用户名: 密码: 验证码:
冻融土壤水热盐运移规律及其SHAW模型模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
资源、环境对社会和经济可持续发展具有重要意义,土壤和水是自然环境和农业生产的两项基本资源。
     在干旱寒冷地区,冻融土壤水盐运动的特殊规律与分配特性是影响北方灌区土壤盐渍化发生、发展和演变的重要因素。土壤的冻结和融化对于土壤盐渍化具有重要的作用。越冬期间土壤水分、盐分在垂直剖面上的迁移与土壤冻融的关系十分密切。研究冻融条件下土壤水热盐迁移,对农业生产具有十分重要的意义。本文以内蒙古河套灌区农业生产实际为背景,在探讨秋季灌溉后土壤冻融过程中水热盐迁移规律的基础上,揭示了秋季储水灌溉与抑制土壤盐渍化的机理。秋季储水灌溉是河套灌区多年生产实践中形成的用于冲洗土壤盐分和为翌年春小麦播种、幼苗发芽生长储水保墒的灌水形式。由于问题涉及冻土物理学、地下水文学和溶质动力学等多学科的综合,其机理十分复杂。自然条件下土壤冻融过程中水热盐迁移问题迄今尚未得到系统研究。研究通过室内外试验与理论分析相结合,揭示了季节性冻土地区土壤盐渍化形成机制,确定了节水防盐双重目标的秋浇节水灌溉制度,探讨了我国北方地区土壤盐渍化防治措施。在12年(1994~2006年)田间试验的基础上,通过对多年冻融期间的气温、地温、水分和盐分之间的年际变化关系及其统计特征的分析,系统分析了自然条件下冻融土壤水热盐迁移规律。
     通过秋浇试验,揭示了秋浇定额和地下水位对冻融期间水分和盐分运移的影响规律。
     引入美国农业部Flerchinger和Saxton建立的描述冻结条件下水分、热和溶质运移的SHAW模型,对冻融期间土壤水热盐动态迁移问题进行了模拟研究,揭示了冻融期间水热盐三者之间的耦合迁移规律。该模型与目前世界上广泛应用的SWAP模型相比,不仅能够模拟非冻季大气层、作物冠层、土壤层之间的能量、水量和溶质通量交换过程,而且涉及到土壤的冻结和融化,将冠层、雪被、凋落物层、冻土层和非冻土层组成了一个多层体系,对SPAC水热传输过程可进行更为详细的模拟。
     利用SHAW模型模拟分析了季节性冻融期的土壤冻结融化过程、冻融期间水热迁移规律和不同初始含水率对冻融期的水热状况的影响,得到了与水热迁移相关的物理量的动态变化规律,包括土壤含水率、储水量、温度、冻结深度、考虑水热交换情况下的地表蒸发、水分通量等,体现了理论分析相对于试验研究的优越性。以内蒙古河套灌区土壤墒情和盐渍化为背景,运用SHAW模型模拟分析了河套灌区3种盐渍化程度土壤(轻度、中度和重度)、不同秋浇定额和不同秋浇时间条件下冻融期土壤蒸发量、土壤储水量和土壤含盐量的变化规律。并且根据研究区春小麦春播期、苗期含水率和盐分随秋浇定额和秋浇时间的变化关系以及考虑地下水位影响和盐分迁移等因素,首次在理论分析的基础上,定量地研究确定了不同盐渍化土壤合理的秋浇节水灌溉制度。
     研究系统地探索了自然条件下盐渍化地区冻融土壤水热迁移规律及秋季储水灌溉后冻融期间土壤水热盐耦合迁移规律,为秋浇节水灌溉的深入研究提供了的理论基础,对灌区农业生产具有重要的指导作用,对于北方大型灌区节水改造和节水灌溉的实施以及盐渍化的防治具有重要参考价值。
Resources and environment are important for sustainable development of human society and economics. While soil and water are the basic resource for environment and agriculture.
     Soil freezing and thawing is a major cause of occurrence-developing in the soil salinization on arid and cold region. It plays a significant role to study on soil water-heat-salt coupling transfer under freezing and thawing conditions in agriculture. Study the transfer law of freezing and thawing soil water-heat-salt after autumn irrigation based on the agriculture in Inner Mongolia Hetao irrigation areas. Reveal the mechanism of control soil salinization and irrigation in autumn. Leaching by irrigation to reduce salt concentration in the crop root zone is a traditional technique in this area. Because of its complexity, the problem of moisture-heat-salt transfer in feezing-thawing soils under nature conditions is far from being solved though considerable works have been done. By theory analysis combined with experiment study, the purpose of this study is to reveal the mechanism of soil salinization and develop an irrigation scheme of water-saving and control salt content for autumn irrigation.
     Based on 12 years(1994~2006) fields experiment, by analyzing the yearly variation of air temperature, soil temperature, moisture and salt and its statistic eigenvalue, the law of freezing-thawing soil water-heat-salt transfer under filed condition is the farther analyzed.
     Analyze the effects on soil water and salt transport under different irrigation requirements and ground water level by autumn irrigation experiment.
     The SHAW(the Simultaneous Heat and Water) Model developed by Flerchinger and Saxton in NWRC ARS USDA is used to study the soil water-heat-salt transfer during freezing and thawing in Inner Mongolia Hetao irrigation areas. Compared with SWAP Model, it not only simulates water-heat-solute transport from atmosphere, vegetation to soil under non winter, but also deals with soil freezing and thawing. The system is represented by integrating detailed physics of a plant canopy, snow, resides, frozen soil and unfrozen soil into one simultaneous solution.
     This paper simulated the course of soil freezing-thawing, the law of moisture-heat transfer and the initial water content effects on water-heat in seasonal freezing-thawing period. The dynamic variation law related with water and heat transfer are obtained, including soil moisture content, temperature, the depth of freeze, soil evapotranspiration and water flux taken into account exchange between water and heat transfer in soil-atmosphere continuum. The advantage of theory analysis is shown compared with experimental study.
     Then based on soil moisture and salinity in Inner Mongolia Hetao irrigation district, the SHAW is used to simulate the dynamic variation of the soil evapotranspiration, water and salt content for the 3 salinized soils, the 11 irrigation requirements in autumn and the 3 irrigation time. The reasonable water-saving irrigation scheme in autumn is quantificationally developed for the first time which aimed at the different salinized (slight, moderate, serious) soils in theory.
     The study on the freezing-thawing soil water-heat-salt transfer in freezing and thawing period for salinity district are developed in the thesis. It contributed to some foundation in theory for the study on the water-saving irrigation in autumn, which is quite important for agriculture in the Hetao irrigation area. Moreover, it is significant role for the water-saving renovation and soil salinization control of irrigation area in North China.
引文
1 徐学祖, 王家澄, 张立新等. 冻土物理学[M]. 北京: 科学出版社, 2001: 1-15
    2 郭占荣, 荆恩春, 聂振龙等. 冻结期和冻融期土壤水分运移特征分析[J]. 水科学进展, 2005, 13(3): 298-302
    3 龚家栋, 祁旭升, 谢忠奎等. 季节性冻融对土壤水分的作用及其在农业生产中的意义[J]. 冰川冻土, 1997, 19(4): 328-333
    4 SHI Haibin, AkaeTakeo, NagahoriKinzo, ChenYaxin. Simulation of Leaching Requirement for Hetao Irrigation District Considering Salt Redistribution after Irrigation [J]. Transactions of the CSAE,2002,18(5):67-72
    5 WANG Liping and Takeo AKAE. Analysis of Ground Freezing Process by Unfrozen Water Content Obtained from TDR Data in Hetao Irrigation District of China [J]. Jpn. Soc. Soil Phys.No.98,2004:11-19
    6 Nakano, Tice, Oliphant. et al. Transport of Water in Frozen Soils.1. Experimental Determination of Soil Water Diffusivity under isothermal Conditions[J]. Advances in Water Resourc. 1982,5:p221-226
    7 Nakano, Tice, Oliphant. et al. Transport of Water in Frozen Soils.2. Effect of Ice on the Transport of Water under isothermal Conditions[J]. Advances in Water Resourc. 1983,6:p15-26
    8 Nakano, Tice, Oliphant. et al. Transport of Water in Frozen Soils.3. Experiments on Effect of Ice content[J]. Advances in Water Resourc. 1984a,7:p28-34
    9 Nakano, Tice, Oliphant. et al. Transport of Water in Frozen Soils.4. Analysis of Experimental Results on Effects of Ice content[J]. Advances in Water Resourc. 1984b,7:p58-66
    10 Nakano, Tice, Oliphant. et al. Transport of Water in Frozen Soils.5. Method for Measuring the Vapor diffusivity When Ice is Absent[J]. Advances in Water Resourc. 1984c,7:p172-179
    11 Nakano, Tice, Oliphant. et al. Transport of Water in Frozen Soils.6. Effect of Temperature[J]. Advances in Water Resourc. 1987,10:p44-55
    12 Nakano. Transport of Water through Frozen soil. Proc. of the 6th Int[J]. Symp. on Ground Freezing ,Beijing,China, 1991,Vol. 1,p65-70
    13 Perfect and Williams. Thermally induced water migration in frozen soil[J]. Cold Reg. Sci. Techn. ,1980, Vol.3,101-109
    14 Oliphant and Nakano. Measurement of water migration due to a temperature gradient in frozen soil[J]. Permafrost: Fourth International Conference Proceedings. National Academy Press, Washington D. C. USA,1983,951-956
    15 Konrad, Morgenstern. The Segregation Potential of a Freezing Soil[J]. Can. Geotech.J. 18,1981:482-491
    16 徐学祖, 邓友生. 冻土中水分迁移的实验研究[M ], 北京: 科学出版社, 1991, 4: 1-134
    17 徐学祖, 王家澄, 张立新等. 土体冻胀和盐胀机理[M]. 北京: 科学出版社, 1995
    18 Chen and Wang. Some Characters Clay During Freezing. Proc. of the 4th Int. Symp. on Ground Freezing[J]. 1985,63-67
    19 Cray and Campbwll. Water and Salt Movement in Unsaturated Frozen Soil: Principle and Field Observation[J]. Soil Sci. Soc. of Amer. 1979,43:379-400
    20 方汝林. 土壤冻结、消融期水盐动态的初步研究[J]. 土壤学报, 1982, 19(2): 164-172
    21 黄兴法, 王千, 曾德超. 冻期土壤水热盐运动规律的实验研究[J]. 农业工程学报, 1993, 3: 28-33
    22 刘霞. 土壤冻融过程中水、热、盐运移规律研究[D]. 内蒙古农牧学院硕士学位论文, 1996
    23 王海丽. 冻融土壤水、热、盐迁移实验研究与水、热运动的数值模拟[D]. 内蒙古农牧学院硕士学位论文, 1997
    24 李伟强, 雷玉平, 张秀梅等. 硬壳覆盖条件下冻融期水盐运动规律研究[J]. 冰川东土, 2001, 23(3): 251-257
    25 张立新, 徐学祖, 韩文玉. 景电灌区次生盐渍化土壤冻融特征[J].土壤学报, 2002, 39(4): 512-516
    26 张立新, 韩文玉, 顾同欣. 冻融过程对景电灌区草窝滩盆地土壤水盐动态的影响[J]. 冰川冻土, 2003, 25(3): 297-302
    27 WANG Liping. Studies on Liquid Water Estimation and Salt Transportation in Frozen Soils Based on Time Domain Reflectometry Data in Hetao Irrigation District of China[D].The Graduate School of Natural Science and Technology Okayama University.2004,9
    28 ZHANG Dianfa, WANG shijie. Mechanism of freeze-thaw action the process of soil salinnition in northeast China. Environmental Geology[J]. 2001,41:96-100
    29 Harlan. Analysis of coupled heat-fluid Transport in partially frozen soil[J]. Water Resour. Res. 1973,9(5): 1314-1323
    30 Jame and Norum. Heat and mass transfer in a freezing unsaturated porous media[J]. Water Resour. Res. 1980, 16(4): 811-819
    31 杨诗秀, 雷志栋, 朱强等. 土壤冻结条件下水热耦合迁移的数值模拟[J]. 清华大学学报, 1988,28 (1): 112-120
    32 Shen and Ladanyi. Modeling of coupled heat, moisture and stress field in freezing soil[J]. Cold Regions Sci. Tech. 1987,14:237-246
    33 王海丽. 冻土水热运动的数值模拟[J]. 内蒙古农牧学院学报, 1998, 19(1): 99-100
    34 雷志栋, 尚松浩, 杨诗秀. 地下水浅埋条件下越冬期土壤水热迁移的数值模拟[J]. 冰川冻土, 1998, 20(1): 51-54
    35 雷志栋, 尚松浩, 杨诗秀. 土壤冻结过程中潜水蒸发规律的模拟研究[J]. 水利学报, 1999, 6:6-9
    36 LI ning, Chen bo, Xu xiaozu. The coupled heat-moisture-deformation model of the frozen soil[J]. Cold Regions Sci. Tech. 2000(31):199-205
    37 郑秀清, 樊贵盛. 冻融土壤水热迁移数值模型的建立与仿真分析[J]. 系统仿真学报, 2001, 13(3): 52-55
    38 Flerchinger and Saxton. Simultaneous Heat and Water Model of a Freezing Snow-Residue-Soil System[J]. Transaction of the ASAE.1989,32(2):565-578
    39 练国平, 曾德超.一个冻土水热盐运动的数学模型[J]. 农业工程学报, 1988, 4(4): 31-37
    40 黄兴法, 曾德超. 冻结期土壤水、盐、热运动规律的数值模拟[J]. 北京农业工程大学学报, 1993 , 3
    41 岳汉森. 土壤在冻融过程中水-热-盐耦合运移数学模型之初探[J]. 冰川冻土, 1994, 16(4): 308-313
    42 叶伯生, 陈肖柏. 非饱和土冻结时水热耦合迁移的数值模拟[J]. 第四届全国冻土学术会议论文集. 北京: 科学技术出版社. 1990, 77-89
    43 张殿发, 郑琦宏, 董志颖. 冻融条件下土壤中水盐运移机理探讨[J]. 水土保持通报, 2005, 25(6): 14-18
    44 郑冬梅, 许林书, 罗金明等. 松嫩平原盐沼湿地冻融期水盐动态研究[J]. 湿地科学, 2005, 3(1): 48-53
    45 李述训, 程国栋, 刘继民, 林经芳. 兰州黄土在冻融过程中水热输运实验研究[J]. 冰川冻土, 1996, 18(4) :320-324
    46 GUO Li, MiaoTiande, Zhang Hui, NiuYonghong. Thermodynamic models of heat-moisture migration in saturated freezing soil[J]. Chinese Journal of Geotechnical Engineering. 1998,20(5):87-91
    47 Kay and Groenevelt. On the interaction of water and heat transport in frozen and unfrozen soils: Ⅰ Basic theory: the vapor phase[J]. Soil Sci. Soc. of Amer. Proc. 1974,38:395-400
    48 Klas, Jirka, Masaru. Water Flow and Heat Transport in Frozen Soil: Numerical Solution and Freeze–Thaw Applications [J]. Soil Science Society of America, 2004(3): 693-704
    49 Kung and Steenhuis. Heat and moisture transfer in partly frozen nonheaving soil[J]. Soil Sci. Soc. of Amer. J. 1986,508:1114-1122
    50 ZHENG xiuqing, Flerchinger. Infiltration into freezing and thawing soils under differing field treatments [J]. Journal of irrigation and drainage, 2001,127(3):176-182
    51 Tomasz Kozlowski. A comprehensive method of determining the soil unfrozen water curves: 1. Application of the term of convolution[J]. Cold Regions Science and Technology. 2003,36:71–79
    52 Tomasz Kozlowski. A comprehensive method of determining the soil unfrozen water curves: 2. Stages of the phase change process in frozen soil–water system[J]. Cold Regions Science andTechnology. 2003,36:81–92
    53 Yoshisuke Nakano. Water expulsion during soil freezing described by a mathematical model called M1[J]. Cold Regions Science and Technology.1999,29:9-30
    54 Yukiyoshi Iwata1 and Tomoyoshi Hirota. Monitoring over-winter soil water dynamics in a freezing and snow-covered environment using a thermally insulated tensiometer[J]. Hydrol. Process. 2005,19:3013–3019
    55 Marco Bittelli and Markus Flury. A thermodielectric analyzer to measure the freezing and moisture characteristic of porous media[J]. Water Resources Research. 2003,39(2):1035-1041
    56 Klas Hansson and Masaru Mizoguchi. Water Flow and Heat Transport in Frozen Soil: Numerical Solution and Freeze–Thaw Applications[J]. Vadose Zone Journal. 2004,3:693–704
    57 K. Warrach, H.-T. Mengelkamp, and E. Raschke. Treatment of frozen soil and snow cover in the land surface model SEWAB[J]. Theoretical Applied Climatology. 2001, 69:23-37
    58 Anatoli Brouchkov. Salt and Water Transfer in Frozen Soils Induced by Gradients of Temperature and Salt Content.[J].Permafrost periglacial processes, 2000,(11):153-160
    59 屈忠义. 基于人工神经网络的区域水-土(盐)环境预测研究[D]. 内蒙古农业大学, 2003, 5: 88
    60 魏占民. 干旱区作物-水分关系与田间灌溉水有效性的 SWAP 模型模拟研究[D]. 内蒙古农业大学, 2003, 5: 55-81
    61 孔东. 含盐土壤节水灌溉下作物-水-盐响应关系及模型研究[D]. 内蒙古农业大学, 2004, 5: 108
    62 樊贵盛, 贾宏骥, 李海燕. 影响冻融土壤水分入渗特性主要因素的试验研究[J]. 农业工程学报, 1999, 15(4): 88-94
    63 郑秀清, 樊贵盛. 土壤含水率对季节性冻土入渗特性影响的试验研究[J]. 农业工程学报, 2000, 16(6): 52-55
    64 邢述彦. 灌溉水温对冻融土入渗规律的影响[J]. 农业工程学报, 2002, 18(2): 41-44
    65 陈军锋, 郑秀清, 邢述彦等. 地表覆膜对季节性冻融土壤入渗规律的影响[J]. 农业工程学报, 2006, 22(7): 18-21
    66 樊贵盛, 郑秀清, 赵生义. 地下水埋深对冻融土壤水分入渗特性影响的试验研究[J]. 水利学报. 1999, (3): 21-26
    67 张殿发, 郑琦宏. 冻融条件下土壤中水盐运移规律模拟研究[J]. 地理科学进展, 2005 ,24(4): 46-55
    68 尚松浩, 雷志栋, 杨诗秀. 冻融期地下水位变化情况下土壤水分运动的初步研究[J]. 农业工程学报, 1999 ,15(2): 64-68
    69 雷志栋, 杨诗秀, 谢森传. 土壤水动力学[M]. 北京:清华大学出版社, 1988
    70 徐英, 陈亚新, 周明耀. 不同时期农田土壤水分和盐分的空间变异性分析[J]. 灌溉排水学报,2005, 24(3): 30-34
    71 原国红. 季节冻土水分迁移机理及数值模拟[D]. 吉林大学, 2006, 6
    72 周余华, 叶伯生, 胡和平. 土壤冻融条件下的陆面过程研究综述[J]. 水科学进展, 2005, 16(6): 887-891
    73 尚松浩, 雷志栋, 杨诗秀. 冬灌对越冬期土壤水分状况影响的数值模拟[J]. 农业工程学报, 1997, (5): 65-70
    74 李洪升, 刘增利, 梁承姬. 冻土水热力棍合作用的数学模型及数值模拟[J]. 力学学报, 2001, 33(5): 621-629
    75 王伦平, 陈亚新, 曾国芳等. 内蒙古河套灌区灌溉排水与盐碱化防治[M]. 北京: 水利电力出版社, 1993, 8: 31
    76 何平, 程国栋, 朱元林. 土体冻结过程中的热质迁移研究进展[J]. 冰川冻土, 2001, 23(1): 92-98
    77 王国尚, 金会军, 林清. 时域反射仪在寒区冻融土参数测试中的应用[J]. 冰川冻土, 1998, 20(1): 88-92
    78 ZHAO Litong, Gray D M. Estimating snowmelt infiltration into frozen soils [J]. Hydrological Processes, 1999, 13: 1827-1842
    79 李韧. 青藏高原辐射场与冻土热力学关系的分析与模拟研究[D]. 中国科学院寒区旱区环境与工程研究所, 2005, 5
    80 肖薇, 郑有飞, 于强. 基于 SHAW 模型对农田小气候要素的模拟[J]. 生态学报, 2005, 25(7): 1626-1634
    81 石元春, 李保国等.区域水盐运动监测预报[M]. 石家庄: 河北科学技术出版社, 1991
    82 李俊亭. 地下水流数值模拟[M]. 北京: 地质出版社, 1989
    83 陈亚新, 史海滨. 地下水与土壤盐渍化关系的动态模拟[J]. 水利学报, 1997, 5: 77-83
    84 史海滨, 陈亚新. 饱和—非饱和流溶质传输的数学模型与数值方法评价[J]. 水利学报, 1993, 8
    85 史海滨, 陈亚新. 吸附作用与不动水体对土壤溶质运移影响的模拟研究[J]. 土壤学报, 1999, 3
    86 内蒙古自治区水利水电勘测设计院. 内蒙古河套灌区利用自治区政府专项资金节水改造工程可行性研究报告[R]. 2006, 8
    87 Flerchinger, Aiken, Rojas. Development of the root zone water quality model (RZWQM) for over-winter conditions [J]. Transactions of the ASAE, 2000,43(1):59-68
    88 Flerchinger, Baker, Spaans. A test of the radiative energy balance of the SHAW model for snowcover [J]. Hydrological processes, 1996,10:1359-1367
    89 Flerchinger, Hardegree. Modeling near-surface soil temperature and moisture for germination response predictions of post-wildfire seedbeds [J]. Journal of Arid Environments,2004(59):369-385
    90 Flerchinger, Sauer, Aiken. Effects of crop residue cover and architecture on heat and water transfer at the soil surface [J]. Geoderma, 2003(116):217-233
    91 Flerchinger. The simultaneous heat and water(SHAW) model: technical documentation[R]. North Watershed Research center USDA Agricultural Research Service.2000,9
    92 Flerchinger. The simultaneous heat and water(SHAW) model: User’s Manual[R].North Watershed Research center USDA Agricultural Research Service.2000,10
    93 Link, Flerchinger. Simulation of water and energy fluxes in an old-growth seasonal temperate rain forest using the simultaneous heat and water (SHAW) model [J]. American Meteorological Society, 2004,6:443-457
    94 Flerchinger B N, Kustas W P, Weltz M A. Simulating surface energy and radiometric surface temperatures for two arid vegetation communities using the SHAW model [J]. Journal of Applied Meteorology, 1998, 37(5): 449-460
    95 Nassar, Horton, Flerchinger. Simultaneous heat and mass transfer in soil columns exposed to freezing/thawing conditions [J]. Soil science, 2000,165(3):208-216
    96 Flerchinger, Saxton. Simultaneous heat and water model of a freezing snow-residue-soil system I. Theory and development [J].TRANSACTIONS of the ASAE, 1989, 32(2): 565-571
    97 Flerchinger, Saxton. Simultaneous heat and water model of a freezing snow-residue-soil system II. Field Verification [J]. Trans. Amer. Soc. of Agric. Engr., 1989. 32(2):573-578
    98 Flerchinger, Hanson. Modeling soil freezing and thawing on a rangeland watershed [J]. Trans. Amer. Soc. of Agric. Engr., 1989, 32(5):1551-1554
    99 Flerchinger. Sensitivity of soil freezing simulated by the SHAW Model [J]. Trans. Amer. Soc. of Agric. Engr., 1991, 34(6):2381-2389
    100 Flerchinger, Seyfried. Modeling Soil Freezing and Thawing and Frozen Soil Runoff with the SHAW Model [J]. 1997, 537-543. In: I.K. Iskandar, E.A. Wright, J.K.Radke, B.S. Sharratt, P.H. Groenevelt, and L.D. Hinzman (eds.), Proceedings of the International Symposium on Physics, Chemistry, and Ecology of Seasonally Frozen Soils, Fairbanks, AK, June 10-12, 1997. CRREL Special Report 97-10. U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, NH
    101 Flerchinger, Pierson. Modelling plant canopy effects on variability of soil temperature and water: model calibration and valibration [J]. Journal of Arid Environment, 1997,35:641-653
    102 Flerchinger, Hardegree. Modelling near-surface temperature and moisture for germination response predictions of post-wildfire seedbeds [J]. Journal of Arid Environment,2004,59:369-385
    103 Flerchinger, Hanson and Wight. Modeling evapotranspiration and surface energy budgets across a watershed [J]. Water Resour. Res., 1996,32(8):2539-2548
    104 Flerchinger, Seyfried, Hardegree. Using Soil Freezing Characteristics to Model Multi-Season Soil Water Dynamics [J]. Vadose Zone Journal,2006,1-11
    105 Flerchinger, Pierson. Modeling plant canopy effects on variability of soil temperature and water [J]. Agricultural and Forest Meteorology, 1991,56:227-246
    106 ZHENG Xiuqing, Liew, Flerchinger. Experimental study of infiltration into a bean stubble filed during seasonal freeze-thaw period [J]. Soil science, 2001,166(1):3-10
    107 KANG Ersi1, CHENG Guodong, SONG Kechao. Simulation of energy and water balance in Soil-Vegetation-Atmosphere Transfer system in the mountain area of Heihe River Basin at Hexi Corridor of northwest China [J]. Science in China Ser. D Earth Sciences,2005,48(4):538 548
    108 QIN Zhong, YU Qiang, XU Shouhua. Water heat flues and water use efficiency measurement and modeling above a farmland in the North China Plain [J]. Science in China Ser. D Earth Sciences,2005,48,Supp.I:207-217
    109 Faruk Civan. Unfrozen water infreezing and thawing soil: kinetics and correlation [J]. Journal of Cold Regions Engineering, 2000,9:146-156
    110 Simonsen, Janoo, Isacsson. Prediction response during freezing and thawing using finite element approach [J]. Journal of Cold Regions Engineering, 1997,12:308-324
    111 Kudryavtsev. Numerical modeling of the freezing, frost heaving, and thawing of soils [J]. Soil Mechanics and Foundation Engineering, 2004,41(5): 177-184
    112 Manfred, Daniel. Measurement of water and solute dynamics infreezing soil columns with time domain reflectometry [J]. Journal of Hydrology, 1997,195: 352-369
    113 Singh, Chaudhary. Evalution of heat and moisture transfer properties in a frozen-unfrozen water-soil system [J]. Int. J. Heat Mass Transfer, 1995,38(12):2297-2303
    114 Kenji, Pier. Comparing unfrozen water content measurement of frozen soil using recently developed commercial sensors [J]. Cold Regions Science and Technology, 2005,42:250-256
    115 桂良进等. Fortran Powerstation4.0 使用与编程[M]. 北京: 北京航空航天大学出版社, 1999
    116 杨树青. 基于 Visual-Modflow 和 SWAP 耦合模型干旱区微咸水灌溉的水—土环境效应预测研究[D]. 内蒙古农业大学, 2005, 4
    117 Van Dam J.C., Huygen J., Wesseling J.G., Feddes R.A., Kabat P., Van Walsum P.E.V., Groenendijk P., Van Diepen C.A.,. Theory of SWAP version 2.0(M). Technical Document 45. Wageningen Agricultural University and DLO Winand Staring Center, 1997
    118 SHIHaibin, Chen Yaxin, Chaolun Bagen, AkaeTakeo. Preliminary study on soil water, heat and solute transport in cold and arid salinization control. International Conference of Agriculture Engineering, 1999
    119 SHI Haibin. Studies on salt transport in arid soil and soil salinization control in the Hetao irrigation district, China [D]. Okayama University, 1998,3
    120 Ritu Gupta. Investigation of Elevation Related Controls on Semiarid Mountain Front Hydrology by Modeling of Water Balance [D]. Utah State University, 2005
    121 Burt T P, W illiams P J. Measurement of hydraulic conductivity of frozen soil. Canadian Geotechnical Journal, 1974, 11: 647-650
    122 Burt T P, Williams P J. Hydraulic conductivity in frozen soil. Earth Surface Process, 1976, 1: 349-360
    123 Horiguchi K,Miller R D. Hydraulic Conductivity function of frozen materials. In: Permafrost 4th Int Conf Proceedings. Washington D C, USA: National Academy Press, 1983. 504-508
    124 Black P B, Miller R D. Hydraulic conductivity and unfrozen water content of air-free silt. Water Resour Res, 1990, 26 (2) : 323-329
    125 N akano Y, T ice A R, Oliphant J, et al. Transport of water in frozen soil: I. Experimental determination of soil-water diffusivity under isothermal conditions. Adv in Water Res, 1982, 5: 221-226
    126 朱庭芸. 灌区土壤盐渍化防治[M]. 北京: 农业出版社, 1992 5: 36
    127 郑秀清, 樊贵盛, 邢述彦. 水分在季节性非饱和冻融土壤中的运动[M]. 北京: 地质出版社, 2002, 9
    128 陈亚新, 史海滨. 中国河套灌区土壤-水环境中溶质迁移动态的系统模拟研究[R]. 内蒙古农牧学院, 1994, 11
    129 高永, 那平山, 徐树林, 尉秋实. 干旱地区冻结滞水的形成及其在造林中的应用[J]. 冰川冻土, 1999, 21(3): 269-272
    130 杨金凤, 郑秀清, 孙明. 地表覆盖对季节性冻融土壤温度影响的试验研究[J]. 太原理工大学学报, 2006, 37(3): 358-360
    131 郑琦宏, 张殿发, 宣亮. 冻融条件下封闭体系中土壤水分运移规律模拟研究[J]. 宁波大学学报(理工版), 2006, 19(1): 81-84
    132 杨梅学, 姚檀栋,何元庆. 青藏高原土壤水热分布特征及冻融过程在季节转换中的作用[J]. 山地学报, 2002, 20(5): 553-558
    133 荆继红, 韩双平, 王新忠等. 冻结—冻融过程中水分运移机理[J]. 地球学报, 2007, 28(1): 50-54
    134 王洋, 刘景双, 王国平, 周旺明. 冻融作用与土壤理化效应的关系研究[J]. 地理与地理信息科学, 2007, 23(2): 91-96
    135 陈亚新, 史海滨, 魏占民等. 农业节水灌溉的理论和学科前沿进展[J]. 农业高效用水与水土环境保护. 西安: 陕西科学技术出版社, 2000
    136 石春林, 虞静明, 金之庆. 饱和土壤冻融过程中水热迁移数值模拟[J]. 中国农业气象, 1998, 19(4): 21-26
    137 陈亚新, 康绍忠. 非充分灌溉原理 [M]. 北京: 中国水利水电出版社, 1995
    138 李远华. 节水灌溉理论与技术[M]. 武汉: 武汉水利电力大学出版社, 1999
    139 刘昌明, 王会肖. 土壤-作物-大气界面水分过程与节水调控[M]. 北京: 科学出版社, 1999, 10
    140 康绍忠, 刘晓明, 熊运章. 土壤-植物-大气连续体水分传输理论及其应用[M]. 北京: 水利电力出版社, 1994, 7
    141 李保国, 龚石元, 左强. 农田土壤水动态模型及其应用[M]. 北京: 科学出版社, 2000, 9
    142 张蔚榛. 地下水与土壤水动力学[M]. 北京: 中国水利水电出版社, 1996
    143 付强. 数据处理方法及其农业应用[M]. 北京: 科学出版社, 2006, 8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700