用户名: 密码: 验证码:
岩矿波谱数据分析与信息提取方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高光谱遥感是当今国内外遥感领域,特别是遥感地质界重点研究和发展的高科技应用技术之一。传统的多光谱遥感由于波谱分辨率有限,难以区分地物独特而丰富的波谱信息。上世纪80年代以来,高光谱遥感技术在地质找矿、地物波谱信息提取等方面做了大量工作,取得了许多成果。研究表明,利用纳米级的高光谱遥感数据提取成矿地质体的标识性光谱信息已成为可能。
     目前,国内外高光谱遥感的地质应用研究主要集中在以下方面:一是岩矿波谱特性分析。大多数岩矿波谱特征研究主要在0.5-2.5μm的可见光—近红外谱段,然而研究表明很多岩矿在此区间波谱特征不明显,而在中—远红外却有明显显示(如铁铝榴石)。因此,有必要对中—远红外波段岩矿波谱特性进行系统的统计和分析研究。其二是岩矿波谱的测试分析。传统的波谱测试受仪器硬件、软件以及测试通行条件等限制,高精度的波谱测试只能在少数几个部门进行。目前,随着高精度便携式波谱仪的引进,波谱测试工作为大多遥感工作者所熟悉和重视,岩矿波谱的测试和研究工作得到推广。三是岩矿波谱信息提取算法和反演模型的研究,虽然目前已发展了较多的岩矿波谱信息提取算法和反演模型,但对于成矿地质体的弱信息提取,已有方法存在缺陷,尚不能解决实际应用中的有些问题,需要提出新的算法和反演模型。
     纵观国内外遥感地学应用研究,高光谱遥感地质仍处于试验研究阶段,虽然取得一些研究成果,但未进入实用阶段。因此,地物高光谱遥感信息形成机理、波谱测试及其影响因素、高光谱数据处理方法以及高光谱遥感图像处理和信息提取技术与应用在一定程度上还不成熟。本论文综合分析上述研究中的不足,在深入分析研究岩矿中—远红外波谱特性基础上,设计了岩矿波谱室内测试方案并深化现有算法和模型,提出了新的波谱降维和匹配方法,最后通过实例应用,提出高光谱遥感数据岩矿信息提取的技术流程。
     本文主要研究内容和取得的创新成果如下:
     (1)重点分析了由矿物分子或晶体的振动过程引起的波谱吸收带,以群论分析为工具,通过矩阵来推算由基频振动引起的岩矿波谱吸收带数目。在此基础上,分析了各类矿物的波谱特点,考虑到中—远红外波段的岩矿波谱特征国内尚无系统统计与分析,论文详细阐述了中—远红外波段的岩矿波谱特征,大大扩展了现有的岩矿波谱研究范围,对以后遥感探测仪波谱设置选择具有现实和指导意义。
     (2)波谱测试一直是岩矿鉴定和遥感地物识别的基础,随着便携式波谱仪的推广和高光谱遥感技术的发展,岩矿波谱测试愈来愈重要,论文设计了室内岩矿波谱测试方案,应用美国ASD便携式波谱测试仪,完成了试验区典型岩矿的波谱测试。并基于Visual Studio 2005中的C#编程环境以及Microsoft Access数据库技术,初步建立了岩矿波谱数据管理系统,为室内岩矿波谱的获取与管理提供了新的思路。
     (3)提出基于岩矿波谱特征的混合降维方法。与前人波谱降维方法不同,在波谱子空间分解过程中,该方法将地物独有的波谱特征,尤其是诊断性波谱特征作为一个独立的子空间来考虑,这减少了地物诊断性波谱特征这部分信息的损失。实验分析表明,该方法优于按照波段性质划分子空间的方法。
     (4)提出基于岩矿波谱比值和差值评价波谱相似性的方法。该方法对波谱求出比值或差值后进行数据统计,根据有关统计指标(如最大、最小偏离度;平均偏离度等)评价波谱匹配程度。这丰富了现有的波谱匹配技术,具有一定的应用前景和推广价值。
     (5)通过遥感数据在岩矿信息提取中的应用研究,初步形成了实用化的基于波谱数据的高光谱和多光谱遥感影像岩矿信息识别与提取的技术流程。
Hyperspectral remote sensing is one of important high-tech and application technologies in the remote sensing area, especially in Geo-remote sensing area from home and broad. Due to the limitation of the spectral resolution in traditional Multi-spectral remote sensing, it is complicated to recognize the special but rich spectral information of the ground objects. From the 80s' of last century, hyperspectral remote sensing is wide used in mine search, the extraction of the spectral information and so on, also we get so many successful results. The research shows that, it is possible to extract the indicative spectral information of the geological body with the assistant of the Nano-hyper remote sensing data
     Currently, the Geo-application and research of the hyperspectral remote sensing in home and broad is mainly collected at several parts as follows: first, the analysis of the spectral character of minerals. Most of the research on the characteristics of the minerals is mainly concentrated on visible light and near-infrareds whose wave length are 0.5-2.5μm, whereas the research shows that a lot of minerals own less obvious wave characteristics, nevertheless, they are well- shown under the mid-far infrareds (such as Almandite). Therefore, it is necessary to systematically analyze and research the mid-far infrared wave characteristics of the minerals. Second, test analysis of the wave characteristics of the minerals. Traditional wave test is limited by hardware and software of the instrument, also limited by the communication condition. High precision wave test was only applied in a few departments. Currently, with the instruction of the portable high precision Spectrometer, the remote sensing worker is quite familiar with wave test so that the mineral spectrum work is widely promoted. Third , the research on the extraction algorithm of the mineral spectral wave information and inversion model. Although there are many the extraction algorithms of the mineral spectral wave information and Inversion model, but to the extract the weak information of the geological body, there are some faults in the existent methods, it can not resolve some application problem, so it is necessary to create the new algorithm and model.
     Throughout the application of geo-remote sensing research from home and abroad, hyper remote sensing still stays at the test level. Although we get some result, it is still away from the application level. So to some degree, the forming mechanism of the ground object hyperspectral remote sensing, the spectral test and the influence, the methods of hyperspectral data and the technology of the remote sensing images of hyper spectrum processing and information extraction and application is not very developed. Based on comprehensively analyze the disadvantages of above research and specifically analysis the mid-far infrared spectral characters, the author designs the new inner test method of the mineral spectrum. Moreover, the author promotes the existed algorithms and models, and offers the new dimensionality reduction and matching method. At last, through the application of the examples, the author offers the mineral information of the technology process of the hyper remote sensing data.
     The main research and creative consequence of this article as follows:
     (1) This article mainly analyzes spectral band caused by the vibration process of the molecular and crystal. Based on the group theory analysis, through the matrix, the author projects the number of the mineral spectral absorption band caused by the basic frequency vibration. Above this, the author analyzes the spectral characteristics of different kinds of minerals. With the thinking of the few analysis and statistics of the spectral characteristics of the minerals the mid-far infrared wave in out country, this article shows the characteristics of mid-far infrared band of the minerals, also it widely expend the existed research range of the characteristics of the mineral spectral. It owns the great reality sense to the set and selection of the RS sensor.
     (2) Spectrum test always is foundation of the rock-mineral identification and the ground object recognition in remote sensing. With the development of the portable spectrometer and the technology of the hyper remote sensing, the mineral spectral test becomes more and more important. The author of this article designs inner mineral spectral test method. With the application of the portable ASD spectrometer, the author finished the spectral test of some typical minerals in the experimental area. Also, based on the C# environment of Visual Studio 2005 and Microsoft Access database technology, initially establishes spectral data management system. It is new way of thinking of access and management of the inner mineral spectrum.
     (3) The author offers the method of the mixture dimensionality reduction. Different from the exeistent methods, during the sub space decomposition of the ground object, the method of the mixture dimensionality reduction take the unique spectral characteristics,especially the Diagnostic spectrum characteristics as an independent sub space, this can reduce the loss of information of the unique spectral characteristic of the ground object.Through the analysis of the experiment, this article depicts this method is more advanced than the method depended on the band characteristics to the sub space division.
     (4) The author offers the evaluate method about the similarity which based on the spectral ratio and margin.Based on the method, the author obtains the statistics of the ratio and margin of the spectrum. Depending on some relative indicators(the max and min deviation, also the average deviation), the author judges the matching rate of the spectrum. This method enrich the existed the technology of the spectral matching. It also owns the prospects of the application and the value of the promotion.
     (5) Through the application research on the extraction of the mineral information RS data, it initially forms the practical technology process of the mineral information recognition and extraction of the hyper and multiple spectrum RS image based on the spectral data.
引文
[1]白继伟.基于高光谱数据库的光谱匹配技术研究[D].北京:中国科学院遥感应用研究所,2002.
    [2]崔廷伟,马毅,张杰.航空高光谱遥感的发展与应用[J].遥感技术与应用.2003,18(2):118-122.
    [3]池宏康,周广胜,许振柱等.表观反射率及其在植被遥感中的应用[J].植物生态学报.2005,29(1):74-80.
    [4]甘甫平,王润生,马蔼乃.基于特征谱带的高光谱遥感矿物谱系识别[J].地学前缘.2003(2):445-454.
    [5]甘甫平,王润生.遥感岩矿信息提取基础与技术方法研究[M].地质出版社.2004,68-69.
    [6]耿修瑞.高光谱遥感图像目标探测与分类技术研究[D].北京:中国科学院遥感应用研究所,2005.
    [7]桂预风,张继贤,林宗坚.土地利用遥感动态监测中混合像元的分解力法[J].遥感信息.2000.2:18-20.
    [8]江元生.结构化学[M].北京:高等教育出版社.1997.
    [9]连长云,杨凯,章革,等.成像光谱和便携式近红外光谱矿物填图应用试验研究成果报告[R].北京:中国地质调查局发展研究中心.2004.4.
    [10]刘春红,赵春晖,张凌雁.一种新的高光谱遥感图像降维方法[J].中国图象图形学报.2005,10(2):218-222.
    [11]刘春红.超光谱遥感图像降维及分类方法研究[D].黑龙江:哈尔滨工程大学,2005.
    [12]刘恒殊,彭风华,黄廉卿.超波谱遥感图像特征分析[[J].光学精密工程.2001,9(4):392-395.
    [13]刘建平,赵英时.高光谱遥感数据解译的最佳波段选择方法研究[J].中国科学院研究生院学报.1999,16(2):152}-161.
    [14]李行,张连蓬.高光潜遥感图像最佳波段选择的快速算法研究[J].测绘通报.2004(9):10-12.
    [15]李静.遥感技术发展的新趋势分析-实现遥感地物定量化识别的高级工具.2005.ENVI [EB/OL].http://www.idworld.com.
    [16]李兴.高光谱数据库及数据挖掘研究[D].北京:中国科学院遥感应用研究所,2006.
    [17]李国武.晶体的对称分类.[EB/OL].http://www.crystalstar.org/study/Index.asp.2006.5.21.
    [18]潘兆橹.结晶学及矿物学[M].地质出版社.1985.
    [19]浦瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2000.
    [20]唐攀科.成像光谱相似矿物识别及其矿物填图的不确定性研究[D].北京:中国地质大学, 2006.
    [21]闻辂,梁婉雪,章刚进等.矿物红外波谱学[M].重庆大学出版社.1988.
    [22]夏建涛.基于机器学习的高维多光谱数据分析[D].西北工业大学,2002.
    [23]王润生,王天兴,郭小方,等.成像光谱方法技术开发应用研究[R].北京:国土资源部“九五”重点科研项目研究成果报告.1999.12.
    [24]王润生,王青华,张宗贵等.矿产资源调查评价中遥感新技术新方法应用研究[R].北京:中国地质调查局重点科研项目研究成果报告.2002.6.
    [25]王润生,杨苏明,阎柏琨.成像光谱矿物识别方法与识别模型评述[J].国土资源遥感.2007,71(1):1-9.
    [26]王钦军.高/多光谱遥感目标识别算法及其在岩性目标提取中的应用[D].北京:中国科学院遥感应用研究所,2006.
    [27]吴昊.高光谱遥感图像数据分类技术研究[D].湖南:国防科学技术大学,2004.
    [28]夏涛.生态水遥感定量研究中野外地物光谱数据采集及处理[D].四川:成都理工大学,2007.
    [29]杨诸胜.高光谱图像降维及分割研究[D].西北工业大学,2006.
    [30]杨凯.高光谱遥感在地质调查与矿产勘探上的应用[C].中国地质调查局:矿产资源调查与方法技术论文集.北京:中国地质调查局.2001:118-125.
    [31]燕守勋,张兵,赵永超等.高光谱遥感岩矿识别填图的技术流程与主要技术方法综述[J].遥感技术与应用.2004,19(1):52-63.
    [32]袁见齐,朱上庆,翟裕生.矿床学[M].地质出版社.1984.
    [33]周公度.晶体结构的周期性和对称性[M].高等教育出版社,1992.
    [34]方容川.固体波谱学[M].中国科学技术大学出版社.2003.
    [35]赵文吉,段福州,刘晓萌等.ENVI遥感影像处理专题与实践[M].北京:中国环境科学出版社.2007.
    [36]赵春晖,刘春红.超谱遥感图像降维方法研究现状与分析[J].中国空间科学技术,2004(5):28-36.
    [37]张宗贵.成像波谱岩矿识别方法技术研究和影响因素分析[D].北京:中国地质大学.2004.
    [38]章革.高光谱短波红外技术在矿区矿物填图中的应用研究-以新疆土屋铜矿、西藏驱龙铜矿和云南普朗铜矿为例[D].北京:中国地质大学.2004.
    [39]Abrams,M.J.,& Hook,S.J.(1991).Combined use of TIMS and AVIRIS for alteration mapping.Proceedings of the third Thermal Infrared Multispectral Scanner (TINS)WorkshopJPL Publication,vol.91-29(pp.54-64).
    [40]Abrams,M.J.,and Ashley,R.P.,1980,Alteration mapping using multispectral images - Cuprite Mining District, Esmeralda County, Nevada: U.S. Geological Survey Open File Report 80-367.
    
    [41] Agarwal, Abhishek, LeMoigne, Jacqueline, Joiner, Joanna et al. Wavelet dimension reduction of AIRS infrared (IR) hyperspectral data. International Geoscience and Remote Sensing Symposium (IGARSS), v5, 2004.
    
    [42]Ashley, R. P., & Abrams, M. J. (1980). Alteration mapping using multispectral images — Cuprite Mining District, Esmeralda County, Nevada. U. S. geological survey open file report (pp. 80-87).
    
    [43]Bernard E. Hubbard, James K. Crowley. Mineral mapping on the Chilean - Bolivian Altiplano using co-orbital ALI,ASTER and Hyperion imagery: Data dimensionality issues and solutions. Remote Sensing of Environment 99 (2005) 173 - 186.
    
    [44] Bosch, Edward H and Lin, Jeng-Eng. Wavelet-based dimension reduction for hyperspectral image classification. Proceedings of SPIE—The International Society for Optical Engineering, v 5093, 2003, p 57-69.
    
    [45]Bo-Cai Gao, Marcos J. Montes, Curtiss 0. Davis. Refinement of wavelength calibrations of hyperspectral imaging data using a spectrum-matching technique. Remote Sensing of Environment 90 (2004) 424 - 433.
    
    [46] Bruce, Lori Mann, Bruce, Lori Mann and Mathur, Abhinav. Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction. IEEE Transactions on Geoscience and Remote Sensing, v40, n10, October, 2002, p 2331-2338.
    
    [47]Brian J. Ross, Anthony G. Gualtieri, Frank Fueten, et al. Hyperspectral image analysis using genetic programming. Applied Soft Computing 5 (2005) 147 - 156.
    
    [48]Brian S. Penn. Using simulated annealing to obtain optimal linear endmember mixtures ofhyperspectral data. Computers & Geosciences 28 (2002) 809 - 817.
    
    [49]California Institute of Technology. AVIRIS (Airborne Visible/Infrared Imaging Spectrometer)homepage. [Online].
    
    [50]Chun-Chieh Yang, Shiv O. Prasher, Joann Whalen. Use of Hyperspectral Imagery for Identification of Different Fertilisation Methods with Decision-tree Technology. Biosystems Engineering (2002) 83 (3), 291-298.
    
    [51]Clark, R. N., King, T. V., Klejwa, M., & Swayze, G. A. (1990). High spectral resolution of reflectance spectroscopy of minerals. Journal of Geophysical Research, 25(653-680).
    
    [52]C. Lee and D. A. Landgrebe, "Feature extraction based on decision boundaries, " IEEE Trans. Pattern Anal. Machine Intell., vol. I5, pp 388-400, Apr. 1993 .
    
    [53]Farzeen Chaudhry, Sumit Chakravarty, Antonio Plaza, et al. DESIGN OF FAST ALGORITHMS FOR PIXEL PURITY INDEX FOR ENDMEMBER EXTRACTION IN HYPERSPECTRAL IMAGERY. American Society for Photogrammetry & Remote Sensing, (ASPRS) Annual Conference. 2005.
    
    [54]Floyd F. Sabins. Remote sensing for mineral exploration. Ore Geology Reviews 14_1999. 157 - 183.
    
    [55]Freek van der Meer. Analysis of spectral absorption features in hyperspectral imagery. International Journal of Applied Earth Observation and Geoinformation 5 (2004)55-68.
    
    [56]Freek van der Meer. The effectiveness of spectral similarity measures for the analysis of hyperspectral imagery. International Journal of Applied Earth Observation and Geoinformation 8 (2006) 3 - 17.
    
    [57]Freek van der Meer and Wim Bakkerf. Cross Correlogram Spectral Matching: Application to Surface Mineralogical Mapping by Using AVIRIS Data from Cuprite, Nevada. Remote Sensing Enviroment. 61:371-382(1997).
    
    [58]Fred A. Kruse. Comparison of AVIRIS and Hyperion for Hyperspectral Mineral Mapping. Presented at the 11th JPL Airborne Geoscience Workshop, 4-8 March 2002, Pasadena, California.
    
    [59]G. Hughes. On the Mean Accuracy of Statistical Pattern Recognizers. IEEE Transactions on Information Theory, 1968, IT 14(1):55-639.
    
    [60] Free AVIRIS Standard Data Products. http://aviris. jpl. nasa. gov/html/ aviris. freedata. html[DB/OL].
    
    [61] EO-1 User's Guide. http://eol. usgs. gov/userGuide[DB/OL].
    
    [62]http://speclab. cr.usgs. gov/PAPERS/cuprite.clark.93/mineral. map. html .
    
    [63]Hook, S. J., 1990, The combined use of multispectral remotely sensed data from the short wave infrared (SWIR) and thermal infrared (TIR) for lithological mapping and mineral exploration: Fifth Australasian Remote Sensing Conference, Proceedings, Oct., 1990, vol. 1, p. 371-380.
    
    [64]Huang Rui, He Mingyi. Band selection based on feature weighting for classification of hyperspectral data. IEEE Geoscience and Remote Sensing Letter, 2005. 2(21:156-159.
    
    [65]Jia Xiuping, J. A .Richards. Segmented principal components transformation for efficient hyperspectral remote-sensing image display and classification. IEEE Geoscience and Remote Sensing, 1999, 37(1):538-542.
    
    [66]Jimenez, Luis O. and Landgrebe, David A.. Hyperspectral data analysis and supervised feature reduction via projection pursuit. IEEE Transactions on Geoscience and Remote Sensing, v 37, n 6, Nov, 1999, p 2653-2667
    
    [67] Jimenez Luis O, Rivera-Medina Jorge L. Integration of spatial and spectral information homogenous by means of unsupervised extraction and classification for objects applied to multispectral and hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing. 2005, 43(4): 844-851.
    
    [68]Kruse F A , Kiereinyoung K S, Boardman J W. 1990. Mineral mapping at Cuprite, Nevada, with a 63-channel imaging spectrometer. PE and RS,56(1):83-92.
    
    [69]Maria Petrou. TUTORIAL ON MODERN TECHNIQUES IN REMOTE SENSING. http://www. survey. ntua. gr/main/labs/rsens/DeCETI/SURREY/Home. html.
    
    [70]R. A. Neville, C. Nadeau, J. Levesque, T. Szeredi, K. Staenz, P. Hauff, G.A. Borstad, Hyperspectral imagery for mineral exploration: comparison of data from two airborne sensors, in: Proceedings of the Imaging Spectrometry VI: SPIE-3438,Intl. Soc. Opt. Eng., 1998, pp. 74-83.
    
    [71]Rogge, D. M., et al., Integration of spatial - spectral information for the improved extraction of endmembers, Remote Sensing of Environment (2007), doi:10.1016/j. rse. 2007. 02. 019.
    
    [72]R. Greg Vaughan , Simon J. Hook, Wendy M. Calvin,et al. Surface mineral mapping at Steamboat Springs, Nevada, USA, with multi-wavelength thermal infrared images. Remote Sensing of Environment 99 (2005) 140-158.
    
    [73] R. G. Resmini, M. E. Jappus, W. S. Aldrich, J. C. Harsanyi,M. Anderson, Mineral mapping with hyperspectral digital imagery collection experiment (HYDICE) sensor data at Cuprite, Nevada, USA, Int. J. Remote Sens. 18 (7) (1997)1553-1570.
    
    [74]Resmini R G, Kappus M E et al. 1997. Mineral mapping with hyperspectral digital imagery collection experiment (HYDICE) sensor data at Cuprite, Nevada, U.S.A. Int. J. Remote sensing, 18(7):1553-1570.
    
    [75]S. Kaewpijit, , T. Le Nloigne, and T. El-Ghazawi. "Automatic Reduction of Hyperspectral Imagery Using Wavelet Spectral Analysis," IEEE Transactions on Geoscience and Remote Sensing, Vol.41, No. 4, pp. 863-871, April 2003.
    
    [76]S. Kaewpijit, J. Le Moigne, and T. EI-Ghazawi. A wavelet-based PCA reduction for hyperspectral imagery. International Geoscience and Remote Sensing Symposium (IGARSS), v 5, 2002, p 2581-2583
    [77]S. Kaewpijit, J. Le Moigne, and T. El-Ghazawi. Feature reduction of hyperspectral imagery using hybrid wavelet-principal component analysis. Optical Engineering, v 43, n 2, February, 2004, p 350-362.
    
    [78] Shailesh Kumar, Joydeep Ghosh, and Melba M.Crawford. Best-Bases Feature Extraction Algorithms for Classification of Hyperspectral Data. IEEE Trans. on Geoscience and Remote Sensing. 2001, 39(7): 1368-1379.
    
    [79]Smith M O, Johnson P E, Adams J B. Quantitative determination of mineral types and abundances from reflectance spectra using principal components analpsis[J]. Journal of Geophysical Research, 1985, 90:792-804.
    
    [80]Swayze, G. A., 1997, The hydrothermal and structural history of the Cuprite Mining District, southwestern Nevada: Anintegrated geological and geophysical approach: Unpublished Ph. D. thesis, University of Colorado, Boulder, 341 p.
    
    [81]Swayze, G. A., Clark, R. L., Sutley, S. and Gallagher, A. J., 1992, Ground-truthing AVIRIS mineral mapping at Cuprite, Nevada: in Summaries of the Third Annual JPL Airborne Geosciences Workshop, V 1., AVIRIS Workshop, JPL Publication 92-14, p. 47 - 49.
    
    [82]Swayze, G. A., R. N. Clark, A. F. H. Goetz, K. E. Livo, and S. S. Sutley, Using imaging spectroscopy to better understand the hydrothermal and tectonic history of the Cuprite Mining District, Nevada: Summaries of the Seventh JPL Airborne Earth Science Workshop, January 12-16, 1998, R.O. Green editor, JPL Publication 97-21, vol.1., 1998, p. 383-384.
    
    [83]Xianfeng Chen,Timothy A. Warner, David J. Campagna. Integrating visible, near-infrared and short-wave infrared hyperspectral and multispectral thermal imagery for geological mapping at Cuprite, Nevada. Remote Sensing of Environment 110 (2007) 344-356.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700