用户名: 密码: 验证码:
青海东昆仑地区的复合造山过程及造山型金矿床成矿作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对青海东昆仑地区的构造演化及其中金矿床地质、地球化学的详细研究结果表明,东昆仑地区是一个有复杂演化历史的复合造山带,具有多岛洋/裂陷槽、软碰撞和多旋回造山等特点。这里产出的金(锑)矿床有相似的地质-地球化学特征,并与显生宙造山过程有密切的成因联系,是典型的造山型金矿床。各矿床严格受深断裂/碰撞带、大型剪切带、褶皱和断裂-裂隙三级构造系统控制,围岩普遍发生绿片岩相变质,矿石类型主要为破碎带蚀变岩型和石英脉型,硫(砷)化物类金属矿物含量介于3%~5%,黄铁绢英岩化是金矿床中最强烈、最典型的蚀变类型。伴随着矿区构造由韧性向韧-脆性、脆性演化,矿床明显经历了不同的矿化期次和成矿阶段。
     流体包裹体地球化学研究结果显示,本区金矿床中代表不同成矿阶段的石英含有十分丰富的流体包裹体,主要有三种类型,即富CO_2包裹体、CO_2-H_2O包裹体和H_2O包裹体,其中CO_2-H_2O包裹体十分发育,成矿流体为一套中低温(118~378℃)、低盐度(0.35~9.54wt%NaCl)的H_2O-CO_2-NaCl-CH_4±N_2体系。氢、氧同位素测定结果和水-岩交换作用研究表明,不同成矿阶段成矿流体的氢、氧同位素投点与相应温度的大气降水演化曲线比较吻合,从成矿早期到晚期,温度逐渐降低,有效W/R比值逐渐增大,反映了成矿前热液主要为变质水和地层建造水,成矿期以来大气降水不断混入并占主导地位。流体不混溶作用是流体演化和成矿流体形成的重要机制。4个金矿床的硫同位素组成均为正或负向偏离于零的不大数值,塔式分布效应明显,铅同位素组成分布集中且比值较高,为典型的放射性成因铅,在Zartman等(1981)的构造图解中,投点均集中分布于造山带演化线附近,表明硫、铅等成矿物质为少量地幔和围岩地层的混合来源,以大气降水为主的热液不断从强烈破碎变形的地层岩石中淋滤放射性成因铅是造成铅同位素组成明显偏高的主要原因。精细的同位素地质测年结果表明,金矿床主要成矿时代为印支期,另在一些矿区还存在晚加里东期的矿化作用,反映出多期次成矿和复合叠加成矿特征。
     晚加里东期和晚华力西—印支期的强烈俯冲及碰撞作用,不但形成了区域深断裂、大型剪切带及次一级的褶皱和断裂-裂隙控矿构造,而且还促使了成矿流体活化和成矿元素的初步富集。与俯冲和碰撞有关的热事件(包括造山花岗岩的侵位),不断提高地热梯度,驱使被加热的建造水和大气降水等热液流体沿碰撞带和大型剪切带做远距离的运移,并在途中淋取围岩的成矿元素,形成含金流体。当这些流体进入到矿床或矿体构造后,由于构造性质的转换(韧性→韧-脆性或脆性),温、压等物理化学条件亦随之改变,金、锑络合物在成矿流体中的溶解度也越来越小,于是迅速发生沉淀。成矿流体交代剪切带及其围岩,形成蚀变岩、石英脉,进而形成金(锑)等矿床。
This paper did some research on tectonic evolution in the East Kunlun orogen, Qinghaiprovince and characteristics of geology and geochemistry of gold deposits in this region. Someimportant conclusions have been reached. The East Kunlun area is a multiple orogen whichunderwent a very complicated evolutionary process and is characterized by archipelagic ocean/aulacogen, soft collision and multicyclicity. Many gold deposits in this area have similarcharacteristics of both geology and geochemistry, and are correlated to orogenic processes of thisorogen in genesis. As a result, they should be typical orogenic gold deposits. Each deposit iscontrolled strictly by three-order structural systems which are profound faults and/or collisionalbelts, large-scale ductile shear belts, and folds and faults, respectively.Although the wallrocks ofthese orogenic gold deposits vary in age and petrology, all of them were deformed andmetamorphosed into greenschist facies. According to ore types, the orogenic gold deposits can bedivided into two subtypes, namely altered rock type and quartz vein type. The pyritic-phyllicalteration is the most extensive and typical alteration. With evolution of the structures in oredistricts from ductile, ductile-brittle to brittle, the gold deposits also underwent differentmineralization phases and ore-forming stages.
     Based on a great deal of studies on fluid inclusion petrography and microthermometry of theWulonggou, Kaihuangbei, Dachang and Dongdatan orogenic gold deposits, the quartzrepresenting different ore-forming stages contain three main types of fluid inclusions: (1)primary CO_2-rich inclusions, (2) CO_2-H_2O inclusions with variable CO_2 content, (3) aqueousinclusion. The CO_2-H_2O inclusions are very plenty and content of CO_2 is comparatively high (≥5mol%) in this kind of inclusions. The ore-forming fluid is a type of middle-low temperature(118~378℃), low-salinity (0.35~9.54wt%NaCl) H_2O-CO_2-NaCl-CH_4±N_2 system. Thedeterminations of hydrogen and oxygen isotopes and studies on water-wallrock exchange suggestthat the distribution of hydrogen and oxygen isotopes of different stages of ore-forming fluid ineach deposit is very consistent with corresponding meteoric water evolutionary line, withtemperature reducing gradually and W/R ratio increasing correspondingly from early to late. Allabove inform us that the pre-ore fluids mainly originated from metamorphic and formationwater, but since the mineralization episode meteoric water joined and predominated gradually. Inaddition, carbon isotopic measurements of fluid inclusions also show us the meteoric water is veryimportant for mineralization. The unmixing of a homogeneous CO_2-H_2O parent fluid is the mostimportant mechanism that caused some ore-forming substance such as gold, silver and antimony, metallic minerals and quartz to be enriched and deposited. The major evidences forfluid unmixing include the CO_2-H_2O inclusions with a wide range of CO_2 content coexistingintimately in the same quartz, their similar homogenization temperatures and salinities.
     Isotopic geochemical studies show thatδ~(34)S values of different sulfides aren't big and can begrouped into 1.1~6.9 per mil for Wulonggou and Kaihuangbei gold deposits and -6.3~-0.9 permil for Dachang and Dongdatan gold deposits. The pyramidal distribution is very apparent. Thelead isotopic compositions vary in a small range, but the values are very high, therefore they areradiogenic lead. In the Zartman's (1981)tectonic diagram about lead isotope, all lead isotopic dataare put together near evolutionary line of orogen. It indicate that the ore-forming material wasderived from mixed little mantle and wall rocks. Leaching radiogenic lead from highly deformedwallrocks by predominant meteoric water is a major reason to make lead isotopic compositionbecome very high. According to field observation and isotopic dating, the main age of goldmineralizations is late Variscan-Indosinian. In addition, the mineralization of late Caledonianexisted in some deposits as well.
     In summary, intensive subduction and collision during late Caledonian and late Variscan-Indosinian not only formed deep faults, large-scale shear belt, and low-order folds and faults butalso make ore-forming fluid activated and mineralizing elements enriched initially. Subduction-related thermal events and episodically rising geothermal gradients drove formation water andmeteoric water migrate for long distance along collisional belts and large-scale shear belt andleached ore-forming substance from wallrocks during migration, and gold-bearing fluid wereformed. When ore-forming fluid flowed into ore-controlled structures, gold and antimony arelargely deposited as temperatures and pressures fall accompanying fluid immiscibility during themain mineralization stages.
引文
[1] 边千韬,罗小全.2000.秦祁昆巨型造山带(中段)构造演化.第二届海峡两岸祁连山及邻区地学研讨会论文摘要,140~142
    [2] 边千韬,罗小全,李红生等.1999.阿尼玛卿山早古生代和早石炭—早二叠世蛇绿岩的发现.地质科学,34(4):523~524
    [3] 边千韬,罗小全,李涤微等.2001.青海省阿尼玛卿带青山蛇绿混杂岩的地球化学性质及形成环境.地质学报,75(1):45~63
    [4] 博伊尔R W.1979.金的地球化学及金矿床.马万均,王立文等译.北京:地质出版社
    [5] 曹永清,罗照华,邓晋福等.1999.东昆仑—柴达木北缘地区早古生代火山活动与构造演化.地质论评,45(增刊):1002~1009
    [6] 陈柏林,董法先,李中坚.1999.韧性剪切带型金矿成矿模式.地质论评,45(2):186~192
    [7] 陈炳蔚,王彦斌,左国朝.1995.青藏高原北部地体划分及其构造演化.地球物理学报,38(增刊):98~113
    [8] 陈好寿.1994.同位素地球化学研究.浙江大学出版社
    [9] 陈能松,朱杰,游振东等.1998.中央山系大别、东秦岭和东昆仑造山带最古老岩系变质过程对比.地球科学—中国地质大学学报,23(5):449~455
    [10] 陈衍景.1996.准噶尔造山带碰撞造山过程的成矿作用和金等矿床分布规律.地质学报,70(3):253~261
    [11] 陈衍景,张静,赖勇.2001.大陆动力学与成矿作用—教育部高级研讨班论文集.地震出版社,5~99
    [12] 陈银汉.1981.矿物包裹体地球化学.河北地质学院
    [13] 陈毓川等著.2001.中国金矿床及其成矿规律.北京:地质出版社
    [14] 崔艳合,张德全,李大新等.2000.青海滩间山金矿床地质地球化学及成因机制.矿床地质,19(3):211~221
    [15] 高延林,吴向农,左国朝.1988.东昆仑山清水泉蛇绿岩特征及其大地构造意义.中国地质科学院西安地质矿产研究所所刊,21:17~28.
    [16] 古凤宝,吴向农,姜常义.1996.东昆仑华力西—印支期花岗岩组合及构造环境.青海地质,(1):18~36.
    [17] 古凤宝.1994.东昆仑地质特征及晚古生代—中生代构造演化.青海地质,(1):4~14.
    [18] 侯光久,王国灿,张克信等.1999.东昆仑造山带前陆盆地的叠加褶皱及其变形机制.地球科学—中国地质大学学报,24(2):125~128.
    [19] 胡正国,刘继庆,钱壮志等.1998.东昆仑—北巴颜喀拉区域成矿规律及找矿工作思考.青海地质,7(2):11~18.
    [20] 胡正国,刘继庆,钱壮志等.1998.东昆仑区域成矿规律初步研究.黄金科学技术,6(5~6):6~13.
    [21] 姜春发,王宗起,李锦铁等.2000.中央造山带开合构造.北京:地质出版社
    [22] 姜春发,杨经绥,冯秉贵,等.1992.昆仑开合构造.见:地质专报(五),12号.北京:地质出版社.224.
    [23] 李海兵,许志琴,陈文.1995.东昆仑地区三叠纪以来的构造变形及缩短机制.第三届全国青年地质工作者学术讨论会文集.武汉:中国地质大学出版社
    [24] 李厚民,胡正国,钱壮志等.1999.对东昆仑金及多金属主要成矿系列的初步认识.西安工程学院学报,21(4):51~56.
    [25] 李厚民,沈远超,胡正国等.2001.青海东昆仑五龙沟金矿床成矿条件及成矿机理.地质与勘探,37(1):65~69.
    [26] 李厚民,沈远超,胡正国等.2001.青海五龙沟金矿床矿石、矿物含金性及金的赋存状态.矿物学报,21(1):89~94.
    [27] 李厚民,孙继东,沈远超等.200 1.东昆仑无龙沟金矿床Ⅲ矿段原生晕特征及模式.地质地球化学,29(3):109~116.
    [28] 李龙,郑永飞,周建波.2001.中国大陆地壳铅同位素演化的动力学模型.岩石学报,17(1):61~68.
    [29] 粱斌,王国灿,张克信.2001.东昆仑中部构造混合岩带右行走滑韧性剪切变形特征.中国区域地质,20(1):46~51,57
    [30] 刘斌.1986.利用不混溶流体包裹体作为地质温度计和压力计.科学通报,18:1432~1436
    [31] 刘斌,沈昆著.1999.流体包裹体热力学.北京:地质出版社
    [32] 刘继庆,胡正国,钱壮志等.2000.东昆仑NW向线性构造带地质特征及找矿意义.西安工程学院学报,22(2):18~21
    [33] 刘继顺.1996.韧性剪切带中金成矿研究的若干问题.地质论评,42(2):123~128
    [34] 刘英俊.1991.金的地球化学.北京:科学出版社
    [35] 刘永成,叶占福.1998.对东昆仑金水口地区高级变质岩的新认识.青海地质,7(1):18~26.
    [36] 刘忠明.2001.剪切带流体与蚀变和金矿成矿作用.地学前缘,8(4):271~274
    [37] 卢焕章,李秉伦,沈昆等.1990.包裹体地球化学.北京:地质出版社
    [38] 罗照华,邓晋祸,曹永清等.1999.青海省东昆仑地区晚古生代—早中生代火山活动与区域构造演化.现代地质,13(1):51~56
    [39] 毛景文,李荫清.2001.河北省东坪碲化物金矿床流体包裹体研究:地幔流体与成矿关系.矿床地质,20(1):23~36
    [40] 莫宣学,邓晋福等.1998.东昆仑中段成矿地质背景与找矿方向的框架研究.中国地质大学等,科研报告
    [41] 潘桂棠.1994.全球洋—陆转换中的特提斯演化.特提斯地质,(18):23~40.
    [42] 潘裕生,周伟明,许荣华等.1996.昆仑山早古生代地质特征与演化.中国科学(D辑),26(4):302~307.
    [43] 钱壮志,李厚民,胡正国等.1999.东昆仑中带闪长玢岩脉与金矿成矿关系—以石灰沟金矿床为例.西安工程学院学报,21(1):1~4.
    [44] 钱壮志,胡正国,李厚民.2000.东昆仑中带印支期浅成—超浅成岩浆岩及其构造环境.矿物岩石,20(2):14~18.
    [45] 钱壮志,胡正国,李厚民等.2000.东昆仑中带金矿成矿特征及成矿模式.矿床地质,19(4):315~321.
    [46] 钱壮志,胡正国,刘继庆.1998.东昆仑北西向韧性剪切带发育的区域构造背景—以石灰沟韧性剪切带为例.成都理工学院学报,25(2):201~205.
    [47] 钱壮志,胡正国,刘继庆等.2000.古特提斯东昆仑活动陆缘及其区域成矿.大地构造与成矿学,24(2):134~139.
    [48] 青海省地质矿产局.1991.青海省区域地质志.北京:地质出版社
    [49] 沈昆,倪培,林景仟.2001.鲁西来归来庄金矿成矿流体特征和演化.地质科学,36 (1):1~13
    [50] 沈渭洲.1987.稳定同位素地质.北京:原子能出版社
    [51] 田军,龚一鸣,粱斌等.1999.东昆仑造山带二叠—三叠纪遗迹化石及其指相意义.沉积学报,17(3):361~366.
    [52] 田军,张克信,龚一鸣.2000.东昆仑造山带东段下中三叠统研究进展.地球科学—中国地质大学学报,25(3):290~294.
    [53] 田军,张克信,龚一鸣等.2001.东昆仑造山带海西—印支期东昆南前陆盆地构造岩相古地理.现代地质,15(1):21~26.
    [54] 王国灿,张克信,粱斌等.1997.东昆仑造山带结构及构造岩片组合.地球科学—中国地质大学学报,22(4):352~356.
    [55] 王云山,陈基娘.1987.青海省及毗邻地区变质地带及变质作用.见:地质专报—岩石矿物地球化学,第6号.北京:地质出版社.268.
    [56] 王可勇,姚书振,吕新彪.2001.川西北马脑壳金矿床成矿流体地球化学特征与性质.地球化学,30(3):273~281
    [57] 魏菊英,王关玉.1988.同位素地球化学.北京:地质出版社
    [58] 吴功建,肖序常,李廷栋.1989.青藏高原亚东—格尔木地学断面.地质学报,63(4):285~296
    [59] 徐锡华.1999.成矿元素集中或分散程度的理想化研讨.地质找矿论丛,14(2):1~7
    [60] 许荣华,Harris N,Lewis C等.1990.拉萨至格尔木的同位素地球化学.见:青藏高原地质演化.北京:科学出版社,282~302
    [61] 许志琴,杨经绥,陈方远.1996.阿尼玛卿缝合带及“俯冲—碰撞”动力学.见:张旗主编.蛇绿岩与地球动力学研究.北京:地质出版社,185~189
    [62] 许志琴,姜玫,杨经绥.1996.青藏高原北部隆升的深部构造物理作用—以格尔木-唐古拉山地质及地球物理综合剖面为例.地质学报,70(3):195~206
    [63] 许志琴,李海兵,杨经绥等.2001.东昆仑南缘大型转换挤压构造带和斜向俯冲作用.地质学报,75(2):156~164
    [64] 许志琴,张建新,徐惠芬等.1997.中国主要大陆山链韧性剪切带及动力学.北京:地质出版社
    [65] 闫臻,胡正国,刘继庆等.2000.东昆仑开荒北金矿床地质特征及控矿条件.西安工程学院学报,22(1):23~27
    [66] 杨巍然.1999.论造山作用和造山带.地质论评,45(1):10~14
    [67] 殷鸿福,张克信,王国灿.1998.非威尔逊旋回与非史密斯方法—中国造山带研究理论与方法.中国区域地质,(增刊):1~9.
    [68] 殷鸿福,张克信.1997.东昆仑造山带的一些特点.地球科学—中国地质大学学报,22(4):339~342.
    [69] 殷鸿福,张克信.1998.中央造山带的演化及其特点.地球科学—中国地质大学学报,23(5):437~441.
    [70] 殷鸿福,张克信.1998.中央造山带的演化及其特征.地球科学,23(5):437~442
    [71] 尹安.2001.喜马拉雅—青藏高原造山带地质演化——显生宙亚洲大陆生长.地球学报,22(3):193~230
    [72] 于凤池,马国良,魏刚锋等.1998.青海滩间山金矿床地质特征和控矿因素分析.矿床地质,17(1):47~56
    [73] 于津生等.1997.中国同位素地球化学研究.北京:科学出版社
    [74] 袁万明,莫宣学,喻学惠等.1998.东昆仑白金沟金矿床石英的成矿作用显示.矿物岩石地球化学通报,17(4):237~241.
    [75] 袁万明,莫宣学,喻学惠等.2000.东昆仑热液金成矿带及其找矿方向.地质与勘探,36(5):20~23.
    [76] 袁万明,莫宣学,喻学惠等.2000.东昆仑印支期区域构造背景的花岗岩记录.地质论评,46(2):203~211.
    [77] 袁万明,王世成,王兰芬.2000.东昆仑五龙沟金矿床成矿热历史的裂变径迹热年代学证据.地球学报,21(4):389~395.
    [78] 袁万明,莫宣学,喻学惠等.2002.青海省五龙沟矿区金矿化的石英稀土元素地球化学指示.地质与勘探,38(1):15~17.
    [79] 翟建平,胡凯,陆建军.1996.应用氢氧同位素研究矿床成因的一些问题探讨.地质科学,31(3):229~237
    [80] 张德全,丰成友,李大新等.2001.柴北缘—东昆仑地区的造山型金矿床.矿床地质,20(2):137~146
    [81] 张国伟,柳小明.1998.关于“中央造山带”几个问题的思考.地球科学—中国地质大学学报,23(5):443~448.
    [82] 张理刚,陈振胜,刘敬秀等.1994.焦家式金矿水-岩交换作用—成矿流体氢氧同位素组成研究.矿床地质,13(3):193~200
    [83] 张理刚,王可法,陈振胜等.1993.中国东部中生代花岗岩长石铅同位素组成与铅同位素省划分.科学通报,38(3):254~257
    [84] 张理刚.1985.稳定同位素在地质科学中的应用.陕西科学技术出版社
    [85] 张理刚等.1995.东亚岩石圈块体地质—上地幔、基底和花岗岩同位素地球化学及其动力学.北京:科学出版社
    [86] 张以弗,庞存廉,李长利等.1997.可可西里—巴颜喀拉三叠纪沉积盆地的形成和演化.西宁:青海人民出版社
    [87] 郑健康.1992.东昆仑区域构造的发展演化.青海地质,(1):15~25.
    [88] 郑永飞,陈江峰.2000.稳定同位素地球化学.科学出版社
    [89] 中国科学院矿床地球化学开放研究实验室著.1997.矿床地球化学.北京:地质出版社
    [90] 周显强,宋友贵,邓军等.1996.青海都兰地区控矿构造特征研究.地质力学学报,2(1):34~41
    [91] 朱炳泉等.1998.地球科学中同位素体系理论与应用.北京:科学出版社
    [92] 朱云海,Pan Yuanming,张克信等.2000.东昆仑造山带东段晋宁期岩浆活动及其演化.地球科学—中国地质大学学报,25(3):231,266.
    [93] 朱云海,张克信,Pan Yuanming等.1999.东昆仑造山带不同蛇绿岩带的厘定及其构造意义.地球科学—中国地质大学学报,24(2):134~138.
    [94] 朱志直,赵民,郑健康.1985.东昆仑中段“纳赤台群”的解体与万宝沟群的建立.见:青藏高原地质文集(16).北京:地质出版社,1~14
    [95] Barley M E and Groves D I. 1992. Supercontinent cycles and the distribution of metal deposits through time, Geology, 20: 291~294
    [96] Bohlke J K., Kistler R W. 1986. Rb-Sr, K-Ar, and stable isotope evidence for the ages and sources of fluid components of gold-bearing quartz veins in the northern Sierra Nevada foothills metamorphic belt, California. Econ. Geol., 81: 296~322
    [97] Bonnemaison M and Marcoux E. 1990. Auriferous mineralization.in some shear zone: A three-stage model of metal logenesis. Minerallium Deposita, 25 (2): 96 — 104
    (98) Bouchot V., Gros Y., Bonnemaison M. 1989. Structural controls on the auriferous shear zones of the Saint Yrieux district, Massif Central, France. Evidence from the Le Bourneix and Laurieras gold deposits. Econ. Geol., 84: 1315—1327
    (99) Bowers T S and Helgeson H C. 1983a. Calculation of the thermodynamic and geochemical consequences of nonideal mixing in the system H_2O-CO_2-NaCl on phase relations in geologic systems: Equation of state for H_2O-CO_2-NaCl fluids at high pressures and temperatures. Geochim. Cosmochim. Acta, 47: 1247—1275
    (100) Chil-Sup So and Seong-Taek Yun. 1996. Geochemical evidence of progressive meteoric water interaction in epithermal Au-Ag mineralization, Jeongju-Buan district, Republic of Korea. Economic Geology, 91 (3): 636~646.
    (101) Chil-Sup So and Seong-Taek Yun. 1997. Jurassic mesothermal gold mineralization of the Samhwanghak mine, Youngdong area, Republic of Korea: Constraints on hydrothermal fluid geochemistry. Economic Geology, 92 (1): 60—80.
    (102) Clark M E., Carmichael D M., Hodgson C J et al. 1989. Wall-rock alteration, Victory gold mine, Kambalda, Weatern Australia: processes and P-T-XCO_2 conditions of metasomatism. Econ. Geol. Monogr., 6: 445—459
    (103) Cox S R, Sun S S., Etheridge M A et al. 1995. Structural and geochemical controls on the development of turbidite-hosted gold quartz vein deposits, Wattle Gully Mine, central Victoria, Australia. Econ. Geol., 90: 1722— 1746
    (104) Cox S R, Wall V J., Etheridge M A et al. 1991. Deformational and metamorphic processes in the formation of mesothermal vein-hosted gold deposits—examples from the Lachlan fold belt in central Victoria, Australia. Ore Geol. Rev., 6: 391—423
    (105) de Ronde C E J., Spooner E T C, de Wit M J. 1992. Shear zone-related, Au quartz vein deposits in the Barberton greenstone belt, South Africa: field and petrographic characteristics, fluid properties, and light stable isotope geochemistry. Econ. Geol., 87: 366-402
    (106) Doe B R and Stacey J S. 1974. The application of lead isotopes to the problems of ore genesis and ore prospect evaluation: a review. Econ. Geol., 67: 757—767
    (107) Forde A., 1991. The late orogenic timing of gold mineralization in some slate belt gold deposits, Victoria, Australia. Minerallium Deposita, 26: 257—266
    (108) Forde A., Bell T H. 1994. Late structural control of mesothermal vein-hosted gold deposits in central Victoria, Australia: mineralization mechanisms and exploration potential. Ore Geol. Rev., 9: 33-59
    (109) Ford R C and Snee L W. 1996. ~(40)Ar/~(39)Ar thermochronology of white mica from the Nome district , Alaska: The first ages of lode sources to placer gold deposits in the Seward Peninsula. Econ. Geol. 91: 213—220
    (110) Goldfarb R J, Groves D I and Gardoll S. 2001. Orogenic gold and geologic time: a global synthesis. Ore Geol. Rev., 18 (1—2): 1—75
    (111) Goldfarb R J., Leach D L., Pickthorn W J., Paterson C J. 1988. Origin of lode-gold deposits of the Junean gold deposit, southeast Alaska. Geology, 16: 440—443
    (112) Goldfarb R J, Newberry R J, Pickthorn W J et al. 1991. Oxygen, hydrogen and sulfur isotope studies in the Juneau gold belt, southeastern Alaska: constraints on the origin of hydrothermal fluids. Econ. Geol., 86 (1): 66—80
    (113) Goldfarb R J, Phillips G N and Nokleberg W J. 1998. Tectonic setting of synorogenic gold deposits ofthe Pacific Rim. Ore Geol. Rev., 13 (1~5): 185~218
    
    (114) Groves D I. 1993. The crustal continuum model for late-Archaean lode-gold deposits of the Yilgarn Block, Western Australia. Mineralium Deposita, 28: 366—374
    
    (115) Groves D I, Goldfarb R J, Gebre-Mariam M, et al. 1998. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol. Rev., 13 (1-5): 7~27
    (116) Groves D I, Goldfarb R J, Knox-Robinson C M, et al. 2000. Lake-kinematic of orogenic gold deposits and significance for computer-based exploration techniques with emphasis on the Yilgarn Block, Western Australia. Ore Geol. Rev., 17(1-2): 1 —38.
    (117) Hodgson C J. 1989. The structure of shear-related, vein-type gold deposits: a review. Ore Geol. Rev., 4: 231-273
    (118) Jiang neng, Xu Jiuhua and Song Mianxin. 1999. Fluid inclusion characteristics of mesothermal gold deposits in the Xiaoqinling district, Shaanxi and Henan provinces, People's Republic of China. Minerallium Deposita, 34: 150—162.
    (119) Kerrich, R., 1993. Perspectives on genetic models for lode-gold deposits. Miner. Deposita. 28:362-365.
    (120) Kerrich, R., Cassidy, K. F. 1994. Temporal relationships of lode-gold mineralization to accretion, magmatism, metamorphism and deformation, Archean to present: A review. Ore Geol. Rev.9, 263-310
    (121) Kerrich, R., Goldfarb, R., Groves, D., et al. 2001. The characteristics, origins and geodynamic settings of supergiant gold metallogenic provinces. Science in China (series D), 43 (supp.): 1-68.
    (122) Kerrich, R., Wyman, D.A. 1990. The geodynamic setting of mesothermal gold deposits: An association with accretionary tectonic regimes. Geology, 18: 882—885.
    (123) Lindgren, W, 1933. Mineral Deposits, 4th ed. McGraw Hill, New York and London, 930pp.
    (124) Martin, H., 1987. Petrogenesis of Archaean trondhjemites, tonalites, and granodiorites from eastern Finland: major and trace element geochemistry. Journal of Petrology, 28: 921-953.
    (125) Martin, H., 1993. The mechanisms of petrogenesis of the Archaean continental crust-comparison with modern processes. Lithos, 30: 373—388.
    (126) McCuaig T C, Kerrich R., 1998. P-T-t-deformation-fluid characteristics of lode-gold deposits: evidence from alteration systematics. Ore Geol. Rev., 12: 381—453
    (127) Miller L D., Goldfarb R J., Gehrels G E., Snee L W. 1994. Genetic links among fluid cycling, vein formation, regional deformation, and plutonism in the Juneau gold belt, southeastern Alaska. Geology, 22: 203—206
    (128) Murphy P J., Roberts S. 1997. Evolution of a metamorphic fluid and its role in lode-gold mineralization in the Central Iberian Zone. Minerallium Deposita, 32: 459—474
    (129) Nesbitt B E., Muehlenbachs K., Murowchick J B. 1989. Genetic implications of stable isotope characteristics of mesothermal Au deposits and related Sb and Hg deposits in the Canadian Cordillera. Econ. Geol., 84: 1489—1506
    (130) Ohmoto H. 1972. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Econ. Geol., 67: 551-579
    (131) Poulsen, K. H., 1996. Lode-gold. In: Eckstrand, O. R., Sinclair, W. D., Thorpe, R, I. (Eds.), Geology of Canadian Mineral Deposite Types. The Geology of North America, vol. P-1. Geol. Soc. Am., pp. 323-328.
    
    (132) Ramsay J G. 1980. Shear zone geometry: A review. Struct. Geol., 2: 83—99
    (133) Ren J S, Niu B G and Liu Z G. 1996. Microcontinents, soft collision and polycyclic suturing. Continental Dynamics, 1 (1): 1 ~9
    (134) Robert F., Kelly W C. 1987. Ore-forming fluids in Archean gold-bearing quartz veins at the Sigma mine, Abitibi greenstone belt, Quebec, Canada. Econ. Geol., 82: 1464~ 1482
    (135) Roedder E. 1984. Fluid inclusions. Reviews in Mineralogy, 12: 25—35
    (136) Ryan R J and Smith P K. 1998. A review of the mesothermal gold deposits of the Meguma Group, Nova Scotia, Canada. Ore Geol. Rev., 13 (1~5): 153—184
    (137) Schwartz M O. 1989. Determining phase volumes of mixed CO_2-H_2O inclusions using microthermometric measurements.Minerallium Deposita, 24: 43—47
    (138) SibsonRH. 1977. Fault rocks and fault mechanism. Geol. Soc. London, 133: 191~213
    (139) Sibson R H, Robert F and Poulsen K H. 1988. High-angle reverse faults, fluid pressure cycling, and mesothermal gold-quartz deposits. Geology, 16: 551 —555
    (140) Stacey J S and Kramers J D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters, 26: 207—221
    (141) Stuwe K. 1998. Tectonic constraints on the timing relationships of metamorphism, fluid production and gold-bearing quartz vein emplacement. Ore Geology Reviews, 13: 219~ 228
    (142) Witt W K, Vanderhor F. 1998. Diversity within a unified model for Archean gold mineralization in the Yilgarn Craton of Western Australia: An overview of the lateorogenic, structually-controlled gold deposits. Ore Geol. Rev., 13 (1~5): 29—64.
    (143) Wyman D and Kerrich R. 1988. Alkaline magmatism, major structures, and gold deposits: Implications for greenstone belt gold metallogeny. Econ. Geol., 83: 451 —458
    (144) Yeats C J and Groves D I. 1998. The Archaean Mount Gibson gold deposits, Yilgarn Craton, Western Australia: Products of combined synvolcanic and syntectonic alteration and mineralization. Ore Geol. Rev., 13 (1—5): 103 — 130
    (145) Zartman R E and Doe B R. 1981. Plumbotectonics—the model. Tectonophysics, 75 (1-2): 135-162
    (146) Zartman R E, Haines S M. 1988. The plumbotectonic model for Pb isotopic systematics among major terrestrial reservoirs —A case for bi-directional transport. Geochimica et Cosmochimica Acta, 52: 1327—1339

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700