用户名: 密码: 验证码:
复杂铜、铅、锌、银多金属硫化精矿综合回收利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有色金属冶金是典型的资源投入型产业,其生存与发展必须以矿产资源为依托。近年来,由于我国铜、铅、锌等冶金行业的快速发展,优质资源消费增加,资源逐渐枯竭,有色金属的发展受控于资源,有色金属的供应不能满足国民经济发展对其需求,为了保持有色金属的可持续性发展,必须开发利用有色金属的多种资源。
     我国三江成矿带将是我国重要的有色金属矿产资源地。该矿带的资源特点是各种有色金属相互共生、易浮难分选,获得的精矿相互互含,导致有色金属精矿质量不高,金属回收率低。为了实现资源的高效综合开发利用,必须开发此类共生有色金属精矿的冶炼新技术。
     本论文以复杂铜铅锌银多金属硫化精矿为原料,与传统冶炼工艺比较后,确定了处理该种类矿石的全湿法冶金新技术,通过实验室全流程的各单元过程系统研究,确定了处理复杂铜铅锌银多金属硫化精矿的全湿法冶金工艺流程。并对其中的主要工序进行了理论分析,主要包括以下内容:
     1、加压浸出在现有的热力学研究基础上,进行了复杂多金属硫化精矿加压浸出热力学的研究,绘制298K和423K下的CuFeS_2-H_2O系、ZnS—H_2O系、PbS-H_2O系、FeS_2—H_2O系的φ-pH图;在加压釜中通过加压酸浸对复杂多金属硫化精矿进行浸出,通过对温度、时间、硫酸用量、氧压、矿石粒度等条件的考察,确定了最佳浸出条件:对于复杂多金属精矿1:精矿粒度-0.038mm(-400目)≥96%,液固比4∶1,温度~150℃,总压力为1.2~1.4MPa,浸出时间为180min,始酸浓度为145~155g/L,木质素适量,搅拌转速850r/min。在此条件下,各金属的浸出率分别可以达到(%):Zn~94%、Cu~97%;对复杂多金属精矿2:精矿粒度-0.033mm(-425目)≥99%,液固比4∶1,温度~150℃,总压力为1.2~1.4MPa,浸出时间为180min,始酸浓度为140~150g/L,木质素适量,搅拌转速850r/min。在此条件下,各金属的浸出率分别可以达到(%):Zn~95%、Cu~96%。
     2、加压浸出液萃取分离铜首次对富含高铜和高锌的高酸加压浸出液采用萃取的方法进行铜和锌的分离。通过对M5640、LIX973、LIX984三种有机相负载铜能力,萃取温度、混合时间、萃取相比、反萃相比、反萃原液酸浓度等条件对铜萃取率影响的考察,确定适当的萃取剂和萃取工艺:选用M5640作为萃取剂,萃取的合适条件:相比(O/A)4∶1、有机相中萃取剂含量(V/V)25%、混合时间3min、萃取级数11级以上、萃取温度30-40℃;在此条件下,铜的萃取率>95%。反萃的合适条件:相比(O/A)1∶1、反萃原液游离酸浓度>250g/L、混合时间2min、反萃级数5级以上、反萃温度30~40℃;在此条件下,铜反萃率>95%。
     3、加压浸出渣中元素硫的脱除对富含元素硫、铅、银的加压浸出渣先浮选富集其中的硫精矿,浮选的合适条件为:矿浆浓度为10-20%,粒度为原渣粒度,浮选时2号油用量为10g/t,采用一段粗选-二段精选-三段扫选流程。浮选硫精矿含硫>60%,浮选硫回收率>70%,浮选铜回收率>65%,浮选锌回收率>65%,浮选铅回收率~8%;对富集后的硫精矿进行蒸馏脱除元素硫,蒸馏温度460-480℃。元素硫挥发率>98%,其它金属元素的损失率<0.5%。
     4、浮选尾渣碳酸盐转化-硅氟酸浸出铅首次采用碳酸盐转化-硅氟酸浸出的方法处理富含硫酸铅的物料。对含铅的浮选尾渣采用碳酸盐进行硫酸铅的转化,通过对转化时间、转化剂用量、转化温度等条件的考察,确定合适的转化条件:温度20-25℃,时间30min(第一次)、30min(第二次),碳酸氢铵用量为理论量的-0.9倍,氨水和碳酸氢铵摩尔比为1∶1;对转化渣采用硅氟酸浸出的方法进行浸铅研究,考察始酸浓度、浸出时间、浸出温度等因素对浸出过程的影响,确定合适的浸出条件:浸出时温度为-60~C,时间为30min,游离硅氟酸浓度为125-150g/L。通过对碳酸盐转化-硅氟酸浸出条件试验的研究,确定最后的浸铅工艺:转化-浸出-转化-浸出,在此条件下铅的浸出率>94%;
     5、硫脲浸银在现有的研究基础上,对试验过程中产出的各种含银物料中的银进行了硫脲浸出的研究,并进行了热力学的研究,绘制298KAg_2S(Ag)-SCN_2H_4-H_2O系φ—pH图,并对硫脲浸银的机理和动力学进行了研究,建立了动力学方程;考察了硫脲浓度、Fe~(3+)浓度、浸出时间、温度等因素对浸出过程的影响,并由此确定了浸银的工艺条件:两段浸出,浸出温度60-70℃,硫脲浓度:一段55g/L、二段20g/L,液固比(7.5-10)∶1,时间180min,Fe~(3+)浓度~10g/L;在此条件下银的浸出率>93%。
     论文的创新点:
     (1)论文自主研发了从复杂多金属硫化精矿中综合回收铜、铅、锌、银的全湿法工艺流程。
     (2)论文采用加压浸出的方法处理某地复杂铜铅锌银多金属硫化精矿,并取得很高的铜、锌浸出率。
     (3)论文研究了从含Cu~40g/L、H_2SO_4~70g/L、Zn100g/L的高铜高锌高硫酸溶液中萃取分离铜、锌,并根据条件试验研究结果,确定了多级逆流萃取工艺。
     (4)论文研究了采用碳酸盐转化-硅氟酸浸出的方法处理富含硫酸铅的浮选尾渣的过程,并确定了合适的工艺:两次转化-浸出工艺。
     (5)论文研究了硫脲浸银过程的动力学,建立了浸出温度、硫脲浓度和Fe~(3+)浓度对其动力学影响的关系式。
Great progress had been achieved in copper,lead,zinc metallurgical industries in China.Along with national economy developing,the consumption of nonferrous products is more and more.Chinese is primary country of product and consumption of copper,zinc and lead.So the following problems are arised,the consumption of the excellent resource is increasing,the resource gradually dries up,the development of nonferrous metals is controlled by resource,and the providing of nonferrous metals can't satisfy the development of national economy.All kinds of resources of nonferrous metals must be exploitate and utilize in order to keep continuable development of nonferrous metals.
     The three rivers ore area is the important resource area of nonferrous minerals in China.The characteristics of these minerals are that all kinds of nonferrous metals reciprocally accrete,floatation is ease but separation is difficult,the reciprocal holding of the metals in the obtained concentrate from dressing leads to the concentrates' quality is bad,and the recovery rate is low.The new metallurgical technique which is used to treat complex polymetallic concentrates must be exploitate in order to actualize high-performance and compositive exploitating and utilizing.
     The raw material is complex polymetallic sulfide concentrate containing copper, lead,zinc and silver.Compared with the traditional metallurgical processing,the new hydrometallurgical technology of treating this kind of concentrate was determined.The conditions experiments of every chief segment in the whole flowsheet have been systematically investigated in the laboratory,then the whole hydrometallurgical processing flowsheet which treated complex polymetallic sulfide concentrate containing copper,lead,zinc and silver was determined.And the theoretical analysis has also been carried out.The main contents are followed as:
     1.Pressure leaching.Based on the existing thermodynamic research,the pressure leaching thermodynamics of treating complex polymetallic sulfide concentrate was studied,and the potential—pH diagrams for the system of CuFeS_2-H_2O,ZnS-H_2O,PbS-H_2O,FeS_2-H_2O at 298K and 423K were drawn. Complex polymetallic sulfide concentrate was treated using pressure leaching in autoclave,the optimal leaching conditions are determined after reviewed the conditions of leaching temperature,time,the dosage of sulfuric acid,oxygen pressure,granularity of concentrate.Complex polymetallic concentrate 1: granularity of concentrate was -0.038mm(-400 screen mesh)≥96%,ratio between liquid and solid was 4:1,temperature was about 150℃,the oxygen pressure was 1.2~1.4MPa,leaching time was 180min,the beginning acid concentration was 145~155g/L,sodium lignosulfonates was proper amount,stirring speed was 850r/min.Under these conditions,the leaching rates of every metal were Zn-94% and Cu-97%.Complex polymetallic concentrate 2:granularity of concentrate was -0.033mm(-425 screen mesh)≥99%,ratio between liquid and solid was 4:1, temperature was about 150℃,the oxygen pressure was 1.2~1.4MPa,leaching time was 180min,the beginning acid concentration was 140~150g/L,sodium lignosulfonates was proper amount,stirring speed was 850r/min.Under these conditions,the leaching rates of every metal were Zn-95%and Cu-96%.
     2.Extracting copper from the liquid of pressure leaching.For the first time,the copper has been extracted from the leaching liquid which contains high concentration of copper,zinc and sulphric acid.Through the test of following conditions:loading copper ability of organic phase,extraction temperature,mixing time,phase ratio of extraction,phase ratio of stripping,acid concentration of stripping liquid,the suitable extraction processing was obtained that suitable conditions of extraction were phase ratio(O/A)4:1,the content of extractant in organic phase(V/V)25%,mixing time 3min,extraction series over11,extraction temperature 30-40℃;Under these conditions,the extraction rate of copper>95%. The suitable conditions of stripping:phase ratio(O/A)1:1,the acid concentration of stripping>250g/L,mixing time 2min,stripping series over 5,stripping temperature 30~40℃;under these conditions,the stripping rate of copper>95%.
     3.Deprive the element sulphur in the slag of adding pressure leaching.The sulphur concentration was enriched through floatation from the leaching slag which contained high concentration of element sulphur,lead and silver.The suitable conditions of floatation were ore pulp concentration 10~20%,granularity of raw ore, 2# oil 10g/t,use the process of first stage rough dressing—two stage fine dressing—three stage scavenger.The sulphur content of floating sulphur concentration was>60%,recovery rates of floating were sulphur>70%,copper>65%,zinc>65%,lead~15%.Element sulphur was deprived from the enriched sulphur concentration using distillation,the conditions were temperature 460~480℃, volatilization rate of element sulphur>98%,other metal element's loss<0.5%.
     4、Carbonate conversion -silicofluoric acid leaching on flotating gangue.It was the first that treated the material which containing lead sulfate using carbonate conversion-silicofluoric acid leaching.Lead sulfate was converted using carbonate treating floatation gangue.After testing these conditions:the conversion time,the dosage of conversion agent,conversion temperature,the suitable conversion conditions were determined:temperature20-25℃,time 30 min(first time), 30min(second time),the dosage of ammonium acid carbonate is 0.9times of theoretical value,the mol ratio of ammonium acid carbonate and ammonia liquor is 1:1.conversion slag was leached using silicofluoric acid,after testing the elements of the beginning acid concentration,leaching time,leaching temperature,suitable leaching conditions were determined:leaching temperature~60℃,time 30 min, extricated silicofluoric acid concentration 125~150g/L.through the study of carbonate conversion-the experiment of silicofluoric acid leaching conditions,the last process of leaching lead was determined: conversion-leaching-conversion-leaching,the leaching rate of lead under these conditions is>94%.
     5、Leaching silver using thiourea.Based on the existing study,thiourea leaching silver from floating tailing and the thermodynamics ware studied,then theφ—pH diagram of Ag_2S(Ag)-SCN_2H_4-H_2O at 298Kwas drawn.The mechanics and kinetics of Leaching silver using thiourea were studied,and the kinetics equations were set up.After testing the elements of thiourea concentration,Fe~(3+)concentration,leaching time,temperature,the processing of leaching silver was determined:two-stage leaching,leaching temperature 60-70℃,thiourea concentration:first stage 55g/L, second stage 20g/L,the ratio of liquid and solid is(7.5-10):1,time 180min, Fe~(3+)concentration~10g/L;the silver leaching rate under these conditions is>93%.
     The following contributions have been made:
     (1)The whole hydrometallurgical flowsheet of synthetic recovery copper,lead, zinc,silver from complex polymetallic sulfide concentrate has been developed;.
     (2)Using pressure leaching to treat complex polymetallic sulfide concentrate containing copper,lead and zinc was studied,and the good leaching rates of copper and zinc was obtained.
     (3)Separation copper and zinc from the solution of high concentration of copper,zinc,sulfuric acid using extraction was studied,in which the concentration are Cu~40g/L、H_2SO_4~70g/L、Zn100g/L,according to the result of experiment study,many stage countercurrent extraction processing was determined.
     (4)The process of using carbonate conversion -silicofluoric acid leaching to treat the floating gangue which contain high concentration lead sulfate was studied, and suitable processing was determined:Two times conversion -leaching.
     (5)Kinetics process of leaching silver using thiourea was studied,kinetics equations on the elements of leaching temperature,thiourea concentration, Fe~(3+)concentration were set.
引文
[1]《化工百科全书》编辑委员会.化工百科全书,vol.16(第一版).北京:化学工业出版社,1997,12
    [2]刘大星.铜冶金技术发展及内工业面临的形式.中国金属通报,2000,(1):11-12
    [3]邹韶禄.铜工业面临的形势和机遇.有色金属工业,2001,(5):4-7
    [4]曹异生.国内铜冶炼企业面临的原料状况、技术特征和资源战略.有色金属工业,2001,(12):4-10
    [5]朱祖泽,马克毅.铜冶金学.昆明:云南科技出版社,1995,8
    [6]兰兴华.铜生产仍以火法熔炼为主.世界有色金属,2004,(03):43-44
    [7]蔡超君 华一新 梁铎强.硫化铜精矿加碳酸钙焙烧表观动力学研究.有色金属(冶炼部分),2004,(3):2-5
    [8]Henkel Corp.Refinary process capacity trends.1974 to 2000.ICSG.May 1996
    [9]Kordosky G A.Proc.ISEC 2002,Ed.Sole K C,et al..South Africa Institute of Mining and Metallurgy,Johannesburg,2002,853-862
    [10]Biswas A,KDavenport W G.Extractive Metallurgy of copper.Pergamon Press,Oxford,3ed,1994
    [11]丁伟安.硫化铜精矿三价铁盐浸出研究新进展.新疆有色金属,1997,(3):22-24
    [12]陈国发,王德全.铅冶金学(第一版).北京:冶金工业出版社,2003,4
    [13]《有色金属提取冶金手册》编委会.有色金属提取冶金手册,锌镉铅铋卷.北京:冶金工业出版社,1992,10
    [14]《铅锌冶金学》编委会.铅锌冶金学.北京:科技出版社,2003,3
    [15]张乐如,王身振.铅锌冶炼新技术.长沙:湖南科学技术出版社,2006,5
    [16]魏昶,王吉坤.湿法炼锌理论与应用.昆明:云南科技出版社,2003
    [17]梅光贵,王德润,周敬元等.湿法炼锌学.长沙:中南大学出版社,2001
    [18]潭铁军,肖功明.中国铅锌原料供应战略探讨.世界有色金属,2000,(7):14-16
    [19]陈志宇,唐志亚,刘梦岐.我国铅锌工业竞争能力分析.世界有色金属,2002, (12):10-12
    [20]陈志宇.我国铅锌资源状况及市场形势分析.世界有色金属,2002,(10):7-10
    [21]冯君从.需求无转机,价格难走出低谷—2002年锌市场半年评.世界有色金属,2002,(10):11-17,21
    [22]王恭敏.解决我国有色金属资源严重短缺的对策.世界有色金属,2004,(5):4-8
    [23]佟丽中.2001年铅锌市场走势分析及2002年形势的展望.世界有色金属,2002,(6):18-21
    [24]杨显万,沈庆峰等.微生物湿法冶金.北京:冶金工业出版社,2003
    [25]邱定藩主编.有色金属科技进步与展望——纪念《有色金属》创刊50周年.北京:冶金工业出版社,1999,12
    [26]赵天从.重金属冶金学(下册).北京:冶金工业出版社,1981,3
    [27]绪方喜显,坂田政民,彦岛制炼(株)の亚铅制炼.资源と素材,1993,109(12):1039
    [28]日本金属学.有色金属冶金学.北京:冶金工业出版社,1988,8
    [29]H Y索恩,D B乔治,AD曾凯尔等编.包晓波,邓文基等译.黄其兴校.硫化矿冶金的进展.北京:冶金工业出版社,1991,9
    [30]宁远涛,赵怀志.银.长沙:中南大学出版社,2005,10
    [31]李东亮.银金 铂的性质及其应用.北京:高等教育出版社,1998,11
    [32]孙戬.金银冶金(第二版).北京:冶金工业出版社,1998,2
    [33]黄礼煌.金银提取技术(第二版).北京:冶金工业出版社,2001,8
    [34]David Dreisinger.加压湿法冶金的研究和发展前景.四川有色金属,1992,(1):19-20
    [35]R M G S Berezowsky等.加压浸出的工业现状.四川有色金属,1992,(1):21-23
    [36]Berezowsky,R M G S Berezowsky等.加压浸出技术的工业现状.有色金属技术经济研究,1993,(6):29-36
    [37]刘大星,崔学仲.金川镍转炉渣回收钴新工艺.北京矿业研究总院学报,1992,1(1):64-71
    [38]陈永强,张寅生,尹飞等.锌铅混合精矿加压浸出过程研究.有色金属,2003,55(4):57-60
    [39]徐志峰,邱定蕃,卢惠民等.锌精矿氧压酸浸过程的研究进展.有色金属,2005,57(2):101-103
    [40]李小康,许秀莲.低品位铜锌混合矿加压浸出研究.南方冶金学院学报,2004,25(4):5-9
    [41]王吉坤,周廷熙,吴锦梅.高铁闪锌矿精矿加压浸出半工业试验研究.中国工程科学,2005,7(1):60-64
    [42]史有高.哈得逊湾舍利特锌加压浸出工艺试车投产.有色冶炼,1994,(6):13-20
    [43]王海北,蒋开喜,施友富等.加压浸出生产金红石及熔盐电解制备海绵钛新工艺探索.中国工程科学,2004,6(12):91-93
    [44]M J Couins等.锌加压浸出工艺的应用.株冶科技,1990,18(3-4):90-100
    [45]A.C.Mollison等,基德·克里克德硫化锌精矿压力浸出,株冶科技,Aug.1990,Vol.18.No3-4:87
    [46]夏光祥,涂桃枝.催化氧化酸浸法预处理团结沟金精矿的扩大试验研究.黄金,1998,10(12):33-38
    [47]王海北,蒋开喜,张邦胜等.新疆某复杂硫化铜矿低温低压浸出工艺研究.有色金属,2004,56(3):52-54
    [48]郭天立摘译.科明科特累尔锌厂的浸出和净化.有色冶炼,2004,6(12):91-93
    [49]关自斌,高仁喜,田原.铀矿石加压浸出技术的进展.铀矿冶,1999,18(3):171-178
    [50]周绍銮,孙全庆,张晓泓等.难处理金精矿的加压浸出技术.铀矿冶,1997,16(4):237-244
    [51]Buban K R,Collins M J,Masters I M,et al.Comparison of direct pressure leaching with atmospheric leaching of zinc concentrates.Dutrizac J E.Lead—Zinc 2000.Pittsburg,USA:TMS,2000:727-738
    [52]Parker E G.Oxidative pressure leaching of zinc concentrates.CIMBull,1987,74(829):145-150
    [53]Chalkley M E,Collins M J,Masters I M,et al.Deportment of elements in the Sherritt zinc pressure leach process,zakami T.An International Symposium on tne Extraction and Applications of Zinc and Lead,Zinc & lead'95.Sendai,Japan:The Mining & Materials Processing Institute of Japan,1995:612-630
    [54]Doyle F M,Arauco H,Feng L M.Iron removal during oxidative,acid pressure leaching of zinc sulphide concentrates.International Journal of Mineral Processing,1989,25(3/4):241-260
    [55]唐际流,周晓源.铁在硫化辛精矿中的行为.有色金属(冶炼部分),1987,(3):32-35
    [56]Dreisinger D B,Peters E.The oxidation of ferrous sulphate by molecular oxygen under zinc pressure-leach conditions.Hydrometallurgy,1989,22(1):101-119
    [57]Jan R J,Hepworth M T,Fox V G.A kinetic study on the pressure leaching of sphalerite.Metallurgical Transaction B,1976,7B:353-361
    [58]Fillippou D,Kondurn R,Demopolous G P.Akinetic study on the acid pressure leaching of pyrrhotite.Hydrometallurgy,1997,47(1):1-18
    [59]Baldwin S A,Demopolous G P.Assessment of alternative iron source in the pressure leaching zinc concentrates using a reactor media.Hydrometallurgy,1995,39(1-3):147-162
    [60]Perez I P,Dutrizac J E.The influence of the iron content of sphalcrite on its rate of dissolution in ferric sulphate and ferric chloride media.Hydrometallurgy,1991,26(2):211-232
    [61]Buttinelli D,Lavecchina R,Pochetti F,et al.leaching by ferric sulphate of raw and concentrated copper-zinc complex sulfide ore.International Iournal of Mineral Processing,1992,36(3/4):245-257
    [62]Crundwell F K.Effect of iron impurity in zinc sulphide concentrates on the rate of dissolution.AICHE Journal,1998,34(7):1128-1134
    [63]Lotens P,Wesker E.The behaviour of sulphur in the oxidative leaching of sulphide mineral.Hydrometallurgy,1987,18(1):39-54
    [64]李精佳.锌精矿加压氧化酸浸过程中硫的行为[D].北京:中国科学院过程工程研究所,1985
    [65]Collins M J,Master I M,Ozberk E.Deportment of selected minor elements at the HBMS zinc pressure leach plant.CIM Bulletin,1995,88(986):62-67
    [66]Mackiw V N,Veltman H.Recovery of zinc and lead from complex low-grade sulphide concentrates by acid pressure leaching.The Canadian Mining and Metallurgical Bulletin,1967,60(657):80-85
    [67]Torma A E.Kinetic evaluation of pressure leaching of a zinc-calcine by SO_2 and sphalerite concentrate by oxygen.Metall,1985,39(9):824-828
    [68]夏光祥,施惠娟,曹昌林等.锌精矿加压浸出过程物理化学初步研究.化工冶金,1985,63(3):17-26
    [69]Harver T J,Yen W T,Paterson J G.A kinetics investigation into the pressure oxidation of sphalerite from a complex concentrate.Minerala engineering,1993,6(8-10):949-967
    [70]Lochmann J,Pedlik M.Kinetics anomalics of dissolution of sphalerite in ferric sulfate solution.Hydrometallurgy,1995,37(1):89-96
    [71]Weisener C G,Smart R ST C,Gerson A R.Kinetics and mechanisms of the leaching of low Fe sphalerite.Geochimica et Cosmochimica Acta,2003,67(5):823-830
    [72]Pawlek F E.Research in pressure leaching.Journal of the South Africa Institute of Mining and Metallurgy,1969,69(12):632-654
    [73]Crundwell F K,Bryson A W.The modeling of particulate leaching reactors-the population balance approach.Hydrometallurgy,1992,29(1-3):275-295
    [74]Demopoulos G P,Baldwin S A,Filippou D,et al.development of predictive models for the simulation of indusrial zinc leaching progress[A]//Azakami T.An International Symposium on the Extraction and Applications of Zinc and Lead,Zinc & Lead' 95[C].Sendai,Japan:The mining & Materials Processing Institute of Japan,1995:103-117
    [75]Baldwin S A,Demopoulos G P,Parangelakis V G.Mathematical modeling of the zinc pressure leach process.Metallurgical and Materials Transactions B,1995,26B:1035-1047
    [76]张武存、黄芝林,王万禄.铁闪锌矿氧压酸浸试验.云南冶金,1990,(6):39-42
    [77]夏光祥,方兆珩.高铁硫化锌精矿直接浸出新工艺研究.有色金属(冶炼部分),2001,(3):8-10
    [78]王玉芳.铁闪锌矿加压浸出工艺研究.北京:北京矿冶研究总院,2003
    [79]董英.高铁硫化锌精矿冶炼工艺探讨.云南冶金,2000,29(4):26-29
    [80]Jean-Pierre Corriou,Roger Gely and Philippe Viers.Thermodynamic Kinetic Study of the Pressure Leaching of Zinc Sulfide in Aqueous Sulfuric Acid.Hydrometallury,1988,(21):85-102
    [81]Y M Shneerson,E M Vigdorchik,E E Zhmarin,ea tl.Mathematical modeling of pressure leaching of sulphide zinc concentrate[A].Hydrometallurgy 2004[32]Banff,Alberta,Canada:The Canadian Institute of Mining,Metallurgy and Petroleum,2004:983-997
    [82]李军旗.几种因素对硫化锌精矿、软锰矿同时浸出的影响.贵州工业大学学报(自然科学版),2000,29(3):10-14
    [83]彭金辉,刘纯鹏.微波场中FeCl_3溶液浸出闪锌矿动力学.中国有色金属学报,1992,2(1):46-49
    [84]邓日章,赵天从,钟竹前,梅光贵.酸性条件下ZnS氧化浸出过程动力学的研究.中南矿冶学院学报,1992,23(1):36-42
    [85]谢克强.高铁硫化锌精矿和多金属复杂硫化矿加压浸出工艺及理论研究[博士学位论文].昆明:昆明理工大学,2006
    [86]W A Jankola.Zinc Pressure leaching at Cominco.Hydrometallurgy,1995,39:63-70
    [87]E G Parker等.锌精矿的高压浸出流程.有色冶炼,1983,(2):26-33
    [88]周勤俭.湿法冶金渣中元素硫的回收方法.湿法冶金,1997,(3):50-54
    [89]刘希澄,郑文裕,李宁涛.复杂硫化矿的综合利用.有色金属(冶炼部分),1987,(4):28-30
    [90]黄万抚,王淀佐,王泰炜.浮选——重选联合工艺回收铜硫的试验研究和生产实践.江西有色金属,1998,12(3):24-26
    [91]黄鑫,贺子凯.真空蒸馏硫磺渣提取元素硫.北京科技大学学报,2002,24(4):410-413
    [92]W A Jankola.Zinc pressure leaching at Cominco.Hydrometallurgy,1995,39: 63-70
    [93]E Ozberk,M J collins,M Makwana,et al.Zinc pressure leaching at the Ruhr-Zinc Refinery.Hydrometallurgy,1995,39:53-61
    [94]宋庆双,兰为君,姚玉田.金铜矿综合提取金、银、铜、铁、硫新工艺研究.有色金属(冶炼部分),1995,(1):7-10
    [95]刘希澄,郑文裕,赖远雄.从湿法冶金含硫渣中提硫方法的研究.有色金属(冶炼部分),1988,(6):16-18
    [96]Ozberk E,et al.加拿大铜、镍冶炼厂二氧化硫的散发问题.包小波等译.硫化矿冶炼的进展(下):生产技术和实践.北京:冶金工业出版社,1998
    [97]张启卫,章永化.从软锰矿与黄铁矿硫酸浸出渣中回收硫磺的研究.中国锰业,2002,20(1):8-10
    [98]唐冠中,邹发英.四氯乙烯混水法在镍阳极泥综合利用上的应用.江西有色金属,2000,14(4):22-24
    [99]周勤俭.从含铜锌铅矿氧压酸浸渣中回收铅和硫的研究.有色金属(冶炼部分),1996,(4):16-18
    [100]Stephen H,Stephen T.Solubilities of Inorganic and Organic Compounds.Oxford Pergamon Press,1979,1(1):613
    [101]Weast R C.Handbook of chemistry and Physics.Baton,Florida,CRC Press,1982:211
    [102]方兆珩.复杂硫化矿浸取的直接加压浸出.有色金属(冶炼部分),1995,(3):24-27
    [103]鲁顺利.从高铁闪锌矿的高压酸浸渣中提取硫磺[硕士学位论文].昆明:昆明理工大学,2005
    [104]Thompson M K.Theoretical and applied electrochemistry.New York:The Macmillan Company,1989,181-182.
    [105]Awakura Y,Kamei S,Majima H.A kineti study of nonoxidation dissolution of galena in aqueous acid solution.Met.Trans.B,1980,11B:377-381
    [106]Paramgurn R K,Kuzeci E,Kammel R.Direct electrowinning of lead from suspension galena concentrate anode in different electrolytes.Met.Trans.B,1988,19B:59-65
    [107]Paramgurn R K,Kammel R.Bed performance in the direct electrowinning of lead from suspension galena anodes.Met.Trans.B,1998,19B:67-72
    [108]Qiu Dingfan,Wang Jikun.Extraction and separation of metals from sulphidebyslurry electrowinning process(SEP)[A].Yazawa International Symposium,Metallurgical and Materials Processing:Priciples and Technologies,Vol Ⅲ,Aqueous and Electrochemical Processing[C].TMS,2003,285-291
    [109]杨显万,张英杰.矿浆电解原理.北京:冶金工业出版社,2005,5
    [110]Tan K G,Bartels K,Bedard P L.Lead chloride solubility and density data in binary aqueous solution.Hydrometallurgy,1987,17:335-356
    [111]Holdich R G.The solubility of aqueous lead chloride solutions.Hydrometallurgy,1987,19:199-208
    [112]郑蒂基,傅崇说.关于铅氯离子-水系在氯离子强度及升温条件下的平衡研究.中南矿冶学院学报,1981,(4):1-9
    [113]Winad R.Chloride hydrometallurgy.Hydrometallurgy,1991,27:285-316
    [114]Kobayashi M,Dutrizac J E,Toguri J M.A critical review of the ferric chloride leaching of galena.Canadian Metallurgical Quarterly,1990,29(3):201-211
    [115]Dutrizac J E,Chen T T.The effect of the elemental sulphur reaction product on the leaching of galena in ferric chloride media.Met.Trans.B,1990,21B(4):935-943
    [116]Pritzker M.The leaching of sulphide minerals in chloride media.Hydrometallurgy,1988,29B:953-960
    [117]Dutrizac J E.The leaching of sulphide minerals in chloride media.Hydrometallurgy,1992,29:1-45
    [118]尹文新,韩跃新,王德全.湿法炼铅研究进展.矿冶,2005,14(3):49-52
    [119]Murphy J E,Chambers M F.Production of lead metal by molten-salt electrolysis with energy-efficient electrodes[R].Bumines,1991,IR9335
    [120]Limpo J L,Figueiredo J M,amer S,et al.The CENIMLNETI process:Anew process for the hydrometallurgical trestment of complex sulphides in ammonium chloride solution.Hydrometallurgy,1992,28:149-161
    [121]Sahoo P K,Rath P C.Recovery of lead from complex sulphide leach residue bu cementation with iron.Hydrometallurgy,1998,20:169-177
    [122]Kappes D W.Chloride leaching for silver,copper,lead and antimony-Industrial experience in the 600 tonne/day itos,Bolivia,Plant[A].Chloride metallurgy[C],2002,1:69-82
    [123]Habashi F.The leaching of sulfide minerals in chloride media.Hydrometallurgy,1995,38:219-224
    [124]Cazorla A.State of technological development in spain of hydrometallurgical process for the treatment of aggregate concentrates of polymetallic sulphides[A].15th World Mining Congress[C].Tiasa,Madrid,Spain,1992,2:817-827
    [125]Liao M X,Deng T L.Zinc and lead extraction from complex raw sulphides by sequential bioleach and acidic brine leach.Minerals Engineering,2004,17(1):17-22
    [126]Flett D S.Chloride hydrometallurgy for complex sulphides:A review.Chloride metallurgy,2002,1:255-276
    [127]张昕红,唐文忠,彭康等.湿法炼铅技术进展与FLUBOR工艺.矿冶,2006,15(1):49-52
    [128]Chen A A,Dreisinger D B.The ferric fluosilicate leaching of lead concentratea:Part Ⅰ,Kinetic Studies,Metal.Met.Trans.B,1994,25B(8):480-493
    [129]Taylor P R,Edger Y C,Vidal e.Fluosilic acid leaching of galena[A].Hydrometallurgy 2003-Fifth International Conference in Honor of Professor Ian Ritchie-Volume Ⅰ:Leaching and solution purification[C].TMS,2003,461-473
    [130]Pashkov G L,Mikhlina E V.Effect of potential and ferric ions on lead sulphide dissolution in nitric acid.Hydrometallurgy,2002,63:171-179
    [131]Exposito E,Bonete P,et al.Lead electroeinning in a fluoborate medium.Use of hydrogen diffusion anodea.Journal of Power Source,2000,87(1-2):137-143
    [132]陈淑萍,曹耀华,郭其章等.金精矿硫酸化焙烧酸浸液萃取铜试验研究.矿产保护与利用,2002,(1):33-36
    [133]S Naveed,Z Nawaz.Copper Extraction from copper rolling mills scrapa using solvent "arylaldoxime,2-hydroxy-5-nonylbenzaldoxime"(acorga-M5640).Jour.Chem.Soc.Pak.2006,28(1):44-50
    [134]柳建设,葛玉卿,邱冠周等.从铜铁锌酸性液中选择性萃取铜.铜业工程,2002,(1):18-20
    [135]卢立柱,张大力,谢慧琴等.湿法炼锌中性浸出液中铜、镉的萃取分离无渣净化工艺.化工冶金,1999,20(1):86-91
    [136]吴芳,吕军.铜萃取剂M5640从硫酸镍溶液中分离铜的应用研究.五邑大学学报(自然科学版),2004,18(1):25-27
    [137]王红鹰,郑伟等.铜萃取剂KM的萃取性能研究.湿法冶金,2003,22(1):45-48
    [138]彭钦华,李邵民,陈述一.铜萃取剂BK992在湿法冶金中的应用.有色金属,2001,53(4):41-43
    [139]彭钦华,陈述一,李邵民.铜萃取剂BK992和LIX984的性能研究.有色金属(冶炼部分),2002,(5):18-20
    [140]吕文东,郝志峰,王继民.湿法炼铜中的萃取剂.广东有色金属学报,2004,14(2):114-117
    [141]华金仓,李崇德,魏明安.某难选复杂多金属矿的浮选研究.有色金属(选矿部分),2005,(6):1-4
    [142]张小田,陈宏,代淑娟.铜、铅、锌、铁复杂多金属矿综合回收研究.有色矿冶,2005,21(3):17-19
    [143]谢克强,杨显万,舒毓章等.铜铅锌多金属复杂硫化矿综合回收工艺研究.中国有色冶金,2006,4(2):19-22
    [144]谢克强,杨显万,舒毓章等.多金属硫化矿浮选精矿加压浸出研究.有色金属(冶炼部分),2006,(4):6-9
    [145]李元坤.某含银高铅复杂多金属矿的分离提取.矿产综合利用,2003,(5):3-8
    [146]李崇德,陈金中.某钼、辛、铁复杂多金属矿的选矿工艺研究.铜业工程,2006,(1):15-18
    [147]闫军宁.某高砷高硫微细粒多金属难处理金矿浮选试验研究.矿产综合利用,2006,(3):10-12
    [148]葛振华.我国铅锌资源现状及未来的供应形势.世界有色金属,2003,(9):4-7
    [149]王恭敏.解决我国有色金属资源严重短缺的对策.世界有色金属,2004,(5):4-8
    [150]陈志宇.我国铅锌资源状况及市场形势分析.世界有色金属,2002,(10):7-10
    [151]马永刚.铅锌精矿短缺制约我国铅锌工业长足发展.世界有色金属,2002,(2):14-15
    [152]Marcel Pourbaix.Atlas of Electrochemical Equilibriam in Aqueous Solutions.NACE International Cebeleor
    [153]李洪桂等.湿法冶金学,长沙:中南大学出版社,2002,4
    [154]杨显万.高温水溶液热力学数据计算手册,北京:冶金工业出版社,1983
    [155]华一新.冶金过程动力学导论.北京:冶金工业出版社,2004
    [156]徐采栋,林蓉,汪大成.锌冶金物理化学,上海:上海科学技术出版社,1979
    [157]吴争平,尹周澜,黄开国.辉银矿在硫脲体系中浸出银的热力学分析,贵金属,2000,21(4):29-33
    [158]J K迪安(主编),尚久远(译).兰氏化学手册[M].北京:科学出版社.1991.4-5
    [159]朱元保.电化学数据手册[M].长沙:湖南科技出版社,1985
    [160]胡天觉,曾光明,袁兴中.湿法炼锌废渣中硫脲浸出银的动力学.中国有色金属学报,2001,11(5):933-936
    [161]杨显万,邱定蕃.湿法冶金[M].北京:冶金工业出版社,1998
    [162]吴浩波.镍电解阳极液用M5640萃取除铜研究[硕士学位论文].昆明:昆明理工大学,2003
    [163]杨佼庸,刘大星.萃取.北京:冶金工业出版社,1995
    [164]Gary Kordosky,Michael Virning,Burrel Boley.Equilibrium Copper Strip Points as a Function of Temperature and Other Operating Parameters:Implications for Commercial Copper Solvent Extraction Plants.Tsinghua Science and Technology,2006,11(2):160-164

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700