用户名: 密码: 验证码:
桥梁气动导纳函数研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着桥梁跨度的增大,大气紊流风场中脉动成分所致的结构抖振响应正成为影响结构安全的重要因素之一。准确预测抖振响应的一个重要环节是对抖振荷载的恰当描述。气动导纳函数反映了紊流各脉动分量与抖振荷载之间的气动传递过程,是确定抖振荷载的关键因素,但当前在桥梁抖振计算中广泛采用的或者不考虑导纳函数或者采用平面薄翼导纳函数的做法存在诸多的不足。
     本文基于非定常理论的气动力荷载模型,推导了能有效反映紊流各脉动分量对非定常气动力荷载分量影响的多个气动导纳函数的识别公式。设计桁架模型及多个能反映扁平箱梁特点的节段模型,在风洞试验中结合高频动态天平技术,利用非定常识别方法,同时研究了桁架断面及箱型断面气动导纳函数的特点及变化规律。以两座大跨度悬索桥为例,考察了本文试验导纳函数在大跨度桥梁抖振响应计算中的应用。主要完成了以下几方面的工作。
     首先,对紊流风场中适用于桥梁断面的荷载模型进行了研究,建立了包含6个气动导纳函数、能分别反映紊流脉动分量对各荷载分量影响程度的非定常气动荷载模型,明确了6个气动导纳函数所反映的物理意义。
     其次,研究了桥梁结构中采用的气动导纳函数的使用情况,指出当前桥梁结构抖振响应计算中广泛采用的机翼理论气动导纳函数的不足。基于非定常气动荷载模型,确立全部6个气动导纳函数的非定常识别方法。
     第三,利用平板模型考察了气动导纳函数非定常识别方法的正确性。设计并制作桁架模型及多个能反映扁平箱梁特点的不同宽厚比的节段模型,借助高频动态天平测量技术,研究了9种工况下桁架结构断面及36种工况下箱型断面的气动导纳函数特点及其变化规律,得出一些重要的结论。通过合理简化,采用数值拟合技术给出分别适用于桁架结构断面和扁平箱梁断面、可用于实际抖振荷载计算的三个分量的气动导纳函数的表达式。
     最后,结合主跨1108m的广州珠江黄埔大桥及主跨1088m的贵州坝陵河大桥的抖振计算,考察了非定常理论识别的气动导纳函数的适用性。研究表明,本文提出的气动导纳函数非定常识别理论及研究方法是可靠的,能合理反映紊流风场对不同非定常抖振荷载的影响。得到的试验导纳函数可方便地用于实际桥梁的抖振响应分析。该种研究方法既可适用于大跨度扁平箱梁的导纳函数识别,也能应用于桁架结构的加劲梁的气动导纳函数的研究。
As the span length of long span bridges increases, buffeting response caused by fluctuation components of atmosphere turbulence become one of the most important factors endangering the structure safety. Describing the buffeting gust load properly is an important section to predict the buffeting response. Aerodynamic admittance function, which could reflect the transfer process between fluctuation components of turbulence and gust loads of structure, is the key factor to determine the gust load. Either Sears function of airfoil section or no considering aerodynamic admittance usually used in bridge buffeting computation now is not suitable actually.
     Based on unsteady aerodynamic gust load model, identification method of six aerodynamic admittance functions which could reflect influence of the fluctuation components of turbulence on the gust load components are set up in the paper. Combined with wind tunnel test, unsteady gust forces of truss section model are measured by high frequency dynamic balance as well as different chord-thickness ratio section models of flat box section at different attack angle. Accordingly, characteristic of aerodynamic admittance function are obtained. Finally, buffeting responses of two long-span suspension bridges are calculated to investigate the feasibility of the aerodynamic admittance measured in wind tunnel. The research works are mainly concerned with the following aspects:
     Firstly, aerodynamic gust load model suitably for bridge section in turbulent is studied. And the unsteady gust load model included six aerodynamic admittance functions which could reflect influence degree of the fluctuation components of turbulence on the gust load components is established, as well as the physical significance of six aerodynamic admittance is explicitly defined.
     Secondly, the usage of aerodynamic admittance functions in bridge structure are investigate, and the deficit of Sears function based on airfoil theory used generally in bridge buffeting prediction is pointed out. Based on unsteady gust load model, the identification method of all the six aerodynamic admittance functions is put forward.
     Thirdly, four flat box section models with different chord-to-thickness ratio and a truss section model are designed. Combined with high frequency dynamic balance technology, the character and variety law of aerodynamic admittance function of flat box and truss section models are studied in wind tunnel. Some important conclusions are obtained. By numerical simulation, the formulas of aerodynamic admittance functions of flat box and truss section, which could be used in calculating three components of gust load, are proposed respectively.
     Finally, by the buffeting predictions of Zhu-River Huangpu suspension bridge with main span 1108m and Baling-River suspension bridge with main span 1088m, the feasibility of aerodynamic admittance functions identified by unsteady theory is investigated. By the research result, the method and the unsteady identification theory of aerodynamic admittance function are sound and feasible, which could reflect the influence the components of turbulent on the three components of gust load properly. And the test aerodynamic admittance could be used in buffeting prediction of actual bridge conveniently. The research method could be suited for the identification of aerodynamic admittance function of both long-span flat box girder and truss structure stiffened girder.
引文
[1] Wyatt T. A. Bridge Aerodynamic 50years after Tacoma Narrows-Part Ⅰ: the Tacoma Narrows Failure and After. Journal of Wind Engineering and Industrial Aerodynamics, Vol.40, 1992
    [2] Walshe D. E, & Wyatt T. A. Bridge Aerodynamic 50years after Tacoma Narrows-Part Ⅱ: A New Discipline World-wide. Journal of Wind Engineering and Industrial Aerodynamics, Vol.40, 1992
    [3] 蒋永林.斜拉桥抖振响应分析.博士学位论文.成都:西南交通大学,2000.
    [4] Fung Y. C. An introduction to the theory of aerodynamic. John Wiley & Sons Inc. New York, 1962.
    [5] Scruton C. Aerodynamic buffeting on bridges. Engneer, Vol.199, No. 5181, 1955.
    [6] 《公路桥梁抗风设计指南》编写组.公路桥梁抗风设计指南.北京:人民交通出版社,1996.
    [7] Farquharson F. B. Aerodynamic stability of suspension bridges, Bull. Univ. of Washington, No.116, Part Ⅰ-Ⅴ, 1941-1950.
    [8] Smith E. C. & Vicent G. S. Aerodynamic stability of suspension bridges with special references to the Tacoma Narrows Bridge, Engineering Experiment Station, Univ. of Washington, Bull.116, 1949-1954:
    [9] Scruton C. Experimental investigation of aerodynamic stability of suspension bridges with special reference to proposed Severn Bridge. Proc. ICE, Part 1, Vol.1, No.2, 1952.
    [10] Wlshe D. E. A resume of the aerodynamic investigation of the Forth Road and Severn Bridges. Proc. ICE, Vol. 37, 1967.
    [11] Hirai A, et al. On the behavior of suspension bridges under wind action. Symposium on Suspension Bridges, Lisbon, 1966.
    [12] 平井敦.钢桥Ⅲ.技报堂,1967.
    [13] Konishi I. Shiraishi N. & Matsumoto M. Aerodynamic response characteristics of bridges structures. Proceedings of the 4th international conference on wind effects on buildings and structures. London, 1975.
    [14] Xie J., Savage M. G. & Tanaka H. Identification of the aerodynamic admittance functions for bridge road deck. Proceeding of the 2nd Asia-Pacific symposium on wind engineering, Peking, 1989.
    [15] Scanlan R. H. Aeroelastic modeling of bridges. Proceeding of the (Sth International conference on wind engineering. 1983
    [16] Miyata T., Sato H., Toriumi R., Kitagawa M. and Katsuchi H. Full model wind tunnel study on the Akashi Kaikyo Bridge. Proc. 9th Int. Con.on wind eng., New Delhi, India. 9-13 January.
    [17] Davenport A.G., King J.P.C.&Larose G.L. Taut strip model tests. Proc. of 1~(st) international sympsium on aerodynamics of long-span bridges,Copenhagen, Denmark, 1992.
    [18] Hiroshi Tanaka and Alan G Davenport. Response of taut strip models to turbulent wind. Journal of the Engineering Mechanics Division, ASCE, Vol. 108, No. Em1, February, 1982:33-99.
    [19] Davenport A.G. The use of taut strip model in prediction of the response of long-span bridge to turbulent wind. Proc.of the symp.on flow-induced structure vibration,Karlsruhe, 1972.
    [20] Xie J., Dunn G., Iriwin P.A. Wind tunnel studies for the Golden Gate Bridge. San Francisco, California, Report 93-114F-5. Rowan Williams Davies & Iriwin Inc., Gurlph, Ontario, Canada.
    [21] Liepmann H. On the application of statistical concepts to the buffeting problem, Journal aeronautical science, Vol.19,No.l2,1952.
    [22] Davenport, A. G. The application of statistical concepts to the wind loading of structures. Proc. ICE, 1961,19(2): 449-472
    [23] Davenport, A. G. Buffeting of a suspension bridge by storm winds. J.Stru.Div., ASCE, 1962,88(6): 233-268.
    [24] Davenport, A. G. The response of slender line-like structures to a gusty wind. Proc. ICE, 1962,23(6) :389-408
    [25] R.H.Scanlan & R.H.Gade. Motion of suspended bridge spans under gusty wind. J.of the Structural Division,ASCE.1977,ST9,1867-1883
    [26] R.H.Scanlan. The action of flexible bridges under wind, I: Flutter Theory. Journal of Sound and Vibration. 1978,60(2),187-199..4.1
    [27] R.H.Scanlan.The action of flexible bridges under wind, II: Buffeting Theory. Journal of Sound and Vibration. 1978,60(2),201-211..4.2
    [28] Robert H. Scanlan. Indicial aerodynamic functions for bridge decks. J.Eng.Mech.ASCE, 1974;100(4)
    [29] R.H. Scanlan. On flutter and buffeting mechanisms in long-span bridges.Probabilistic Engineering Mechanics, 1988, Vol. 3, No. 1 ; pp: 22-27.
    [30] R.H. Scanlan. Bridge Deck Aeroelastic Admittance Revisited.Journal of Bridge Engineering, Vol. 5, No. 1, February, 2000:1-7
    [31] R H. Scanlan, Tomko J J. Airfoil and bridge deck flutter derivatives. J.Eng.Mech Div.ASCE, 1971;97(6): 1711-1731
    [32] R.H.Scanlan. Observations on low-speed aeroelasticity. J.Eng.Mech. ASCE.2002; 128(12): 1254-1257
    [33] Y. K. Lin and S. T. Ariaratnam. Stability of bridge motion in turbulent winds. J.Struct Mech., 1980,108(1): 1-15.
    [34] Y.K.Lin., J.N.Yang. Multi-mode bridge response to wind excitations. J Engrg Mechs, 1983,109(2):586-603
    [35] Y. K. Lin, Q. C. Li. New stochastic theory for bridge stability in turbulent flow. Journal of Engineering Mechanics, 1993,119(1):113-127
    [36] H.Katsuchi, N.P.Jones.R.H.Scanlan. Multi-mode flutter and buffeting analysis of the Akashi-Kaikyo bridge. Journal of Wind Engineering and Industrial Aerodynamics, 1998(77&78): 431-441.
    [37] H.Katsuchi & S.Saeki. Analytical assessment in wind-resistant design of long-span bridges in Japan. Bridge Aerodynamics, Larsen & Esdahl(ds),Balkema, Rotterdam. 1998: 87-98.
    [38] Holmes J.D. Prediction of the response of a cable stayed bridge to turbulence. Proc.,4th Int.Conf. on Wind Effects on Building and Struct., Cambridge University Press, New York,1975:187-197.
    [39] Virote Boonyapinyo,Toshio Miyata,and Hitoshi Yamada. Advanced aerodynamic analysis of Suspension bridges by state-space approach. Journal of Structural Engineering, Vol. 125, No.12, December, 1999:1357-1365.
    [40] R.H. Scanlan &N.P. Jones. A form of aerodynamic admittance for use in bridge aeroelastic analysis. Journal of Fluids and Structures, 1999;(13):1017-1027.
    [41] Jain A.Jones N.P.,Scanlan R H. Coupled aeroelastic and aerodynamic response analysis of long-span bridges. Journal of Wind Engineering and Industrial Aerodynamics. 1996(60): 69-80
    [42] Anurag Jain,N.P.Jones, R.H.Scanlan. Coupled flutter and buffeting analysis of long-span bridges. Journal of Structural Engineering, 1996,122(7):716-725.
    [43] Xinzhong Chen, Ahsan Kareem, Masaru. Matsumoto. Multimode coupled flutter and buffeting analysis of long span bridges. Journal of Wind Engineering and Industrial Aerodynamics, 2001(89): 649-664.
    [44] Xinzhong Chen, Masaru Matsumoto, and Ahsan kareem. Aerodynamic coupling effects on flutter and buffeting of bridges. Journal of Engineering Mechanics, 2000,126(1): 17-25.
    [45] Xinzhong Chen, Masaru Matsumoto, and Ahsan Kareem. Time domain flutter and buffeting response analysis of bridges. Journal of Engineering Mechanics, 121(1) 1995: 7-16.
    [46] Xinzhong Chen, Ahsan Kareem. Advances in modeling of aerodynamic forces on bridge decks. J. Eng Mech. 2002, 128(11): 1193-1204
    [47] Y. L. Xu, D. K. Sun & J. M. Ko, J. H. Lin. Buffeting analysis of long span bridges: a new algorithm. Computers and Structures. 1998; 68(2): 303-313.
    [48] D. K. Sun, Y. L. Xu, et al. Highly efficient and accurate buffeting analysis of complex structures. Communications in Numerical Methods in Engineerirng. 1998; 14(7): 559-567.
    [49] Y. L. Xu, D. K. Sun. Fully coupled buffeting analysis of Tsing Ma suspension bridge. Journal of Wind Engineering and Industrial Aerodynamics. 2000, 85: 97-117.
    [50] Gao Liu, Jiahao Lin. Non-stationary coupled buffeting analysis of long-span bridges. The 2nd international symposium on advances in wind & structures, 21-23 August 2002, Busan, Korea.
    [51] 丁泉顺.大跨度桥梁耦合颤抖振响应的精细化分析.博士论文.上海;同济大学。2001.
    [52] Minh N. N., Miyata T., Yamada H., Sanada Y. Numberical simulation of wind turbulence and buffeting analysis of long-span bridges. J. Wind Engrg. Indust. Aerodyn. 1999, 83: 301-315
    [53] Kovacs L., Svensson H. S. Analytical aerodynamic investigation of cable-stayed Helgeland Bridge. J. Str. Engrg., ASCE.1992, 118(1): 147-168
    [54] 周述华.大跨度悬索桥空间非线性抖振响应仿真分析.博士学位论文.成都:西南交通大学,1993.
    [55] 李永乐.风—车—桥系统非线性空间耦合振动研究.博士学位论文.成都:西南交通大学,2003.
    [56] 李永乐,周述华,强士中.大跨度斜拉桥三维脉动风场模拟.土木工程学报.2003,36 (10).
    [57] 罗雄.利用短期实际风速记录模拟极值风速及桥梁时域抖振分析.博士学位论文.成都:西南交通大学,2002.
    [58] 曹映泓.大跨度桥梁非线性颤振和抖振时程分析.博士学位论文.上海:同济大学,1999.
    [59] 曹映泓,项海帆,周颖.大跨度桥梁颤振和抖振统一时程分析.土木工程学报.2000,33(5):57-62
    [60] 曹映泓,项海帆,周颖.大跨度桥梁随机风场的模拟.土木工程学报,1998,31(3):72-78.
    [61] Xinzhong Chert, Masaru Matsumoto, and Ahsan Kareem. Time domain flutter and buffeting response analysis of bridges. Journal of Engineering Mechanics, 1995,121(1): 7-16.
    [62] Xinzhong Chert, Masaru Matsumoto, and Ahsan kareem. Aerodynamic coupling effects on flutter and buffeting of bridges. Journal of Engineering Mechanics, 2000, 126(1): 17-25.
    [63] Xinzhong Chen, Ahsan Kareem, Masaru Matsumoto. Multimode coupled flutter and buffeting analysis of long span bridges. Journal of Wind Engineering and Industrial Aerodynamics, 2001(89): 649-664.
    [64] Xinzhong Chen, Ahsan Kareem. Advances in modeling of aerodynamic forces on bridge decks. J. Eng Mech. 2002, 128(11): 1193-1204
    [65] Kumarasena T. Wind response prediction of long-span bridges. PhD Thesis of Dept. of Civil Eng., The Johns Hopkins University, Baltmore. USA.,1989.
    [66] Sarkar P. P New identification methods applied to the response of flexible bridges to wind. PhD Theis. Dept. of Civil Eng., The Johns Hopkins University, Baltmore. USA., 1992
    [67] Sarkar P. P. Identification of aeroelastic parameters of flexible bridges. J. Eng. Mech. Die. 1994, 120(8): 1718-1741.
    [68] Singh L. Experimenta determination of aeroelastic and aerodynamic parameters of long-span bridges. PhD Thesis of The Johns Hopkins University, Baltmore. USA., 1997.
    [69] G. L. Larose. On the unsteady aerodynamic forces on a bridge deck in turbulent boundary layer flow. In: Proc. of 4th U. S. national conference on wind engineering, UCLA, Losangles, USA. 1993.
    [70] Melbourne W. H. Comparison of model and full-scale tests of a bridge and chimney stack. Pro. Intl. workshop on wind tunnel modeling criteria and technique in civil Engrg. Applications, Maryland, 1982.
    [71] Larose G. L. The response of a suspension bridge deck to turbulent wind: the taut strip model approach. M. E. Sc. Thesis. The university of western Ontario. Canada.
    [72] Bearman P. W. An investigation of the force on flat plates normal to a turbulent flow. J Fluid Mech., 1971, 46(1): 177-198.
    [73] Nicholas P. Jones & Robert H. Scanlan. Advances (and challenges) in the prediction of long-span bridge response to wind. Bridge Aerodynamics. Edit by Larsen & Esdahl. Balkma, Rotterdam, 1998.: 59-85.
    [74] Holmes J. D. Prediction of the response of a cable stayed bridge to turbulenc. In: Proc. 4th International Conference of Wind Effects on Building & Structures, Heathrow, 1975
    [75] D. E. Walshe &T. A. Wyatt. Measurement and application of the aerodynamic admittance for a box-girder bridge. Proc. 6th int. conf. on wind engineering, Gold Coast, 1983.
    [76] R. Sankaran & E. D. Jancauskas. Direct measurement of the aerodynamic admittance of 2-D rectangular cylinders in smooth and turbulent flows. Journal of Wind Engineering and Industrial Aerodynamics, 41-44, 1992: 601-611.
    [77] E. D. Jancauskas. &W. H. Melbourne. The aerodynamic admittance of two-dimensional rectangular section cylinders in smooth flow. Journal of Wind Engineering and Industrial Aerodynamics, 23(1986): 395-408
    [78] R. H. Scanlan. Observations on low-speed aeroelasticity. J. Eng. Mech. ASCE, 2002; 128(12): 1254-1257
    [79] B. J. Vickery. National physical laboratory, NPL report 1143, 1965. 3.. 1.4
    [80] Vickery B J, Clark A. W. Lift of across-wind response of tapered stacks. J. of Struct. Div. ASCE, 1972; 98(1): 1-20
    [81] Flay G. J., Vickery B J. Pressure correlation on a rough cone in turbulent shear flow. Journal of Wind Engineering and Industrial Aerodynamics, 1995; 58(1): 1-18
    [82] 李明水.连续大气湍流中大跨度桥梁的抖振响应.博士学位论文.成都:西南交通大学,1993.
    [83] Xie J, Savage M G, Tanaka H. Identification of the aerodynamic admittance functions for bridge road decks. In: Proc. 2nd Asia-Pac/fic symposium on wind engineering, Beijing, 1989.
    [84] 靳新华.桥梁断面气动导纳识别理论及试验研究.同济大学博士学位论文,2003.
    [85] 李明水,贺德馨,王卫华,陈忻.翼型及钝体的气动导纳.空气动力学学报2005;23(3):374-377
    [86] Simiu E, Scanlan R H. Wind effect on structure, John wiley &Sons, 1986: 33-38
    [87] 黄本才 编著,结构抗风分析原理及应用,上海:同济大学出版社,2001
    [88] 日本建议. AIJ Recommendations for Loads on Building, Jepan.1996
    [89] Kaimal J. C. et al., Spectral characteristics of surface-layer turbulence. J. Royal Meteorol. Soc., 98(1972)563-589
    [90] Harris R. I., The natnre of wind. The modern design of wind-sensitive structures, construction Industry Research and Information Association, London, U. K., 1971
    [91] Lumley J L. & Panofsky H A. The structure of atmospheric turbulence. Wiely, New York, 1964
    [92] Panofsky H A &Dutton J A, Atmospheric turbulence: models and methods for engineering applications. Wiely, New York, 1984
    [93] Panofsky H A & Siger I A. Vertical structure of turbulence. J. Royal Meteorol. Sot., 91(1965): 339-344
    [94] Jones N. P., Jain A. & Scanlan R. H. Comparison of wind cross-spectral data with models. Proc. Prob. Mech. Spec. Conf. ASCE. Denver Colorado, July, 1992
    [95] Yamada H., Ichikawa H. Measurement of aerodynamic parameters by extended Kalman Filter algorithm. Journal of Wind Engineering and Industrial Aerodynamics. 1992, 41-44: 1255-1263
    [96] Sarkar P. P. Indentification of aeroelastic parameters of flexible bridges. J. Eng. Mech. Div. 1994, 120(8): 1718-1741.
    [97] Liao Haili, Xi Shaozhong. A method for identification of aerodynamics derivatives from free vibration data. Pro. 2rid EACWE, Genova, SGE, 1997: 1593-1600.
    [98] 廖海黎,奚绍中.非流线形断面气动导数辨识.振动工程及应用.成都:成都科技大学出版社,1998.
    [99] Yongle Li, Haili Liao, and Shizhong Oiang. Weighting ensemble least-square method for flutter derivatives of bridge decks. Journal of Wind Engineering and Industrial Aerodynamics. 2003, 91(6): 713-721.
    [100] 伏欣H.W.,气动弹性力学原理,上海:上海科学技术文献出版社,1982
    [101] 小西一郎,钢桥(第十、十一分册), 北京:中国铁道出版社,1981
    [102] L. T. Thorbek, S. O. Hansen. Coupled buffeting response of suspension bridges. Journal of Wind Engineering and Industrial Aerodynamics 1998(74-76): 839-847.
    [103] B J Vickery. Fluctuating lift and drag of a long cylinder of square cross section in a smooth and turbulent stream. J Fluid Mech. 1966, 25(2): 481-494
    [104] G.L. Larose. Performance of streamlined bridge decks in relation to flat aerodynamics. In: Proc. 2nd international colloquium on bluff body 'aerodynamic and applications. Journal of Wind Engineering and Industrial Aerodynamics. 1997, 69-71:851-860
    [105] G.L. Larose. Experimental determination of the aerodynamic admittance of a bridge deck segment. Journal of Fluids and Structures, 1999;(13):1029-1040.
    [106] Kimura K., Fujino S.,et al. Characteristics of buffeting forces on flat Cylinders. Journal of Wind Engineering and Industrial Aerodynamics, 1997(69-71):365-374
    [107] Cook N.J. The designer's guide to wind loading of building structures (part I). Cambridge Press, 1988
    [108] Davenport A.G. The Application of statistical concepts to the wind loading of structure. Proc. Instn. of Civ. Engrs., 1961,19(8):449-472
    [109] Davenport A.G. The buffeting of a suspension bridge by storm winds. J.Struc.Div., ASCE. 1962,Vol.88(6):233-268.
    [110] Sarkar P.P. New identification methods applied to the response of flexible bridges to wind. PhD Theis.Dept. of Civil Eng., The Johns Hopkins University, Baltmore. USA.,1992
    [111] Kumarasena T. Wind response prediction of long-span bridges. PhD Theis.Dept. ofCivil Eng., The Johns Hopkins University, Baltmore.USA.,1989.
    [112] Kussner, H.G Stress produced in airplane wings by gusts. NACA tm654,1932
    [113] Graham JM R. Lifting-surface theory for the problem of an arbitrarily yawed sinusoidal gust incident on a thin aerofoil in incompressible flow[J]. Aeronautical Quarterly, 1970;Vol. XXI, May: 182-198.
    [114] Jackson R. et al. The life on a wing in turbulent flow. Aeronautical Quarterly, 1973; 24(3):155-164.
    [115] P.W.Bearman. Some measurements of the distortions of turbulence approaching a two-dimensional bluff body. Journal of fluid Mech. 1972,53.
    [116] Bietry, J., Comparison of full scale measurements and computation of wind effects on cable-stayed bridges. First European and African Conference on wind engineering, Guernesey, September 1993
    [117] Th von Karman & Sears W.R. Airfoil theory for non-uniform motion. Journal of Aeronautical Science, 1938; Vol.5:379-390.
    [118] Kumarasena T. Wind response prediction of long-span bridges. PhD Thesis of Dept. of Civil Eng., The Johns Hopkins University, Baltmore.USA.,1989.
    [119] Scanlan R. H. Reexamination of sectional aerodynamic force functions for bridges. Journal of Wind Engineering and Industrial Aerodynamics. 89(2001)1257-1266
    [120] Cai chunsheng. Prediction of long-span bridge response to turbulent wind. PhD Thesis. Dept. of Civil Eng., University of Maryland College Park, 1993: 35-36.
    [121] G. L. Larose. Gust loading on streamlined bridge decks. Journal of Fluids and Structures, 1998; (12): 511-536.
    [122] M. Kawatani & H. Kim. Evaluation of aerodynamic admittance for buffeting analysis. Journal of Wind Engineering and Industrial Aerodynamics. 1992, 41-44: 613-624
    [123] Jancauscas E. D.,Melbourne W. H. The aerodynamic admittance of two-dimensional rectangular sectional cylinders in smooth flow. Journal of Wind Eingineering and Industrial Aerodynamics, vol.23, No.2, 1986: 395-408
    [124] Sankaran R., Jancauscas E. D.. Direct measurement of the aerodynamic admittance of two-dimensional rectangular sectional cylinders in smooth and turbulent flows. Journal of Wind Engineering and Industrial Aerodynamics, 1992; 41-44(1): 601-611
    [125] Larose G. L and Mann J. Gust loading on streamlined bridge decks. Journal of Fluid and Structure, Vol.12, No.5, 1998: 511-536
    [126] G. L. Larose. On the unsteady aerodynamic forces on a bridge deck in turbulent boundary layer flow. In: Proc. of 4th U. S. national conference on wind engineering, UCLA, Losangles, USA. 1993.
    [127] 李丽,廖海黎,李乔.桥梁结构三维气动导纳研究.西南交通大学学报,2004,39(2):167-171
    [128] 顾巍.钝体和桥梁断面的气动导纳试验技术与研究.上海:同济大学博士后研究报告,2000.
    [129] 张若雪.桥梁结构气动导数参数识别的理论和试验研究.上海:同济大学博士论文,1998.
    [130] Kazutoshi Matsuda, Yuichi Hikami, Tohru Fujiwara. Aerodynamic admittance and the 'strip theory' for horizontal buffeting force on a bridge deck. Journal of Wind Engineering and Industrial Aerodynamics, 1999; (83): 337-346.
    [131] G. Diana, S. Bruni, A. Cigada, E. Zappa. complex aerodynamic admittance function role in buffeting response of a bridge deck. Journal of Wind Engineering and Industrial Aerodynamics. 90(2002): 2057-2072
    [132] A. Cigada, G. Diana, E. Zapa. On the response of a bridge deck to turbulent wind: a new approach. Journal of Wind Engineering and Industrial Aerodynamics. 90(2002): 1173-1182
    [133] Holscher N. A.. A nonlinear Approach for the aerodynamic admittance of wind pressures. In: Proc. Of the 3rd bluff body aerodynamic and applications, Blacksburg, USA, 1996
    [134] Tamura, Y., A. Wada, Simulation of wind-induced vibration of tall buildings. Summaries of Technical Papers of Annual Meeting, Architectural Institute of Japan. 143-144
    [135] R. G. J Flay & B. J. Vickery. Pressure correlations on a rough cone in turbulent shear flow. Journal of Wind Engineering and Industrial Aerodynamics. 1995 (58): 1-18.
    [136] 公路桥梁抗风设计规范(JTG/T D60-01-2004),人民交通出版社,2004
    [137] 广州珠江黄埔大桥南汊桥抗风性能风洞试验研究.西南交通大学风工程试验研究中心,2005.
    [138] 坝陵河大桥全桥气动弹性模型风洞试验研究.西南交通大学风工程试验研究中心,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700