateral contact and friction[J].International Journal of Solids and Structures,2000,37(18):124-135
    [11]Piero Villaggio.Buckling under unilateral constrained[J].Int J Solids Structures,1978,11(18):134-143
    [12]祝效华,余志祥著.ANSYS高级工程有限元分析范例精选[M].北京:电子工业出版社,2004
    [13]Domokos G,Holmes,Royce B.Constrained Euler buckling[J].J of Nonlinear Science,1997.12(2):79-85
    [14]Chai H.The post-buckling behavior of a bi-laterally constrained column[J].Journal of the Mechanics and Physics of Solid,1998,21(2):66-78
    [15]唐家祥,王仕统,裴若娟著.结构稳定理论[M].北京:中国铁道出版社,1989
    [16]夏志斌,潘有昌著.结构稳定理论[M].北京:高等教育出版社,1988
    [17]Holmes P,Domokos G,Schrnitt J,Szeberenyi I.Constrained Euler buckling:an interplay of computation and analysis[J].Computer Methods in Applied Mechanics and Engineering,1999,21(2):176-188
    [18]Piaut R H,Suherman S,Dillard D A.Deflections and buckling of a bent elastic in contact with a flat surface[J].International Journal of Solids and Structures,1979,45(2):376-382
    [19]赵经文王宏钰著.结构有限元分析[M].北京:科学出版社,2001
    [20]吴家龙著.弹性力学[M].北京:高等教育出版社,2001
    [21]黄国权著.有限元法基础ANSYS应用[M].北京:机械工业出版社,2004
    [22]Ng,T.Y.,Lam,K.Y.,Liew,K.M.,Reddy,J.N.,Dynamic stability analysis of functionally graded cylindrical shells under periodic axial loading.Int.J.Solids Struct.,2001,38..1295-1309
    [23]Feldman,E.,Aboudi,J.,Buckling analysis of functionally graded plates subjected to uniaxial loading,Composite Structures.,1997,38..29-36
    [24]Najafizadeh,M.M.,Eslami,M.R.,Buckling analysis of circular plates of functionally graded materials under uniform radial compression,Int.J.Mech Sci..,2002,44..2479-2493

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700