用户名: 密码: 验证码:
渗氮和热处理对炭还原NO的活性影响及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
NO_x不仅是大气污染物的主要成分,而且会造成二次污染,已成为当前大气污染防治的主要对象。我国NO_x的工业源排放情况十分严重,这些排放源常集中分布在城市或者工业密集区域,其排放口低,NO_x浓度很高,其危害性和潜在危害性大,因此,工业高浓NO_x废气的治理具有重要意义。
     目前用于治理工业高浓NO_x废气的技术各有优势,但也存在明显的不足,高效、经济的NO_x治理技术的开发已成为该领域的研究热点。活性炭在适宜的反应条件下可表现出良好的脱硝性能,与气态还原组分相比,其来源丰富、成本低廉、不会产生二次污染,在工业高浓NO_x废气治理领域有良好的应用前景。由于该过程是一个气-固相反应,所以活性炭的表面化学性质对NO_x的还原有重要影响,但有关此方面的研究较缺乏,还需要进行更多基础研究,为此工艺的工业化应用莫定基础。
     本论文通过渗氮和热处理对活性炭和载铁活性炭进行了改性,借助元素分析、XRD、XPS、TPD-MS和TGA等手段,研究了渗氮和热处理对活性炭表面物化性质的影响规律,同时通过TPR和ISOR实验,考察了改性活性炭反应活性和选择性,并关联表征分析,探讨了渗氮和热处理对活性炭还原NO反应的影响机理及动力学。结果表明:
     1、渗氮和热处理对活性炭表面化学性质的影响明显。当活性炭经氨气热处理1~4h后,表面氧含量显著降低,同时表面形成稳定的含氮官能团,而热处理主要降低了其表面氧含量。
     2、氨气热处理渗氮的活性中心是炭表面的C-OH基团,渗入的氮原子大多位于石墨层结构的边缘,主要以N-5和N-6形态存在。Fe_2O_3的存在提高了活性炭的渗氮效果,C=O基团是载铁活性炭的渗氮活性中心。
     3、在有氧条件下,活性炭的渗氮处理将其起始反应温度降低了约200℃,同时提高了活性炭的低温反应活性和选择性。表面含氮官能团可能作为催化活性中心促进了活性中间产物NO_2的生成,其可以提高活性炭的低温反应活性。与活性炭相比,渗氮活性炭还原NO反应的表观活化能降低了60-80%。
     4、在有氧条件下,渗氮的载铁活性炭表现出优异的反应活性,其在500℃的NO_x转化率超过40%,这归因于活性炭表面Fe_2O_3和含氮官能团对C-NO反应的协同促进作用。渗氮后,载铁活性炭的反应选择性提高了40~60%,表观活化能降低了30-60%。
     5、在无氧条件下,活性炭热处理降低了其还原NO的反应活性,且其反应活性随着热处理程度的加深而降低,这与炭表面C-OH数量的减少有直接关系,C-OH在C-NO反应中扮演了重要角色。在有氧条件下,热处理对活性炭反应活性的影响可以忽略。
NO_x is the major pollutant in the atmosphere,and it can also result in some secondary pollution,so it has been regarded as the main object in the treatment of air pollution.The pollution of NO_x from industrial sources is serious,and these sources usually locate in some cities and industrial areas,so the hazardness and potential hazardness is severe,therefore,it's very meaningful to harness the high concentration NO_x from industry.
     At present,many technologies to deal with the high concentration NO_x have both advantages and disadvantages,so the development of the efficient and economical technology is an interesting subject in the field.Compared with the gaseous reducing agents,activated carbons can also show good performance in the reduction of NO_x. Moreover,they are cheap and free of secondary pollution besides abundant sources, which make them a well applicable perspective in the field of DeNOx.Because the reduction of NO by carbon is a heterogeneous reaction,the effect of surface chemistries on the reaction is very important,but there some few related studies,so it is necessary to do more basic research.
     Some activated carbons were modified by nitrogen doping and heat treatment,and the regularity for change of the surface physicochemical characters was studied with kinds of measurement technologies such as elemental analyzer,XRD,XPS,TPD-MS, TGA and so on.At the same time,the reduction of NO with the modified carbons was investigated in a fixed-bed reactor when oxygen was both present and absent. Combined with the above analysis of the surface chemistries,the mechanisms for the reduction of NO with the modified carbons were studied in details.Results show that:
     1.The effect of both nitrogen doping and heat treatment on the surface chemistries is significant.When the carbons had been annealed in ammonia for 1~4h,the surface oxygen content decreased greatly,while the surface nitrogen content increased by 1~4 times.The main change of the surface chemistries was the surface oxygen content by the heat treatment,and it deceased by 45%when the carbon had been heated at 800℃for 4h.
     2.The active site for nitrogen doping by annealing in ammonia is C-OH,and most incorporated nitrogen atoms locate at the edges of graphene structures,especially in the form of N-6 and N-5.The existence of Fe_2O_3 particles can facilitate the nitrogen doping,and C=O is the active site for the nitrogen doping.
     3.The reduction of NO with the carbon becomes noticeable at about 500℃in the presence of oxygen,but the reaction begins at about 300℃with the nitrogen-doped carbon,and the NO_x conversion is as high as 18%at 500℃.It may be attributed to the formation of NO_2 with the help of surface nitrogen species as catalytic centers. Compared with the pure carbon,both the reactivity and selectivity of the modified carbons increase greatly,and the apparent activation energy of the reduction of NO by the modified carbons decreases by 60~80%.
     4.The carbon that is incorporated both nitrogen and Fe_2O_3 shows excellent activity for the reduction of NO in the presence of oxygen,and the NO_x conversion is higher than 40%at 500℃,which is due to the cooperative effect of Fe_2O_3 and the surface nitrogen species.Moreover the selectivity of modified carbon increases by 40~60%, and the apparent activation energy decreases by 30~60%.
     5.When oxygen is absent,the heat treatment has a negative effect on the activity of the carbon,and the deeper heat treatment results in the lower activity,which is directly relevant to the decrease of the amount of C-OH which plays an important role in the reduction of NO with carbon.But the effect can be neglected in the presence of oxygen.
引文
[1]陈英旭.环境学[J].北京:中国环境科学出版社,2001.
    [2]王文兴,童莉,海热提.土壤污染物来源及前沿问题[J].生态环境,2005,14(1):1-5.
    [3]胡倩,张世秋,吴丹.美国和欧洲氮氧化物控制政策对中国的借鉴意义[J].环境保护,2007,(9):74-78.
    [4]Galloway J N.Acidification of the world:nature and anthropogenic[J].Water,Air and Soil Pollution,2001,130:17-24.
    [5]田贺忠,郝吉明,陆永琪,朱天乐.中国氮氧化物排放清单及分布特征[J].中国环境科学,2001,21(6):493-497.
    [6]Illan-Gomez M J,Linares-Solano A,Salinas-Martinez de Lecea C,et al.Nitrogen oxide(NO)reduction by activated carbons.1.The role of carbon porosity and surface area[J].Energy and Fuels,1993,7(1):146-154.
    [7]Illan-Gomez M J,Linares-Solano A,Radovie L R,et al.NO reduction by activated carbons.2.Catalytic effect of potassium[J].Energy and Fuels,1995,9(1):97-103.
    [8]Illan-Gomez M J,Linares-Solano A,Radovie L R,et al.NO Reduction by activated carbons.3.Influence of catalyst loading on the catalytic effect of potassium[J].Energy and Fuels,1995,9(1):104-111.
    [9]Illan-Gomez M J,Linares-Solano A,Radovic L R,et al.NO reduction by activated carbons.4.Catalysis by calcium[J].Energy and Fuels,1995,9(1):112-118.
    [10]Illan-Gomez M J,Linares-Solano A,Radovic L R,et al.NO Reduction by Activated Carbons.5.Catalytic effect of iron[J].Energy and Fuels,1995,9(3):540-548.
    [11]Illan-Gomez M J,Linares-Solano A,Salinas-Martinez de Lecea C.NO Reduction by activated carbon.6.Catalysis by transition metals[J].Energy and Fuels,1995,9(6):976-983.
    [12]Illan-Gomez M J,Linares-Solano A,Radovic L R,et al.NO reduction by activated carbons.7.Some mechanistic aspects of uneatalyzed and catalyzed reaction[J].Energy and Fuels,1996,10(1):158-168.
    [13]Illan-Gomez M J,Garcia-Gareia A,Salinas-Martinez de Lecea C,et al.Activated carbons from spanish coals.2.Chemical activation[J].Energy and Fuels,1996,10(5):1108-1114.
    [14]Garcia-Garcia A,Illan-Gomez M J,Linares-Solano A,et al.Thermal treatment effect on NO reduction by potassium-containing coal-briquettes and coal-chars[J].Fuel Processing Technology,1999,61:289-297.
    [15]Illan-Gomez M J,Raymundo-Pinaero E,Garcia-Garcia A,et al.Catalytic NO_x reduction by carbon supporting metals[J].Applied Catalysis B:Environmental,1999,20:267-275.
    [16]Illan-Gomez M J,Brandan S,Linares-Solano A,et al.NO_x reduction by carbon supporting potassium-bimetallic catalysts[J].Applied Catalysis B:Environmental,2000,25:11-18.
    [17]Illan-Gomez M J,Brandan S,Salinas-Martinez de Lecea C,et al.Improvements in NO_x reduction by carbon using bimetallic catalysts.Fuel,2001,80(14):2001-2005.
    [18]Bueno-Lopez A,Garcia-Garcia A,Salinas-Martinez de Lecea C,et al.Low-cost potassium-containing char briquettes for NO_x reduction[J].Energy and Fuels,2002,16(4):997-1003.
    [19]Bueno-Lopez A,Garcia-Garcia A,Linares-Solano A.NO_x reduction by potassium-containing coal pellets.Discussing lifetime test profiles[J].Fuel Processing Technology,2002,77-78:301-307.
    [20]Bueno-Lopez A,Caballero J A,Garcia-Garcia A.Analysis of the reaction conditions in the NO_x reduction process by carbon with a view to achieve high NO_x conversions residence time considerations[J].Energy and Fuels,2002,16(6):1425-1428.
    [21]Garcia-Garcia A,Gregorio A,Franco C,et al.Unconverted chars obtained during biomass gasification on a pilot-scale gasifier as a source of activated carbon production[J].Bioresource Technology,2003,88:27-32.
    [22]Bueno-Lopez A,Garcia-Garcia A,Caballero J A,et al.Influence of potassium loading at different reaction temperatures on the NO_x reduction process by potassium-containing coal pellets[J].Fuel,2003,82:267-274.
    [23]Bueno-Lopez A,Garcia-Garcia A.Potassium-containing coal-pellets for NO_x reduction under gas mixtures of different composition[J].Carbon,2004,42:1565-1574.
    [24]Bueno-Lopez A,Garcia-Garcia A.Combined SO_2 and NO_x removal at moderate temperature by a dual bed of potassium-containing coal-pellets and calcium-containing pellets[J].Fuel Processing Technology,2005,86:1745-1759.
    [25]Bueno-Lopez A,Soriano-Mora J M,Garcia-Garcia A.Study of the temperature window for the selective reduction of NO_x in O_2-rich gas mixtures by metal-loaded carbon[J].Catalysis Communications,2006,7:678-684.
    [26]Bueno-Lopez A,Caballero-Suarez J A,Garcia-Garcia A.Kinetic model for the NO_x reduction process by potassium containing coal char pellets at moderate temperature(350-450℃)in the presence of O_2 and H_2O[J].Fuel Processing Technology,2006,87:429-436.
    [27]Suuberg E M,Wojtowicz M,Calo J M Reaction order for low temperature oxidation of carbons[J].Symposium(International)on Combustion,1989,22(1):79-87.
    [28]Hall P J,Calo J M,Teng,H,et al.The nature of carbon-oxygen surface complexes produced by different oxidants[J].ACS Div.Fuel Chem.Prepr.,1989,34(1):112-116.
    [29]Suuberg E M,Wojtowicz M,Calo J M.Some aspects of the thermal annealing process in a phenol-formaldehyde resin char[J].Carbon,1989,27(3):431-440.
    [30]Suuberg E M,Teng H,Calo J M.Studies on the kinetics and mechanism of the reaction of NO with carbon[J].Symposium(International)on Combustion,1991,23(1):1199-1205.
    [31]Teng H,Suuberg E M,Calo J M.Studies on the reduction of nitric oxide by carbon:the NO-carbon gasification reaction[J].Energy and Fuels,1992,6(4):398-406.
    [32]Teng H.The reactions of nitric oxide with carbon[D].Rhode Island:Brown University,1992.
    [33]Teng H,Suuberg E M.Chemisorption of nitric-oxide on char.Ⅰ.Reversible nitric-oxide sorption[J].Journal of Physical Chemistry,1993,97:478-493.
    [34]Teng H,Suuberg E M.Chemisorption of nitric oxide on char.Ⅱ Irreversible carbon oxide formation[J].Industrial and Engineering Chemistry Research,1993,32(3):416-423.
    [35]Suuberg E M,Teng H,Aarna Ⅰ.An examination of the two kinetic regimes of the nitric oxide-carbon gasification reaction[J].ACS Div.Fuel Chem.Prepr.,1996,41,160-167.
    [36]Aarna Ⅰ,Suuberg E M.A review of the kinetics of the nitric oxide-carbon reaction[J].Fuel,1997,76(6):475-491.
    [37]Aarna I,Suuberg E M.A study of the reaction order of the NO-carbon gasification reaction[J].Symposium(International)on Combustion.1998,27(2):3061-3068.
    [38]Calo J M,Suuberg E M,Aama I,et al.The role of surface area in the NO-Carbon reaction[J].Energy and Fuels,1999,13(3):761-762.
    [39]Aarna I,Suuberg E M.The role of carbon monoxide in the NO-carbon reaction [J].Energy and Fuels,1999,13(6):1145-1153.
    [40]Yamashita H,Yamada H,Tomita A.Reaction of nitric oxide with metal-loaded carbon in the presence of oxygen[J].Applied Catalysis,1991,78(2):L1-L6.
    [41]Yamashita H,Tomita A,Yamada H,et al.Influence of char surface chemistry on the reduction of nitric oxide with chars[J].Energy and Fuels,1993,7(1):85-89.
    [42]Suzuki T,Kyotani T,Tomita A.Study on the carbon-nitric oxide reaction in the presence of oxygen[J].Ind.Eng.Chem.Res.,1994,33(11):2840-2845.
    [43]Orikasa H,Suzuld T,Kyotani T,et al.[C]// Proceedings of the 22nd Biennial Conference on Carbon,American Carbon Society.San Diego:[s.n.],1995:626-627.
    [44]Chambrion P,Orikasa H,Kyotani T,et al.NO_x reduction with carbon-analysis of reaction mechanism by using isotopically labelled NO[J].ACS Div.Fuel Chem.Prepr.,1996,41(1):170-173.
    [45]Chambrion P,Orikasa H,Suzuki T,et al.A study of the C-NO reaction by using isotopically labeled C and NO[J].Fuel,1997,76(6):493-498.
    [46]Chambrion P,Suzuki T,Zhang,Z G.XPS of nitrogen-containing functional groups formed during the C-NO reaction[J].Energy and Fuels,1997,11(3):681-685.
    [47]Chambrion P,Kyotani T,Tomita A.C-NO reaction in the presence of O_2[J].Symposium(International)on Combustion,1998,27(2):3053-3059.
    [48]Noda K,Chambrion P,Kyotani T,et al.A study of the N_2 formation mechanism in carbon-N_2O reaction by using isotope gases[J].Energy and Fuels,1999,13(4):941-946.
    [49]Kyotani T,Tomita A.Analysis of the reaction of carbon with NO/N_2O using Ab Initio molecular orbital theory[J].J.Phys.Chem.B.,1999,103(17):3434-3441.
    [50]Tomita A.Suppression of nitrogen oxides emission by carbonaceous reductants [J].Fuel Processing Tech.,2001,71(1-3):53-70.
    [51]Orikasa H,Tomita A.NO and N_2 formation behavior during the high-temperature O_2 gasification of coal char[J].Energy and Fuels,2003,17(2):405-411.
    [52]许春丽,李保新.日本大气污染控制对策及现状[J].环境科学动态,2001,3:33-36.
    [53]赵惠富.污染气体NO_x的形成和控制[M].北京:科学出版社,1993.
    [54]王珂,李作芬.浅谈大气污染物对人体健康的影响[J].云南环境科学,2003,22(增刊1):145-147.
    [55]徐华英.我国空气污染及其对人体健康的影响[J].气候与环境研究,2001,4(1):56-58.
    [56]陈立民,吴力波.臭氧层损耗研究进展评述[J].上海环境科学,1999,18(5):21-25.
    [57]王自发,高超,谢付莹.中国酸雨模式研究回顾与所面临的挑战[J].自然杂志,2007,29(2):78-82.
    [58]王海强,吴忠标.烟气氮氧化物脱除技术的特点分析[J].能源与环境,2004,3:27-30.
    [59]郭兴明,郝吉明,田贺忠,等.固定源氮氧化物排放及控制技术应用[J].环境污染治理技术与设备,2006,7(12):116-121.
    [60]郑易生.中国环境污染经济损失估算[J].环境污染与防治.1997(6):10-13.
    [61]Butch R,Halpm E,Sulivan J A,et al.A comparison of t he selective catalytic reduction of NO_x over Al_2O_3 and sulphated Al_2O_3 using CH_3OH and C_3H_8 as reductants[J].Applied Catalysis B:Environmental,1998,17:115-129.
    [62]Butch R,Breen J P,Meunier F C.A review of t he selective reduction of NO_x with hydrocarbons under lean-burn conditions with non-zeolitic oxide and platinum group metal catalysts[J].Applied Catalysis B:Environmental,2002,39:283-303.
    [63]Marbán G,Fuertes A B.Low-temperature SCR of NO_x with NH_3 over Nomextm rejects-based activated carbon fibre composite-supported manganese oxides Part Ⅰ[J].Applied Catalysis B:Environmental,2001,34:43-53.
    [64]Marbán G,Fuertes A B.Low-temperature SCRofNO_x with NH_3 over Nomextm rejects-based activated carbon fibre composite-supported manganese oxides Part Ⅱ[J].Applied Catalysis B:Environmental,2001,34:55-71.
    [65]Wallin M,Karlsson C J,Skoglundh M,et al.Selective catalytic reduction of NO_x with NH_3 over zeolite HZSM-5:influence of transient ammonia supply[J].Journal of Catalysis,2003,218:354-364.
    [66]Stevensonl S A,Vartuli J C.The selective catalytic reduction of NO_2 by NH_3over HZSM-5[J].Journal of Catalysis,2002,208:100-105.
    [67]唐晓龙,郝吉明,徐文国,等.固定源低温选择性催化还原NO_x技术研究进展[J].环境科学学报,2005,25(10):1297-1305.
    [68]张琳,张秀玲,等.催化脱除大气污染物NO_x研究进展[J].低温与特气,2000,18(4):7-10.
    [69]高润良,王睿.氮氧化物污染防治技术进展[J].环境保护科学,2002,28(112):1-3.
    [70]任晓莉,张卫江,杨宝强,等.工业废气中氮氧化物的治理研究[J].环境工程学报,2007,1(6):87-90.
    [71]易红宏,宁平,等.氮氧化物废气的治理技术[J].环境科学动态,1998,4:17-20.
    [72]Iwamoto M,Yahiro H,Mine Y,et al.Excessively copper ion-exchanged ZSM-5 zeolites as highly active catalysts for direct decomposition of nitrogen monoxide[J].Chem.Lett.,1989,213-216.
    [73]Armor J N.Catalytic removal of nitrogen oxides:where are the opportunities[J].Catalysis Today,1995,26:99-105.
    [74]Fritz A,Pitchor V.The current state of research on automotive lean NO_x catalysis[J].Appl.Catal.B:Environmental,1997,13:1-25.
    [75]Ishihara T,Ando M,Sada K,et al.Direct decomposition of NO into N_2 and O_2over La(Ba)Mn(In)O_3 perovskite oxide[J].Journal of Catalysis,2003,220:104-114.
    [76]金耀民,陈建孟.络合吸收结合生物转化去除氮氧化物技术[J].环境污染治理技术与设备,2003,4(7):37-40.
    [77]Li W,Wu C Z,Zhang S H,et al.Evaluation of microbial reduction of Fe(Ⅲ)EDTA in a chemical absorption-biological reduction integrated NO_x removal system[J].Environmental Science & Technology,2007,41(2):639-644.
    [78]Li W,Wu C Z,Shi Y.Metal chelate absorption coupled with microbial reduction for the removal of NO_x from flue gas[J].Journal of Chemical Technology and Biotechnology,2006,81(3):306-311.
    [79]Ma BY,Li W,Jing G H,et al.Dissimilatory reduction of Fe-Ⅲ(EDTA)with microorganisms in the system of nitric oxide removal from the flue gas by metal chelate absorption[J].Journal of Environmental Sciences-China,2004,16(3):428-430.
    [80]Pereiraa F J,Beeéra J M,Gibbsa B,et al.NO_x emissions from fluidized-bed coal combustors[J].Symposium(International)on Combustion,1975,15(1):1149-1156.
    [81]Hahn W A,Shadman F.Effect of solid structural change on the rate of NO formation during char combustion[J].Combustion Science and Technology,1983,30(1-6):89-95.
    [82]Butch T E,Tillman F R,Chen W Y,et al.Partitioning of nitrogenous species in the fuel-rich state of reburning[J].Energy and Fuels,1991,5(2):231-237.
    [83]Butch T E,Cben W Y,Lester T W,et al.Interaction of fuel-N with nitric oxide during rebuming With coal[J].Combustion and Flame,1994,98:391-401.
    [84]Chen W Y,Ma L.Effect of heterogeneous mechanisms during rebuming of nitrogen oxide[J].AICHE Journal,1996,42(7):1968-1975.
    [85]Gupta H.NO_x reduction by carbonaceous materials and CO_2 separation using regenerative metal oxides from fossil fuel based flue gas[D].Ohio:The Ohio State University,2001:26-27.
    [86]Setiabudi,A,Makkee M,Moulijn J A.The role of NO_2 and O_2 in the accelerated combustion of soot in diesel exhaust gases[J].Applied Catalysis B:Environmental,2004,50(3):185-194.
    [87]Azambre B,Collura S,Triehard J M,et al.Nature and thermal stability of adsorbed intermediates formed during the reaction of diesel soot with nitrogen dioxide [J].Appl.Surf.Sei.,2006,253(4):2296-2303.
    [88]Muekenhuber H,Grotbe H.The heterogeneous reaction between soot and NO_2 at elevated temperature[J].Carbon,2006,44(3):546-559.
    [89]Nejar N,Makkee M,Illan-Gomez M J.Catalytic removal of NO_x and soot from diesel exhaust:Oxidation behaviour of carbon materials used as model soot[J].Applied Catalysis B:Environmental,2007,75(1-2):11-16.
    [90]Nejar N,Illan-Gomez M J.Potassium-copper and potassium-cobalt catalysts supported on alumina for simultaneous NO_x and soot removal from simulated diesel engine exhaust[J].Applied Catalysis B:Environmental,2007,70(1-4):261-268.
    [91]Nejar N,Illan-Gomez M J.Noble-free potassium-bimetallic catalysts supported on beta-zeolite for the simultaneous removal of NO_x and soot from simulated diesel exhaust[J].Catalysis Today,2007,119(1-4):262-266.
    [92]Krishna K,Bueno-Lopez A,Makkee M,et al.Potential rare-earth modified CeO_2catalysts for soot oxidation part Ⅱ:Characterisation and catalytic activity with NO + O_2[J].Applied Catalysis B:Environmental,2007,75(3-4):201-209.
    [93]Krishna K,Bueno-Lopez A,Makkee M,et al.Potential rare-earth modified CeO_2catalysts for soot oxidation:Part Ⅲ.Effect of dopant loading and calcination temperature on catalytic activity with O_2 and NO + O_2[J].Applied Catalysis B:Environmental,2007,75(3-4):210-220.
    [94]Atribak I,Sueh-Basanez I,Bueno-Lopez A,Gareia A.Comparison of the catalytic activity of MO_2(M =Ti,Zr,Ce)for soot oxidation under NO_x/O_2[J].Journal of Catalysis,2007,250(1):75-84.
    [95]彭小圣,林赫,上官文峰,等.一种用于同时去除NO_x和碳烟的新型高效催化剂[J].上海交通大学学报,2007,41(5):669-672.
    [96]Shangguan W F,Teraoka Y,Kagawa S.Kinetics of soot-O_2,soot-NO and soot-O_2-NO reactions over spinel-type CuFe_2O_4 catalyst[J].Applied Catalysis B:Environmental,1997,12(2-3):237-247.
    [97]Shangguan W F,Teraoka Y,Kagawa S.Promotion effect of potassium on the catalytic property of CuFe_2O_4 for the simultaneous removal of NO_x and diesel soot particulate[J].Applied Catalysis B:Environmental,1998,16(2):149-154.
    [98]Shangguan W F,Teraoka Y,Kagawa S.Promotion effect of potassium on the catalytic property of CuFe_2O_4 for the simultaneous removal of NO_x and diesel soot particulate[J].Appl.Catal.B:Environmental,1998,16(2):149-154.
    [99]刘光辉,黄震,上官文峰,等.同时催化去除柴油机微粒和NO_x的试验研究(2)[J].内燃机学报,2003,21(2):111-114.
    [100]Peng X S,Shangguan W F,Huang Z.A highly efficient and porous catalyst for simultaneous removal of NO_x and diesel soot[J].Catalysis Communications,2007,8,(2):157-161.
    [101]Brown C E,Hall P G.Physical adsorption of gases on graphite[J].Trans.Farad.Soc.,1971,67:3558-3564.
    [102]Smith R N,Swinehar N,Lesnini D.The oxidation of carbon by nitric oxide[J].J.Phys.Chem.,1959,63:544-547.
    [103]Mochida I,Ogaki M,Fujitsu H,et al.Reduction of nitric oxide with activated PAN fibers[J].Fuel,1985,64:1054-1057.
    [104]Furusawa T,Kunii D,Oguma A,et al.Rate of reduction of nitric oxide by char [J].International Chemical Engr.,1980,20(2):239-244.
    [105]Chan L K,Sarofim A F,Beer J M.Kinetics of the NO-carbon reaction at fluidized bed combustor conditions[J].Combustion and Flame,1983,52:37-45.
    [106]Rubel A M,Stencel J M,Ahmed S.Activated carbon for selective removal of nitrogen oxide from combustion flue gas[J].ACS Division of Fuel Chemistry,1993,38(2):726-733.
    [107]Hengel T D,Walker P L.Catalysis of lignite char gasification by exchangeable calcium and magnesium[J].Fuel,1984,63:1214-1219.
    [108]Radovic L R,Walker P L,Jenkins R G.Importance of catalyst dispersion in the gasification of lignite chars[J].J.of Catalysis,1983,82:382-394.
    [109]Levendis Y A,Nam S W,Lowenberg M,et al.Catalysis of the combustion of synthetic char particles by various form of calcium additives[J].Energy and Fuels,1989,3:28-37.
    [110]Gopalakrishnan R,Fullwood M J,Bartholomew C H.Catalysis of char oxidation by calcium minerals:effects of calcium compound chemistry on intrinsic reactivity of doped spherocarb and zap chars[J].Energy and Fuels,1994,8:984-989.
    [111]Kaptein F,Meirop A J C,Abbel G,et al.Reduction of NO_x over alkali metal-carbon systems[J].J.Chem.Soc.Chem.Commun.,1984,1085-1086.
    [112]高志明,赵震,杨向光,等.CuO/活性炭和Fe_2O_3/活性炭催化还原NO[J]. 应用化学,1996,13(4):77-79.
    [113]高志明,杨向光,吴越.活性炭的表面化学性质及对CuO/C催化剂上NO 还原性能的影响[J].科学通报,1996,41(9):787-790.
    [114]高志明,王新平,叶兴凯,等.活性炭酸处理对CuO/C催化剂上NO还原反应的影响[J].分子催化,1996,10(2):109-114.
    [115]赵宗彬,李文,李保庆.半焦负载钙和铁催化还原NO的研究[J].环境科学,2001,22(5):17-20.
    [116]赵宗彬,李文,李保庆.半焦负载Na-Fe催化还原NO的研究[J].环境化学,2002,21(1):19-25.
    [117]常慧,李保庆.SO_2气氛下半焦负载Na、Ca、Fe对NO-半焦还原反应的影响[J].中国矿业大学学报,2003,32(2):152-156.
    [118]钟北京,张怀山.催化剂对贫煤焦还原NO动力学参数的影响[J].燃烧科学与技术,2003,9(2):97-99.
    [119]唐浩,钟北京.CaO对煤焦还原NO的催化作用[J].工程热物理学报,2003,24(6):1058-1060.
    [120]唐浩,钟北京.不同催化剂对脱矿煤焦还原NO的催化能力比较[J].热能动力工程,2005,20(1):27-29.
    [121]周威明,杜丽珍,史惠祥,等.负载氧化镧的活性炭还原NO的研究[J].环境污染与防治,2006,28(9):676-679.
    [122]Gupta H,Benson S A.Pilot-scale studies of NO_x reduction by activated lignite high-sodium lignite chars:a demonstration of the CARBONO_x process[J].Ind.Eng.Chem.Res.,2004,43(18):5820-5827.
    [123]Gupta H,Fan L S.Reduction of nitric oxide from nombustion flue gas by bituminous coal char in the presence of oxygen[J].Ind.Eng.Chem.Res.,2003,42:2536-2543.
    [124]高志明,吴越.活性炭作为载体和还原剂对 NO 的还原作用[J].催化学报,1996,17(2):117-122.
    [125]郭永世,陈家驹,张守臣,等.活性炭纤维表面含氧基团及其 NO 的还原[J].大连理工大学学报,2000,40(4):413-416.
    [126]Pevida C,Arenillas A,Rubiera E,et al.Heterogeneous reduction of nitric oxide on synthetic coal chars[J].Fuel,2005,84:2275-2279.
    [127]Matzner S,Boehm H P.Influence of nitrogen doping on the adsorption and reduction of nitrie oxide by activated carbons[J].Carbon,1998,36(11):1697-1700.
    [128]Levy J,Chan L,Saroftm A F,et al.NO/char reactions at pulverized coal flame conditions[J].Eighteenth Symposium(International)on Combustion,1981,18(1):111-120.
    [129]Brown T C,Haynes B S.Interaction of carbon monoxide with carbon and carbon surface oxides[J].Energy and Fuels,1992,6(2):154-159.
    [130]Zawadzki J,Wisniewski M,Skowroniska K.Heterogeneous reactions of NO_2and NO-O_2 on the surface of carbons[J].Carbon,2003,41(2):235-246.
    [131]Huang M C,Teng H.Nitrogen-containing carbons from phenol-formaldehyde resins and their catalytic activity in NO reduction with NH_3[J].Carbon,2003,41(5):951-957.
    [132]Szymanski G S,Grzybek T,Papp H.Influence of nitrogen surface functionalities on the catalytic activity of activated carbon in low temperature SCR of NO_x with NH_3[J].Catal.Tod.,2004,90(1-2):51-59.
    [133]刘德生.环境检测[M].北京:化学工业出版社,2001.
    [134]Izquierdo T M,Rubio B.Influence of char physicochemical features on the flue gas nitric oxide reduction with chars[J].Environ.Sei.Technol.,1998,32:4017-4022.
    [135]Jurewicz K,Babel K,Ziolkowski A,et al.Ammoxidation of brown coals for supercapacitors[J].Fuel Process.Technol.,2002,77-78(20):191-198.
    [136]Jansen R J J,Bekkum H.Amination and ammoxidation of activated carbons[J].Carbon,1994,32(8):1507-1516.
    [137]Bimer J,Salbut P D,Berlozecki S,et al.Modified active carbons from precursors enriched with nitrogen functions:sulfur removal capabilities[J].Fuel 1998,77(6):519-525.
    [138]Biniak S,Szymanski G S,Siedlewski J,et al..The characterization of activated carbons with oxygen and nitrogen surface groups[J].Carbon,1997,35(12):1799-1810.
    [139]Kapteijn F,Moulijn J A,Matzner S,et al.The development of nitrogen functionality in model chars during gasification in CO_2 and O_2[J].Carbon,1999,37:1143-1150.
    [140]Pevida A,Rubiera F,Pis J J.Synthetic coal chars for the elucidation of NO heterogeneous reduction mechanisms[J].Fuel,2007,86(1-2):41-49.
    [141]Stohr B,Boehm H P,Schlogl R.Enhancement of the catalytic activity of activated carbons in oxidation reactions by thermal treatment with ammonia or hydrogen cyanide and observation of a superoxide species as a possible intermediate [J].Carbon,1991,29(6):707-720.
    [142]Raymundo-Pinero E,Cazorla-Amoros D,Linares-Solano A.The role of different nitrogen functional groups on the removal of SO_2 from flue gases by N-doped activated carbon powders and fibres[J].Carbon,2003,41(10):1925-1932.
    [143]Otowa T,Nojima Y,Miyazaki T.Development of KOH activated high surface area carbon and its application to drinking water purification[J].Carbon,1997,35(9):1315-1319.
    [144]Pietrzak R,Wachowska H,Nowicki P.Preparation of nitrogen-enriched activated carbons from brown coal[J].Energy and Fuels,2006,20(3):1275-1280.
    [145]乔志军,李家俊,赵乃勤,魏娜.高温热处理对活性炭纤维微孔及表面性能的影响[J].2004,19(1):53-56.
    [146]辛勤.固体催化剂研究方法(上册)[M].北京:科学出版社,2004.
    [147]Ofner J,Grothe H.A mechanistic study of the cooperative effect of NO_2 and O_2 on the soot surfaces[J].Asian Chemistry Letters,2007,11(1-2):57-61.
    [148]Muckenhuber H,Grothe H.A DRIFTS study of the heterogeneous reaction of
    NO_2 with carbonaceous materials at elevated temperature[J].Carbon,2007,45:321-329.
    [149]徐寿昌.有机化学[M].北京:高等教育出版社,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700