用户名: 密码: 验证码:
若尔盖地区碳硅泥岩型铀矿床成矿流体成因和成矿模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文依托中国核工业地质局重点生产中科研课题“若尔盖铀矿田富大矿体定位条件和扩大方向研究”项目的支持,在总结和深入分析前人已有大量资料的基础上,以具有代表性意义的510—1铀矿床为重点研究对象,详细研究了含矿岩系的沉积体系特征,通过对与成矿作用密切相关的热液矿物——方解石、石英、黄铁矿等矿物的微量元素、稀土元素、稳定同位素的特征进行分析和对比,查明了该区铀矿床成矿流体的来源、性质、运移演化规律和矿质沉淀富集的机理,并建立了矿床的地幔流体成矿模式,取得了以下创新性成果和认识:
     1、首次发现510—1铀矿床的脉石矿物(石英、方解石)具有“上酸下碱”的垂直分带规律。矿床上部(1中段)为“酸帽”,主要发育石英脉;中部(2—4中段)为“酸碱共生带”,石英脉与方解石脉均较发育;而下部(5—6中段及以下)则为“碱性基底”,主要发育方解石脉,未见石英脉。研究表明510—1铀矿床第5中段附近(距现今地表深约200m)为“酸碱分离”的地球化学界面,亦是铀发生突发成矿作用产生高度富集的部位。
     2、详细研究了若尔盖铀矿田含矿岩系的宏观产状和显微岩石学特征,认为该铀矿田的含矿地层岩石类型主要有硅质岩、灰岩、板岩三个大类。三类岩石的宏观和微观特征表明若尔盖铀成矿区下志留统沉积环境为陆棚环境,海平面的升降使成矿区沉积环境在内陆棚—外陆棚之间变换。在剖面结构上,表现为砂质板岩—粉砂质板岩—泥板岩(泥晶灰岩)—页岩—硅质岩的韵律叠置,这种机械物理性质迥异的多种岩石组合正是形成碳硅泥岩型铀矿极为有利的岩石组合,其实质是为铀的成矿提供了十分有利的地质环境和赋存空间。
     3、研究了与成矿作用密切相关的热液矿物——方解石、石英、黄铁矿的微量元素和稀土元素的地球化学特征,结果表明方解石、石英、黄铁矿具有相似的微量元素组成特征,相对富含Sr、Zr、Ba、Zn、U、Ni、Cr等元素,由矿床浅部向深部,总体上方解石微量元素的含量明显增加,其中第5中段界面附近为多种微量元素的富集地带,与矿床“酸碱分离”的界面一致,反映该界面为一重要的流体成矿地球化学界面。相关性分析表明成矿元素U与Zr、Ta、Co、Ni等深源元素呈显著的正相关,暗示成矿流体来源于深部。方解石、石英的稀土元素组成特征和配分模式均说明成矿流体主要来源于地幔,其中δCe、δEu值对氧化还原环境具有指示性意义。
     4、采用新的方法和现代成矿理论,对所获得的C、S、H、O稳定同位素资料进行了全面和系统的总结,按照不同成矿阶段、不同成因类型的分类原则进行了深入探讨,结果表明成矿流体来源于深部岩浆或地幔,但在成矿晚期有大气降水的加入。
     5、初步探讨了地幔流体与铀成矿作用的关系,认为矿化剂∑CO_2和热源来源于地幔,是地壳拉张和深大断裂活动导致部分熔融地幔上涌,与下地壳产生壳幔混熔作用,在混熔过程中提供热量和向地壳“去气”释放∑CO_2;U主要来源于壳幔混熔形成的壳幔混合流体和流体上升途经的围岩;H_2O主要来源于地幔流体、地幔流体上升途经的围岩,在成矿晚期有部分来源于大气降水。富∑CO_2、富U的成矿热液上升到压力突然降低的部位,产生减压沸腾而突发沉淀形成铀矿床,并掘此建立了矿床的地幔流体成矿模式。
     上述成果和认识突破了中国碳硅泥岩型铀矿成矿的传统理论,对若尔盖地区今后的找矿和预测工作具有十分重要的指导意义,同时对中国其它地区碳硅泥岩型铀矿的找矿和勘查工作亦具有新的启迪作用。
This dissertation was funded by key production research projects of China Nuclear Industry Geological Survey,which named "The Study on Locating Conditions and Expanding Direction of Rich and Giant Ore Body in Zoige Uranium Ore Field" Regarding the typical 510-1 uranium deposit as research subject,the author studied detailedly the sedimentary system characteristics of ore-bearing rock series basing on summarizing and deeply analyzing of abundant references from previous researchers. Through the analysis and comparison of trace elements,rare earth elements and isotopes of hydrothermal minerals such as calcite,quartz and pyrite which are intensely related with mineralization,the sources,nature,the transportation and evolution of ore-forming fluid in uranium deposit were explored,and the mechanism of mineral deposition and enrichment was found out.The author also set up a mantle fluid ore-forming model of ore deposit.The innovative achievements and views are as follows:
     1.The author found for the first time that the vertical zoning of gangue minerals (quartz and calcite)in 510-1 uranium ore deposit showed an "acid top and alkaline bottom" rule.Quartz veins were developed on the top of ore deposit(level No.1),both of quartz veins and calcite veins were developed in the mid(level No.2 to No.4),while on the bottom of ore deposit(level No.5 to No.6 and below),only calcite veins were developed but no quartz veins were found.The research indicated that there existed an "acid and alkali isolation" geochemical interface nearby No.5 level of 510-1 uranium deposit(200m or so below present earth surface),which is also a high concentration position for uranium outburst of mineralization.
     2.Studying detailedly the macroscopic occurrence and microscopic petrology characteristics of the ore-bearing rock series in Zoige uranium ore field,the author considered that in this ore field,the ore-bearing strata rock types can be divided into three major species such as silicalite,limestone and slate.The macroscopic and microscopic characteristics of the three kinds rocks indicate that the sedimentary environment of Lower Silurian in Zoige uranium ore field is continental shelf,with alternation of the inner and outer continental shelf resulted from the growing and falling of sea level in the study area.The section structure shows a rhythm overlap of sandy slate-silty slate-argillite (micrite)-shale-silicalite.This combination of various rocks with marked difference in mechanism physical nature is a specially favorable combination for the formation of carbonaceous-siliceous-argillitic rock type uranium deposit,which is the most significant on providing quite favorable geologic environment and existence space for uranium mineralization.
     3.The author studied the geochemical characteristics of trace elements and rare earth elements of hydrothermal minerals such as calcite,quartz and pyrite which are intensely related with mineralization,the results showed that calcite,quartz and pyrite possess similar trace elements composing,they concentrated comparatively elements such as Sr, Zr,Ba,Zn,U,Ni,and Cr.From superficial to deep of ore deposit,the content of trace elements in calcite increased significantly.There existed a multi trace elements concentration belt nearby No.5 level interface consistent with "acid and alkali isolation" interface of ore deposit,which showed it is an important fluid ore-forming geochemical interface.Correlation analysis manifested there existing obviously positive correlation between ore-formation element U and deep-source elements like Zr,Ta,Co and Ni,which implied the deep-source ore-formation fluid.The composing and distribution patterns of rare earth elements in calcite and quartz showed the ore-forming fluid mostly came from mantle,furthermore,the values ofδCe andδEu can be used in the indication the change of oxidation and reducing environment.
     4.The author applying new way and present ore-forming theory,baseing on entire and systematic summarizing for stable isotopes of C,S,H and O,discussed thoroughly according different ore-forming phases and classification rule of different genetic types. The results reflected that ore-forming fluid came from deep magma or from mantle,while atmospheric water entered in late ore-forming period.
     5.The relationship between mantle fluid and U ore-forming was studied preliminarily,according to the results,the author considered theΣCO_2 of mineralizer and heat source came from mantle,which is because upwelling mantle forced by crustal extention and deep-seated faulting produced melt blending with lower crust,during this process,mantle provided the heat and releaseΣCO_2 to crust through outgassing.U mainly came from mantle-curst fluid formed by mantle-curst melt blending and the wall rock during fluid uplift.H_2O mainly generated from mantle fluid and the wall rock during mantle fluid uplift,and partly from atmospheric water in the late period of ore-forming. When ore-forming hydrothermal fluid concentrated withΣCO_2 and U moved up to the positon of pressure descended suddenly,outburst deposition of forming Uranium deposit occurred under decompressing boiling.According this,mantle fluid ore-forming model of ore deposit was founded.
     These achievements and views the author obtained brokethrough inland traditional theory on ore-forming of carbonaceous-siliceous-argillitic rock type uranium deposit, they possess extremely important directing significance for ore exploration and prediction in Zoige region from now on,meanwhile,they have new edification on exploration and survey in other inland carbonaceous-siliceous-argillitic rock type uranium deposit.
引文
1、北京铀矿地质研究所.碳硅泥岩型铀矿床文集[C].北京:原子能出版社,1982
    2、毕献武,胡瑞忠.哀牢山金矿带成矿流体稀土元素地球化学[J].地质论评,1998,44(3):264-269.
    3、陈毓川主编.中国主要成矿区带矿产资源远景评价[M].北京:地质出版社,1999.15-69、421-450.
    4、陈友良,赵宝光,张庸,罗一月.西南地区铀资源勘查部署规划[R].核工业280研究所地质报告,2004.
    5、陈友良.西南地区铀资源现状与找矿前景展望[J].铀矿地质,2004,20(1):1-3.
    6、德勒达尔.塔里木盆地西部石炭(?)叠纪沉积体系及沉积相[J].新疆石油地质,1996,17(4):350-351.
    7、杜乐天.迎接铀矿找矿新高潮--华南二轮找矿势在必行[J].铀矿地质,2005,21(3):146-151.
    8、杜乐天.硅谜与碱盲--近代热液成矿学的两大暗区[J].铀矿地质,1990,6(6):338-348.
    9、杜乐天.地幔流体与成矿[C].深部构造作用与成矿,北京:地质出版社,1999,109-114.
    10、杜乐天.地幔流体与玄武岩及碱性岩岩浆成因[J].地学前缘,1998,5(3):145-155.
    11、杜乐天.碱交代地球化学原理[J].中国科学(D),1986,第1期:81-90.
    12、杜乐天.幔汁(HACONS)流体的重大意义[J].国外铀金地质,1989,第3期:1-7.
    13、杜乐天.碱交代成矿作用的地球化学共性和归类[J].矿床地质,1983,第2期:33-41.
    14、邓平,沈渭洲,凌洪飞,等.地幔流体与铀成矿作用:以下庄矿田仙石矿床为例[J].地球化学,2003,32(6):520-528.
    15、甘肃省地质局.中华人民共和国区域地质测量报告(1:200000,碌曲幅)[M].甘肃省地质局第一区域测量大队,1973.
    16、辜学达、刘啸虎.四川省岩石地层[M].中国地质大学出版社,1997,51-110.
    17、黄净白,黄世杰,张金带,等.中国铀成矿带概论[M].中国核工业地质局,2005.
    18、黄净白,黄世杰.中国铀资源区域成矿特征[J].铀矿地质,2005,21(3):129-138.
    19、黄世杰.略谈深部铀成矿与深部找矿问题[J].铀矿地质,2006,22(2):70-75.
    20、何明友.若尔盖铀成矿带构造-岩浆活化成因模式[D].成都理工学院博士学位论文,1993.
    21、何明友,金景福.若尔盖铀矿床碳同位素组成与CO_2来源[J].矿物学报,1996,16(2).
    22、胡瑞忠,李朝阳,倪师军,等.华南花岗岩型铀矿床成矿热液中∑CO_2来源研究[J].中国科学(B),1993,23(2):189-196.
    23、胡瑞忠、金景福.贵东花岗岩体中煌斑岩的成因[J].矿物岩石,1990,10(4):1-7.
    24、胡瑞忠,毕献武等.哀牢山金矿带金成矿流体He-Ar同位素地球化学[J].中国科学(D),1999,29(1)
    25、胡瑞忠、金景福.上升热液浸取成矿过程中铀的迁移沉淀机制探讨--以希望铀矿床为例[J].地质论评,1990,36(4):317-325.
    26、韩吟文,马振东,张宏飞,等.地球化学[M].北京:地质出版社,2003,181-266.
    27、黄智龙,陈进,韩润生,等.云南会泽超大型铅锌矿床地球化学及成因--兼论峨眉山玄武岩与铅锌成矿的关系[[M].北京:地质出版社,2004.
    28、金景福,何明友,王德荫,等.若尔盖地区隐伏富铀矿床成矿规律及其找矿预测准则研究[R].成都理工学院科技成果报告,1994.
    29、金景福、胡瑞忠.希望铀矿床物质来源探讨[J].矿床地质,1990,9(2):141-148.
    30、金景祸、倪师军、胡瑞忠.302铀矿床热液脉体的垂直分带及其成因探讨[J].矿床地质,1992,11(3):252-258.
    31、姜耀辉,蒋少涌,凌洪飞,等.地幔流体与铀成矿作用[J].地学前缘,2004,11(2):491-499.
    32、贾跃明.流体成矿系统与成矿作用研究[J].地学前缘,1996,3(3-4):253-258.
    33、金有忠,李庆阳,朱西养,等.西南铀矿地质志(内部资料)[M].中国核工业地质局,2005.
    34、金有忠,李庆阳,刘建华,等.若尔盖铀矿田成矿条件与发展远景浅析[J].西南铀矿地质,2005,11(1):11-25.
    35、刘宝珺等.沉积岩石学[[M].北京:地质出版社,1980,425-430.
    36、刘宝王珺等.黔西南中三叠世陆棚-斜坡沉积特征[J].沉积学报,1987,5(2):1-13.
    37、刘丛强,黄智龙等.地幔流体及其成矿作用.北京:地质出版社,2004.
    38、刘丛强,黄智龙,李和平,等.地幔流体及其成矿作用[J].地学前缘,2001,8(3):231-243.
    39、刘家铎,张成江,等.扬子地台西南缘成矿规律及找矿方向[[M].北京:地质出版社,2004.
    40、梁俊红,金成洙,王建国.成矿流体研究的内容及其进展[J].地质找矿论丛,2001,16(4):220-225.
    41、黎彤,倪守斌.地球和地壳的化学元素丰度[M].北京:地质出版社,1990.23-38.
    42、卢武长.稳定同位素地球化学[M].成都地质学院(内部资料),1986,116-145.
    43、刘兴忠,等.中国铀矿找矿指南[M].中国核工业总公司地质总局,1997,207-269.
    44、李延河.同位素示踪技术在地质研究中的某些应用[J].地学前缘,1998,5(2):225-281.
    45、李子颖,李秀珍,林锦荣.试论华南中新生代地幔柱构造、铀成矿作用及其成矿方向[J].铀矿地质,1999,15(1):9-17.
    46、李子颖.华南热点铀成矿作用[J].铀矿地质,2006,22(2):65-69.
    47、毛裕年,闵永明.西秦岭硅灰泥岩型铀矿[[M].北京:地质出版社,1989.
    48、倪师军、胡瑞忠、金景福.302铀矿床热液的混合和沸腾垂直分带模式[J].铀矿地质,1994.10(2):70-77.
    49、倪师军、金景福.302铀矿床热液的混合和沸腾及其地质意义[J].成都地质学院学报,1992,19(4):9-15.
    50、倪师军,滕彦国,张成江,吴香尧.成矿流体活动的地球化学示踪研究综述[J].地球科学进展,1999,14(4):346-352.
    51、倪师军,曹志敏,张成江,等.成矿流体活动信息的三个示踪标志研究[J].地球学报,1998,19(2):166-169.
    52、芮宗瑶,李荫清,王龙生等.初论成矿流体及金属矿物富集系统[J].矿床地质,2002,21(1):83-90.
    53、四川省地矿局川西北地质大队.四川省若尔盖513矿区垭口矿段详查普查地质报告(内部资料)[R].1987.
    54、四川省地矿局川西北地质大队.四川省若尔盖512-1矿段U矿详查普查地质报告(内部资料)[R].1988.
    55、四川省地矿局川西北地质大队.若尔盖县北部白依背斜北翼铀矿床普查总结报告(内部资料)[R].1986.
    56、四川省地矿局405队.510矿床一矿段铀储量报告(内部资料)[R].1970.
    57、四川省地矿局川西北地质大队.中华人民共和国区调报告(降扎地区I-48-62-A、B、C、D和I-48-6-A、B、C、D八个图幅范围,1:5万)[M].1990.
    58、涂光炽等.低温地球化学[M].北京:科学出版社,1998,93-106.
    59、腾彦国,倪师军,张成江,等.阿西金矿床流体成矿的地球化学示踪研究[J].贵金属地质, 1999,8(2):104-109.
    60、王驹.碳硅泥岩型金(铀)矿床成矿富集的地球化学[D].核工业北京地质研究院博士学位论文,1991.
    61、巫建华,刘帅,余达淦,等.地幔流体与铀成矿模式[J].铀矿地质,2005,21(4):196-203.
    62、魏菊英,王关玉.同位素地球化学[M].北京:地质出版社,1988,118-124.
    63、王丽君,徐九华,谢玉玲,等.地幔岩流体包裹体的稀元素初步研究[J].矿物岩石地球化学通报,2002,21(4):268-271.
    64、徐光平,翟建平,胡凯.成矿过程中流体的作用及其主要研究方法[J].地质找矿论丛,1999,14(4):1-7.
    65、扬若利,孙群利.铀矿床学[M].华东地质学院矿床教研室,1982.
    66、赵兵.若尔盖铀成矿带地球化学与矿床成因研究[D].成都理工学院博士学位论文,1994.
    67、赵兵,金景福.若尔盖铀成矿带区域地层(岩石)地球化学[J].地质地球化学,1996,24(5):28-31.
    68、赵兵.西秦岭若尔盖铀矿床稳定同位素地球化学特征[J].矿物岩石,2002,22(4):47-51.
    69、仉宝聚.铀矿大型矿集区与铀成矿作用[J].铀矿地质,2001,17(1):5-17.
    70、张成江.铀成矿流体地球化学界面[J].四川地质学报,2005,25(2):86-91.
    71、周德安,罗毅.南秦岭西段志留系硅灰岩透镜体成因及与铀矿化的关系[R].北京铀矿地质研究所科研成果报告,1980.
    72、张德会.流体的沸腾和混合在热液成矿中的意义[J].地球科学进展,1997,12(6):546-552.
    73、张德会.关于成矿流体地球化学研究的几个问题[J].地质地球化学,1997,3(3):49-57.
    74、张待时,刘正义,赵瑞鳞,等.修水地区碳硅泥岩型金(铀)矿成矿条件[M].北京:原子能出版社,1993.
    75、张待时.中国碳硅泥岩型铀矿床成矿规律探讨[C].中国铀矿地质研究成果荟萃,1996,40-44.
    76、张待时.五一二铀矿床铅、硫、氧、碳同位素特征[R].核工业北京地质研究院(内部资料),1982,1-24.
    77、赵风民.俄罗斯铀矿地质[[M].核工业北京地质研究院,2006,68-78.
    78、赵军红,胡瑞忠,蒋国豪,等.初论地幔柱与铀成矿的关系[J].大地构造与成矿学,2001,25(2):171-178.
    79、朱如凯等.塔里木盆地塔中地区志留系柯坪塔格组沉积相与沉积模式[J].古地理学报,2005,7(2):197-205.
    80、曾天柱,碳硅泥岩型铀矿成矿特征、形成机理及找矿前景的讨论,铀矿地质,2002,18(1)
    81、曾天柱.碳硅泥岩型铀矿成矿特征、形成机理及找矿前景的讨论[J].铀矿地质,2002,18(1):46-51.
    82、周文斌,史维竣,吕跃进.相山铀矿田成矿作用的地球化学模拟[J].地球化学,1997,26(5):62-70.
    83、周维勋,郭福生译.世界铀矿床录[M].北京:原子能出版社,2000,1-19、187-200.
    84、张彦春.诸广、贵东花岗岩中碱性地幔流体与铀成矿[J].铀矿地质,2002,18(4):210-219.
    85、赵志根.不同球粒陨石平均值对稀土元素参数的影响--兼论球粒陨石标准[J].标准化报道,2000,21(3):15-16.
    86、赵振华.微量元素地球化学原理[M].北京:科学出版社,1997.
    87、赵振华.七十年代地质地球化学进展--微量元素地球化学研究进展[M].中国科学院地球化学研究所编.贵州人民出版社,1980.
    88、赵振华.微量元素地球化学[J].地球科学进展,1992,7(5):65-66.
    89、郑作环.深部找铀及湖南-桂北深部找铀前景分析[J].东华理工学院学报,1992,29(1):7-11.
    90、#12
    91、#1292、 Bragger J,Lahaye Y,Costa S,Lambert D,Bateman R.Inhomogeneous distribution of REE in scheelite and dynamics of Archaean hydrothermal systems(Mt.Charlene and Drydale gold deposits,Western Australia)[J].Contrib Mineral Petrol,2000,139:251-264.
    93、 Clayton R.N,O Neil J.R,Mayeda T.K.Oxygen isotope exchange between quartz and water [J].J Geophys Res,1972,77:3057-3067.
    94、 David J.Mossman,Froncois Gauthier-Lafaye,Simon E.Jackson.Black shales,organic matter,ore genesis and Hydrocarbon generation in the Paleoproterozoic Franceville Series Gabon[J].precambrian research 2005,137:253-272.
    95、 David Z.P.Rare earth elements in the sedimentary cycle:A summary[J].Chemical Geology,1974,14:285-304.
    96、Drummond S.E.,Ohmoto H.Chemical evolution and mineral deposition in boiling hydrothermal systems[J],EconGeol,1985,80(1):126.
    97、 Faure G.Principles of Isotope Geology[M].New York:John Wiley,1986.1-589.
    98、 Fisher A.G.& Mcgowen J.H.Depositional systems in the Lvicox Group of Texas and their relationship to occurrence of oil and gas[J].Gulf Coast Association of Geological Societies Transactions,1977,17:213-248.
    99、 Ghaderi M,Palin M.J,Sylvester P.J,Campbell I.H.Rare each element systematics in scheelites from hydrothermal gold deposits in the Kalgoorlie-Norseman region,Western Australia[J].Econ Geol,1999,94:423-438.
    100、 Gursky H.J.,Schmidt-Effing R.Sedimentology of radiolarites within the Nicoya Ophiolite Complex.Costa.Rica.Central America.Developments in sedimentology,1982,36.
    101、Hawkesworth C.J.,GALLAGHER K.Mantle hotspots,plumes and regional tectonics as causes of intraplate magmatism[J].Terra Research,1993,5:552-559.
    102、 Hecht L,Freiberger R,Gilg T.A,Grundmann G,Kostitsyn Y.A.Rare earh element and isotope(C,O,Sr)characteristics of hydrothermal crabonates:genetic implications for dolomite-hosted talc mineralization at Gopfersgrum(Fiehtelgebirge,Germany)[J].Chem Geol,1999,155:115-130.
    103、 H.G.Reading.Sedimentary Environments and Facies[M].Blackwell Scientific Publication,1986,229-280.
    104、 Hoefs J.Stable Isotope Geochemistry[M].2nd ed.Berlin:Springer-Verlag,1987,60-115.
    105、 Kano K.Deposition and diagenesis of siliceous sediments of the Onnagawa Formation[J].Tohoku Univ.Sci.Repts,1979,30(3):59-73.
    106、 Lottermoser B.G.Rare earth elements and hydrothermal ore formation processes[J].Ore Geol Rev,1992,7:25-41.
    107、 Michard A.,et al.Rare earth elements and Uranium in high-temperature solutions from East Pacific Rise hydrothermai vent field(13° N)[J].Nature,1983,303:795-804.
    108、 Min M.carbonaceous-siliceous-pelitie rook tyupe uranium deposits in southern china:geologic setting and metallogeny[J]. Ore Geology Reviews. 1995. 10: 51—64.
    109、 Monecke T. MoneckeJ. Monch W, Kempe U. Mathematical analysis of rare earth element patterns of fluorites from the Ehrenfriedersdorf tin deposit. Germany: evidence for hydrothermal mixing process of lanthanides from two different sources[J]. Mineral Petrol, 2000. 70: 235~ 256.
    110、 Morgan W. J. Deep mantle convenction plumes and plate motions [J]. Am. Assoc. pet. Goel. Bull, 1992, 56: 203-213.
    
    111、 Ohmoto H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits [J]. Econ Geol, 1972, 67(5): 551-578.
    
    112、 O'Neil J. R, Epstein S. Oxygen isotope fractionation in the system dolomite-calcite-carbon dioxide[J]. Science, 1996, 152 (3719): 198-271.
    
    113、 RollinsonH. R. Using Geochemical Data. Lonman Scientific & Technical. 1993.
    
    114、 Subias I. Fermandez-Nieto C. Hydrothermal events in the Valle de Tena (Spanish Western Pyrenees) as evidenced by fluid inclusions and trace-element distribution from fluorite deposits[J]. Chem Geol, 1995, 124: 267-282.
    
    115、 Swanson V. E. Geology and Geochemistry of uranium in marine black shales-A review. U. S. Geologial survey professional paper, 1961, 356-c, 46p.
    
    116、 Taylor H. P. JR., et al. Oxygen and carbon isotope studies of carbonatites from leather see district, West Germany and the Aino District, Sweder[J]. Geochim Cosmochim Acta, 1976, 31: 407-430.
    
    117、 Taylor H. P.. Sheppard S. M. F. Igneous rocks: I. Processes of isotopic fractionation and isotope systemation [A]. Valley J. W., Taylor H. P., O'Neil J. R. Stable isotopes in High Temperature Geological Processes [C]. Rew Mineral 16, 1986. 227—271.
    
    118、 Whitney P. R, Olmsted J. F. Rare earth element metasomatism in hydrothermal systems: The Willsboro-Lewis wollastonite ores, New York, USA[J]. Geochim Cosmochim Acta, 1998, 62: 2965-2977.
    
    119、 Wilson J. T. Mantle plumes and plate motions [J]. Tectonophysics, 1973, 19: 149—164.
    
    120、 ZhongSJ, Alfonso M. Partitioning of rare earth elements (REEs) between calcite and seawater solutions at 25℃ and 1 atm, and high dissolved REE concentrations [J]. Geochim Cosmochim Acta, 1995, 59: 443-453.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700