用户名: 密码: 验证码:
小偃麦种质系的鉴定及其抗病基因的染色体定位和SSR分子标记
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长穗偃麦草(Elytrigia elongata,2n=70,StStStStEeEeEbEbExEx)是小麦的野生近缘种,具有许多优良性状,是小麦的三级基因库和小麦性状改良的优异外源基因供体之一。小偃麦种质系山农87074来源于长穗偃麦草(2n=70)与普通小麦品种鲁麦5号和济南13的复合杂交(长穗偃麦草/鲁麦5号//济南13)后代,山农19、山农20和山农122是利用十倍体长穗偃麦草和普通小麦直接杂交创制的小偃麦中间类型。本研究综合利用抗性接种鉴定、细胞学、生物化学、SSR分子标记和基因组原位杂交(GISH)等方法技术,对山农87074衍生的10个种质系山农87074—513、—519、—526、—541、—551、—554、—555、—557、—565和—576和3个小偃麦中间类型山农19、山农20、山农122进行了鉴定;对小偃麦种质系的抗病基因进行了染色体定位和SSR分子标记分析;利用回收特异PCR扩增片段法回收克隆了长穗偃麦草的特异SSR片段,并制备成特异探针应用于基因组原位杂交。获得以下主要结果:
     1、利用细胞学方法对山农87074的10个衍生种质系和3个小偃麦中间类型进行了鉴定,结果表明:10个种质系均为小偃麦异染色体系,其中山农87074—519是双体异附加系(2n=44,PMC MI染色体基本构型为22Ⅱ):山农87074—513、—526、—541、—551、—554、—555、—557、—565和—576等9个种质系为双体异代换系(2n=42,PMC MI染色体基本构型为21Ⅱ);3个小偃麦中间类型山农19、山农20和山农122为新型八倍体小偃麦,它们分别携带有长穗偃麦草的1个染色体组。经田间试验和人工接种鉴定证明,这些八倍体小偃麦或小偃麦异染色体系综合农艺性状较好,具有对小麦条锈病或白粉病良好的抗性,或多花多实等优良特点,在小麦遗传改良中具有重要利用价值。
     2、分别以假鹅冠草(2n=14,StSt)和二倍体长穗偃麦草(2n=14,EE)总基因组DNA为探针对异附加系山农87074—519的根尖细胞染色体进行了原位杂交,鉴定结果显示,在以假鹅冠草总基因组DNA为探针的根尖细胞44条染色体中有2条出现黄绿色杂交信号,而且杂交信号遍布整条染色体;以二倍体长穗偃麦草总基因组DNA为探针的根尖细胞染色体未观察到杂交信号。表明山农87074-519附加的2条染色体来自长穗偃麦草的St染色体基组,是一个附加了长穗偃麦草1对St染色体的双体异附加系。
     利用小麦SSR引物进行的SSR—PCR扩增鉴定证明,在170对小麦SSR引物中有1对引物BARC165—5AL能在山农87074—519与其亲本间揭示特异性差异,特异片段大小约270bp,记为BARC165_(270),它可用于山农87074—519的鉴定。利用回收特异PCR扩增片段法回收克隆长穗偃麦草的DNA特异重复片段BARC165_(270),经测序分析其碱基序列全长为268bp,命名为BARC165_(268),并将该序列提交Genbank注册(Genbank登录号EF397435)。将该重复序列制备为探针进行原位杂交鉴定,结果显示,山农87074—519的根尖细胞染色体出现很强的黄色点状杂交信号,而在普通小麦中没有观察到杂交信号。结合以假鹅冠草(2n=14,StSt)总基因组DNA为探针的GISH鉴定结果,推测特异重复序列BARC165_(268)是St染色体基组的特异重复序列,可用于检测小麦遗传背景中的长穗偃麦草遗传物质。
     应用SDS-PAGE技术对山农87074—519的鉴定表明,其附加的染色体上没有编码长穗偃麦草特异亚基带型的基因位点。
     3、利用SSR分子标记技术对9个异代换系山农87074—513、—526、—541、—551、—554、—555、—557、—565和—576进行了鉴定分析。结果表明,从592对小麦SSR引物中获得9对引物能在异代换系中扩增出长穗偃麦草的特异带,进一步证明它们携带有长穗偃麦草遗传物质。9对特异引物扩增的SSR分子标记中,标记BARC066_(230)和BARC023_(270)可用于鉴定山农87074—513;BARC148_(240)、BARC066_(230)、BARC168_(150/180)、BARC232_(450)、BARC195_(200)和BARC023_(270)等可用于87074—526的鉴定;BARC148_(240)、BARC099_(150)、BARC232_(450)、BARC023_(270)等可用于山农87074—541的鉴定;BARC148_(240)、BARC099_(150)、BARC040_(180)、BARC023_(270)等可用于鉴定87074—551;BARC148_(240)、BARC040_(180)、BARC023_(270)等可用于鉴定山农87074—554;BARC148_(240)和BARC232_(450)可用于山农87074—555的鉴定;BARC066_(230)、BARC040_(180)、BARC023_(270)等可用于山农87074—557的鉴定;BARC100_(150)、BARC040_(180)、BARC232_(450)等可用于山农87074—565的鉴定;BARC148_(240)、BARC066_(230)、BARC023_(270)等可用于鉴定山农87074—576。
     利用A-PAGE和SDS-PAGE技术对9个异代换系的鉴定结果表明,它们被代换的染色体不属于第1部分同源群染色体。进一步利用一套中国春缺体—四体系对9个异代换系中代换染色体的同源群归属进鉴定结果表明,定位于2B染色体的引物SWES240能扩增出1条大小约400bp的差异带,此特异带在长穗偃麦草、二倍体长穗偃麦草、山农87074—513、—526、—541、—551、—554、—555、—557和—576、中国春2B缺体2D四体系(N2BT2D)中均不存在,而在假鹅冠草、中国春、其余22个中国春缺体-四体系、普通小麦亲本鲁麦5号和济南13、山农87074—565中均出现。推断山农87074—513、—526、—541、—551、—554、—555、—557和—576等8个异代换系染色体基组中的1对小麦2B染色体被1对长穗偃麦草的2E染色体所代换,它们为2B/2E双体异代换系。
     4、PMC MI染色体构型分析结果表明,山农20和山农122的染色体基组构成相同,它们与前人选育的小偃68的染色体基组可能为同一类型;山农19的染色体基组构成不同于山农20、山农122、和前人选育的小偃68、小偃693和小偃7430的染色体基组。分别以十倍体长穗偃麦草、二倍体长穗偃麦草和假鹅冠草总基因组DNA作探针进行GISH鉴定证明,山农19附加的长穗偃麦草染色体组为St;山农20和山农122附加的长穗偃麦草染色体组可能为E基组。综合上述结果,可将山农19的染色体基组确定为ABDSt,山农20和山农122的染色体基组记为ABDE。
     5、综合运用抗性接种鉴定、细胞学分析、SSR分子标记和GISH等技术在山农87074的衍生种质系中鉴定了来源于十倍体长穗偃麦草的3个抗性基因,即抗小麦条锈病基因YrSt和Yr2E以及抗小麦白粉病基因Pm2E,并初步将YrSt定位在偃麦草的St染色体上,将Yr2E和Pm2E定位在偃麦草的2E染色体上,推测它们可能为新的抗病基因。
     以种质系山农87074—557/辉县红的F_2分离群体为材料,应用SSR分子标记技术对山农87074—557中的抗病基因进行了标记分析。592对小麦SSR引物中有2对引物Xgwm344和Barc074与山农87074—557中的偃麦草染色体2E有连锁关系,其中标记Xgwm344_(120/150)与抗白粉病基因Pm2E和抗条锈病基因Yr2E连锁,标记Barc074_(150)与抗叶锈病基因连锁。
Elytrigia elongata is a perennial partial auto-allo-decaploid species (2n=10x=70, previously designated with genomes StStStStEeEeEbEbExEx), that is a potentially useful source of a number of genes for wheat improvement, including rust resistance, powdery mildew resistances, low-temperature and drought tolerance, high protein, an increased number of florets per spike. Tritielytrigia Shannong87074, Shannongl9, Shannong20 and Shannong122 all are novel germplasm created by the hybridization between decaploid Elytrigia elongata and common wheat. Shannong87074 is a progeny from hybrid cross ofElytrigia elongata and common wheat Lumai5 and Jinanl 3, the ten lines Shannong87074-513,-519,-526,-541,-551, -554,-555,-557,-565,576 all are derived from Tritielytrigia Shannong87074; Shannongl9, Shannong20 and Shannong122 all are octaploid Tritielytrigia types. The inoculation assessment, cytological analysis, biochemistry assay, simple sequence repeat(SSR) molecular marker technique, and genomic in situ hybridization(GISH) were employed in the identification of Tritielytrigia germplasm; The specific repeat sequence of decaploid Elytrigia elongata amplified by SSR was retrieved and cloned, and was prepared as the specific probe used in the GISH. The results are as following:
     1. The cytological identification indicated that Shannong87074-519 was a alien disomic addition line, with 44 chromosomes in root tip cells and basic chromosomal configuration of PMC MI 2n=22Ⅱ, Shannong87074-513,-526,-541,-551,-554,-555,-557,-565,576 all were alien disomic substitution lines, with 42 chromosomes in root tip cells and basic chromosomal configuration of PMC MI 2n=21Ⅱ, and the three Tritielytrigia interspecies Shannongl 9,Shannong20 and Shannong 122 all were novel octaploid Tritiielytrigia containing a genome of Elytrigia elongata. The morphological characterization and disease resistance evaluation showed that they appeared well agronomic characteristic, powdery mildew resistance or yellow rust resistance, more florets per spike. They will play an important role in the wheat genetic improvement.
     2. The GISH identification of the addition line Shannong87074-519 with root tip cells was conducted by using Ps.strigosa(2n= 14,StSt) and E.elongata(2n=14,EE) total genomic DNA as probe respectively. It showed that two chromosomes with green-yellow hybridization signal were observed among the 44 chromosomes, with the signal covering the whole chromosome in the GISH pattern with the Ps.strigosa as probe; no signal was observed with the E.elongata as probe. It indicated that Shannong87074-519 was one alien disomic addition line with two added chromosomes belonging to genome St of Elytrigia elongata.
     The SSR technique was further applied to verify Shannong87074-519, with 170 primer pairs testified. The results indicated that Shannong87074-519 contained genetic material transferred from Elytrigia elongata; the primer pairs BARC165 on chromosome 5AL could show the diversity between Shannong87074-519 and its parents, and the specific segment of Elytrigia elongata could be stably amplified in its DNA PCR products, whose size was about 270bp, assigned as BARC165_(270) temporarily. The molecular maker BARC165_(270) could be used in the verification of Shannong87074-519. Subsequently, the specific repeat segment of Elytrigia elongata was retrieved and cloned. DNASTAR software analysis showed that the nucleotide sequence length of specific segment is 268bp, then the marker was designated as BARC165_(268), and the repeat sequence was submitted to the genbank with the accession number EF397435. BARC165_(268) was prepared as specific probe in the GISH identification, strong yellow dot hybridization signal was observed in chromosome of Shannong87074-519, but not in the common wheat. Considering the GISH pattern by the probe St, it was inferred that the specific repeat sequence likely concentrated on chromosome St, and it was the specific repeat sequence of genome St. The repeat sequence could be used as a valuable marker to identify the germplasm of Elytrigia elongata in common wheat background.
     The identification of Shannong87074-519 by SDS-PAGE showed that no specific locus coded the Elytrigia elongata HWM-GS located on the added chromosome St.
     3. 592 primer pairs were amplified in the identification of the nine alien substitutions Shannong87074-513,-526,-541,-551,-554,-555,-557,-565,-576 by SSR molecular technique. Nine primer pairs among them could amplify the specific band of Elytrigia elongata in PCR products of the nine substitutions, which indicated the specific difference between the substitutions and their parents, and further verified that the substitutions were the progeny from Elytrigia elongata.
     The nine primer pairs could be used as molecular markers in the identification of the nine alien substitutions, such as:BARC066_(230) and BARC023_(270) of Shannong87074-513, BARC148_(240), BARC066_(230), BARC168_(150/180), BARC232_(450), BARC195_(200) and BARC023_(270) of Shannong87074-526, BARC148_(2400, BARC099_(150), BARC232_(450) and BARC023_(270) of Shannong87074-541, BARC148_(240), BARC099_(150), BARC040_(180) and BARC023_(270) of Shannong87074-551, BARC148_(240), BARC040_(180) and BARC023_(270) of Shannong87074-554, BARC148_(240) and BARC232_(450) of Shannong87074-555, BARC066_(230), BARC040_(180) and BARC023_(270) of Shannong87074-557, BARC100_(150), BARC040_(180) and BARC232_(450) of Shannong87074-565, BARC148_(240), BARC066_(230) and BARC023_(270) of Shann0ng87074-576.
     The identification of the nine alien substitutions by A-PAGE and SDS-PAGE showed that the substitutions contained genetic material of Elytrigia elongata, and the substituted chromosome did not belong to the first homologous group. One set of Chinese Spring nullisomic-tetrasomic lines were utilized to further verify the homologous substitution chromosome. The results showed that, the primer pair SWES240 on 2B chromosome could amplify one specific segment in the PCR products to distinguish the differences among the tested materials, with the segment size about 400bp;The specific band could not be amplified in the PCR products of Elytrigia elongata, E.elongata(2n=14), substitutions Shannong87074-513,-526,-541,-551,-554,-555,-557,-576, and the 2B nullisomics 2D tetrasomics(N2BT2D) of Chinese Spring, but appeared in Ps.strigosa, Chinese Spring, the other 22 Chinese Spring nullisomic-tetrasomic lines, common wheat Lumai5 and Jinanl3, substitution line Shannong87074-565. It concluded that the 2B chromosomes of the eight lines Shannong87074-513,-526,-541,-551,-554,-555,-557,-576 were substituted by 2E chromosome of Elytrigia elongata, the eight lines were alien disomic substitutions with 2B/2E.
     4. The chromosomal pairing behavior of PMC MI of the three octaploid Tritielytrigia was analyzed and the results showed that Shannong20 and Shannong122 had the same chromosomal genomes, and belonged to the same type as xiaoyan68(previously designated with the basic genomes ABDE2 ), however, Shannongl 9 was the other type different from Shannong20, Shannong122, and the former xiaoyan68,xiaoyan693 and xiaoyan7430. The GISH patterns with Elytrigia elongata(2n=70), E. elongata(2n=14,EE) and Ps.strigosa(2n=14,StSt) total genomic DNA as probe respectively indicated that Shannongl9 was added by one set St genome, Shannong122 probably was added by one set E genome. The basic chromosomal genome of Shannongl9 could be designated as ABDSt, and that of Shannong20 and Shannong 122 was assigned as ABDE temporarily.
     5. The inoculation assessment, cytological analysis, SSR molecular marker technique, and GISH identification were used in the identification and chromosomal location of resistant genes. Three resistant genes derived from decaploid Elytrigia elongata, YrSt andYr2E with the yellow rust resistance, and Pm2E with the powdery mildew resistance, were located on St chromosome and 2E chromosome respectively. It could be inferred that the three resistant genes likely all were novel genes.
     The F_2 segregating population of alien substitution line Shannong87074-557 and common wheat huixianhong was employed to further analyze the dominant resistant gene on the substitution chromosome by SSR technique. Two primer pairs that linked to the substitution chromosome were singled out from 592 SSR primer pairs of wheat, one was Xgwm344_(120/150) on the 7B chromosome of wheat, it linked to the powdery mildew resistant gene Pm2E and yellow rust resistant gene Yr2E; the other was Barc074_(150) on the 5BL chromosome, it linked to the leaf rust resistant gene.
引文
1.曹张军,井金学,王美南,等.小麦品种贵农22号抗条锈基因遗传分析[J].西北植物学报,2004,24(6):991-996.
    2.陈孝,徐惠君.利用组织培养技术向普通小麦导入簇毛麦抗白粉病基因的研究[J].中国农业科学,1996,29(5):1-8.
    3.崔国惠,倪中福,刘志勇,等.小麦杂种优势群研究Ⅲ:普通小麦和斯卑尔脱小麦微卫星分子标记遗传差异的研究[J].农业生物技术学报,1999,7(4):333-338.
    4.丁斌,王洪刚,孙海艳,等.小麦—中间偃麦草双体异附加系的鉴定[J].西北植物学报,2003,23(11):1910-1915.
    5.丁志远.小麦异附加系种质资源的开发利用初探[J].甘肃农业科技,2006,5:15-17.
    6.董风高,陈佩度,刘大钧.普通小麦一簇毛麦异附加系和异代换系的C—分带鉴定[J].遗传学报,1992,19(6):510-512.
    7.董玉琛,小麦的基因源[J].麦类作物学报,2000,20(3):78-81.
    8.樊路,韩敬花,潘淑婷.小麦族(Triticeae)外源有益基因导入的现状[J].北京农业科学,1993,11(1):18.
    9.傅杰,徐霞,杨群慧,等.八倍体小滨麦与缺体小麦杂交的细胞遗传学研究[J].遗传学报,1997,24((4):350-357.
    10.高明君,郝水,何孟元,等.中间偃麦草染色体组构成的同工酶研究[J].遗传学报,1992,19(4):336-343.
    11.高睦枪,刘冬成,郭小丽,等.我国部分冬小麦新品种(系)SSR标记遗传差异的研究[J].农业生物技术学报,2001,9:49-54.
    12.谷交琳等.耐盐碱栽培牧草—长穗薄冰草[J].中国草地,2004,(2):9.
    13.郭光艳,李瑞芬,张敬原,等.利用SSR鉴定普通小麦—多枝赖草二体异附加系Line24中外源染色体同源群的归属.染色体科学研究进展,北京:中国农业科技出版社,2002,420-424.
    14.吴立人,牛永春.我国小麦条锈病持续控制的策略[J].中国农业科学,2000,33(5):46-54.
    15.何孟元,徐宗尧,邹明谦等.两套小冰麦异附加系的建立[J].中国科学(B辑),1988,11:1161-1168.
    16.侯文胜,张安静,杨群慧 等.普通小麦—华山新麦草异代换系的选育及细胞遗传学研究[J].西北植物学报,1997,17(3):368-373.
    17.胡含,王恒立.植物细胞工程与育种[M].北京:北京工业大学出版社,1990.
    18.胡含,张相岐.花粉小麦染色体工程[J].科学通报,1999,44(1):6-11.
    19.胡英考,辛志勇.小麦合成种M53抗白粉病基因的RAPD和SSR标记[J].作物学报,2001,27(4):415-419.
    20.吉万全,张学勇,Wang R.等.小偃麦部分双二倍体及其异附加系异源染色体的GISH分析[J].植物学报,1999,26(2):163-167.
    21.解超杰,倪中福,孙其信,等.利用小麦微卫星定位一个来自野生二粒小麦的抗白粉病基因[J].遗传学报,2001,28(11):1034-1039.
    22.景蕊莲,昌小平.SSR标记在小麦种质资源研究中的应用[J].作物品种资源,1999,17(2):17-20.
    23.兰秀锦,龙海,刘千,等.人工合成小麦RSP的LMW-GS基因克隆[J].中国农业科学,2005,38(8):1691-1698.
    24.李保云,许新娟,刘广田.提莫菲维小麦G组染色体特异性RAPD探针的筛选[J].农业生物技术学报,2002,10(4):407-408.
    25.李丹丹,王洪刚,刘树兵,等.抗白粉病小偃麦异代换系的细胞学鉴定和RAPD分析[J].作物学报,2003,29(4):525-529.
    26.李红美,李兴锋,高居荣,等.抗白粉病小麦—中间偃麦草二体异附加系与杀配子材料杂交后代的细 胞遗传学研究[J].西北植物学报,2005,25(4):686-691.
    27.李洪杰,朱至清.组织培养诱导的普通小麦—黑麦代换系和附加系分子细胞遗传学检测[J].植物学报,1998,40(1):37-41.
    28.李平路,高居荣,王洪刚.利用小麦×玉米方法选育小麦异附加系的研究[J].西北植物学报,1998,18(5):23-27.
    29.李平路,王洪刚,刘树兵.利用Sod同工酶和RAPD标记鉴定小麦—中间偃麦草双体异附加系[J].山东农业大学学报(自然科学版),2003,34(3):347-350.
    30.李平路,王洪刚.小麦异附加系的选育和鉴定研究进展[J].山东农业大学学报(自然科学版),2000,31(4):446-450.
    31.李勇.小麦品种C591中一个主效抗条锈病基因的定位与分子标记研究[D].北京:中国农业大学,2006.
    32.李玉京,刘建中等.长穗僵麦草基因组中与耐低磷营养胁迫有关的基因的染色体定位[J].遗传学报,1999,26,703-710.
    33.李占伟.普通小麦异代换系的选育研究进展[J].陕西农业科学,2004,5:45-47.
    34.李振岐,麦类病害[M].北京:中国农业出版社,1997,57-58.
    35.李振声,蓉珊,陈漱阳.小麦远缘杂交[M].北京:科学出版社,1985,1-83.
    36.林凤,徐世昌,张立军,等.小麦抗条锈病基因Yr2的SSR标记[J].麦类作物学报,2005,25(1):17-19.
    37.林小虎,王黎明,李兴锋,等.抗白粉病小麦—中间偃麦草双体异附加系的鉴定[J].植物病理学报,2005,35(1):60-65.
    38.刘爱峰,王洪刚,郝元峰,等.抗条锈病小偃麦双体异附加系山农87074-519的鉴定[J].分子细胞生物学报,2007,40(3):227-233.
    39.刘金元,刘大钧,陈佩度.等.分子标记辅助育种心尝试—与Pm2及Pm4a基因紧密连锁RFLP标记在小麦抗白粉病育种中的应用[J].南京农业大学学报,1997,20(2):1-5.
    40.刘金元,陶文静,刘大均等.与小麦白粉病抗性基因Pm2紧密连锁的RAPD标记的筛选研究[J].遗传学报,2000,27(2):139-145.
    41.刘树兵,贾继增等.长穗偃麦草与普通小麦间的多态性及E组染色体的特异RAPD标记[J].作物学报,1998,24(6):687-690.
    42.刘四新,辛志勇.抗白粉病小麦—黑麦染色体异附加系的选育[J].作物学报,1993,19(5):395-401.
    43.刘卫东,王石平.水稻中大麦Mlo和玉米Hml抗病基因同源序列的分析和定位[J].遗传学报,2002,29(10):875-879.
    44.陆文辉,林小虎,李兴锋,等.抗条锈病小滨麦易位系的鉴定[J].作物学报,2005,31(1):88-91.
    45.马渐新,周荣华,董玉琛,等.来自长穗偃麦草的抗小麦条锈病基因的定位[J].科学通报,1999,44(1):65-69.
    46.马强.两个抗小麦白粉病新基因的遗传分析与染色体定位[D].成都:四川农业大学,2006.
    47.毛龙.应用RAPD分析1个抗条锈病的小麦—黑麦易位系[J].科学通报,1994,39(22):2088-2090.
    48.穆素梅,钟冠昌,李振声,等.利用缺体回交法选育小黑麦异代换系的研究[J].中国生态农业学报,1996,4(1):33-36.
    49.欧阳平.普通小麦与鸭茅状摩擦禾杂交获得小麦单倍体和杂种植株[J].科学通报,1996,41(7):1615-1618.
    50.裴新梧,倪建福,仲乃琴,等.用改良缺体回交法选育小麦—黑麦异代换系[J].甘肃农业科技,1995,6:3-4.
    51.秦跟基,陈佩度,刘翅光,等.用克隆池PCR法筛选小麦一簇毛麦易位系6VS/6AL基因组TAC文库获得抗病基因候选克隆[J].生物工程学报,2002,18(3):313-317.
    52.邱永春,张书坤.小麦抗白粉病基因及其分子标记研究进展[J].麦类作物学报,2004,24(2):127-132.
    53.戎均康,汪丽泉.八倍体小大麦新物种的选育[J].遗传,1989,11(3):1-4.
    54.孙敬三,刘辉,路铁刚等.利用小麦×玉米获得小麦单倍体[J].植物学报,1992,34(11):817-821.
    55.孙善澄.小偃麦新品种与中间类型的选育途径、程序和方法[J].作物学报,1981,7(1):51-58.
    56.孙善澄,袁文业,裴自友,等.小麦缺体转育及异代换系的筛选[J].山西农业科学,1995,23(2):7-9.
    57.田靫,卢一凡,邓继先,等.一种利用染色体显微切割和微克隆获得小麦基因探针的方法[J].华北农学报,1998,13(4):20-25.
    58.佟明友,张自立.偃麦草属三个种的染色体组研究[J].植物学报,1989,31(3):185-190.
    59.万安民,吴立人,金社林,等.2000-2001年我国小麦条锈病发生和生理小种监测结果[J].植物保护,2002,28(3):5-9.
    60.万平,王苏玲,陈佩度,等 利用RFLP分子标记确定导入小麦的鹅冠草(R.kamoji)染色体的部分同源归属群[J].遗传学报,2002,29(2):153-160.
    61.王长有,吉万全,王秋英等.SSR标记在小麦遗传育种中的应用研究进展[J].麦类作物学报,2004,24(1):70-74.
    62.王洪刚.中间偃麦草与小麦杂种配子形成途径细胞学研究[J].武汉植物学研究,1998,16(3):97-101.
    63.王洪刚,刘树兵,亓增军,等.中间偃麦草在小麦遗传改良中的应用研究[J].山东农业大学学报(自然科学版),2000,31(3):333-336.
    64.王洪刚,孔凡晶,刘树兵.作物遗传育种研究进展及发展趋向[J].山农农业大学学报,1998,29(3):403-409.
    65.王洪刚,孔凡晶,亓增军,等中间偃麦草与小麦杂种的可育性及其细胞学特点[J].西北植物学报,1998,18(5):1-6.
    66.王洪刚,孔令让,李平路,等中间偃麦草与小麦杂交后代的细胞遗传学及性状特点研究[J].西北植物学报1999,30(4):471-480.
    67.王洪刚,张建民,刘树兵.抗白粉病小麦—中间偃麦草异附加系的细胞学和RAPD鉴定[J].西北植物学报,2000,20(1):64-67.
    68.王洪刚,赵吉平等.人工合成的十个优良小麦种质系的细胞学和性状特点的研究[J].山东农业大学学报,1989,(2):1-7.
    69.王洪刚,朱军等.利用细胞学和RAPD技术鉴定抗病小偃麦易位系[J].作物学报,2001,27(6):886-890.
    70.王洪刚,李丹丹,高居荣,等.抗白粉病小偃麦异代换系的细胞学和RAPD鉴定[J].西北植物学报,2003,23(2):280-284.
    71.王际睿,颜泽洪,魏育明,郑有良.长穗偃麦草y型高分子量谷蛋白基因的鉴定与克隆[J].农业生物技术学报,2004,12(2):143-146.
    72.王江春,胡延吉,余松烈,等.建国以来山东省小麦品种及其亲本的亲缘系数分析[J].中国农业科学,2006,30(4):664-672.
    73.王晶,向风宁,夏光敏,等.利用不对称体细胞杂交向小麦转移高冰草染色体小片段[J].中国科学C辑,生命科学,2004,34(2):113-120.
    74.王黎明,林小虎,张平杰,等.小麦—中间偃麦草二体异代换系山农0095的选育及其鉴定[J].中国农业科学,2005,38(10):1958-1964.
    75.王丽娟.小麦抗条锈病基因YrSp的分子标记研究[D].北京:中国农业科学院,2005.
    76.王秋英,吉万全.普通小麦—簇毛麦抗白粉病异代换系的选育[J].西北农业学报,1999,8(1):27-29.
    77.王心宇,陈佩度,张守忠.小麦白粉病抗性基因的聚合及其分子标记辅助选择[J].遗传学报,2001,28(7):640-646.
    78.王秀娥.同胞质普通小麦—纤毛鹅冠草异附加系的筛选及赤霉病抗性鉴定[D].南京:南京农业大学,2001.
    79.温海霞,陶澜,戴秀梅.植物染色体C—显带技术及其在小麦育种中的应用研究进展[J].种子,2002,3:40-41.
    80.翁跃进等.普通小麦—顶芒山羊草异附加系的创建与鉴定:Ⅰ小麦花药培养对创建小麦—顶芒山羊草异源附加系的作用[J].作物学报,1995,21(1):39-44.
    81.夏光敏,王槐,陈惠民.小麦与新麦草及高冰草的不对称体细胞杂交再生植株[J].科学通报,1996,41(15):1423-1426.
    82.夏光敏,向凤宁,周爱芬,等.小麦与高冰草的不对称体细胞杂交获可育杂种植株[J].植物学报,1999,40(4):349-352.
    83.辛志勇,Johnson R.,Law C-N.冬小麦丰抗13抗条锈病基因的分析[J].作物学报,1984,10(4):217-222.
    84.徐勇,沈福成,王三根等.小麦缺体-四体的SSR辅助鉴定[J].西南农业大学学报,2001,23(3):202-204.
    85.薛秀庄等.小麦染色体工程与育种[M].河北:河北科学技术出版社,1993.
    86.闫乃红,陈静,马欣荣,等.易变山羊草中抗虫相关基因eDNA部分片段的克隆及序列分析[J].农业生物技术学报,2004,12(2):224-225.
    87.杨国华,李滨,刘建中,等.应用基因组原位杂交鉴定蓝粒小麦及其诱变后代[J].遗传学报,2002,29(3):255-259.
    88.杨文香,刘大群.小麦抗叶锈基因的定位及分子标记研究进展[J].中国农业科学,2004,37(1):65-71.
    89.杨武云,胡晓蓉,毛沛.采用桥梁单体培育小麦品种间染色体代换系的新方法[J].华北农学报,1997,12(4):23-27.
    90.姚景侠.小麦与玉米杂交及单倍体的产生[J].植物学通报,1995,12(3):31-35.
    91.殷学贵,尚勋武,庞斌双.等.A-3中抗条锈新基因YrTp1和YrTp2的分子标记定位分析[J].中国农业科学,2006,39(1):10-17.
    92.英加,李滨,穆素梅,等蓝粒小麦易位系的荧光原位杂交鉴定[J].植物学报,2001,2:164-168.
    93.于玲,王莱,牛吉山,等.植物抗病相关基因分离策略[J].西北植物学报,2002,22(6):1494-1503.
    94.张宏,吉万全,任志,等.小麦抗条锈病基因定位及分子标记研究进展[J].中国农学通报,20d4,20(6):247-254.
    95.张守忠,陈佩度,王秀娥等.高抗白粉病小麦新品种南农9918[J].中国种业,2004,5:46.
    96.张学勇,董玉琛.小麦和彭梯卡偃麦草杂种及其衍生后代的细胞遗传学研究—Ⅱ-来自小麦和彭梯卡(长穗)偃麦草及中间偃麦草杂种后代11个八倍体小偃麦的比较研究[J].遗传学报,1994,21(4):287-296.
    97.张学勇,董玉深.小麦和彭梯卡偃麦草杂种及其衍生后代的细胞遗传学研究,Ⅰ.彭梯卡偃麦草及其与普通小麦和硬粒小麦杂种F_1的染色体配对[J].遗传学报,1993,20(5):439-447.
    98.张学勇,董玉深.小麦和彭梯卡偃麦草杂种及其衍生后代的细胞遗传学研究,Ⅲ.小麦和偃麦草基因重组的遗传浅析[J].遗传学报,1995,22(3):217-222.
    99.张学勇,李大勇.小麦及其近缘基因组中的DNA重复序列研究进展[J].中国农业科学,2000,33(5):1-7.
    100.张增艳,陈孝,张超,等.分子标记选择小麦抗白粉病基因Pm4b、Pm13和Pm21聚合体[J].中国农业科学,2002,27(2):139-145.
    101.张增艳,马有志,辛志勇,等.应用基因组原位杂交技术鉴定抗黄矮病小麦新种质[J].中国农业科学,1998,31(3):1-4.
    102.张增艳,辛志勇.抗黄矮病小麦育种研究进展[J].作物杂志,1998,21(4):6-70.
    103.张正斌.小麦遗传学[M].北京:中国农业出版社,2001,99-123.
    104.张志清,郑有良,魏育明,等.四川主栽小麦品种遗传多样性的SSR标记研究[J].麦类作物学 报,2002,22(2):5-9.
    105.钟冠昌,穆素梅,张荣琦,等.八倍体小偃麦与普通小麦杂交育种的研究[J].西北植物学报,1995,15(1):6-9.
    106.钟冠吕,穆素梅,张下斌,等.麦类远缘杂交[M].北京:科学出版社,2002,165-166。
    107.钟冠昌,张学勇,张荣琦,陈春环.八倍体小偃麦染色体组分析[J].遗传学报,1991,18(4):339-343.
    108.钟少斌,姚景侠,张德玉等.麦类作物DNA原位杂交及其在远缘杂交种染色体分析中的作用[J].中国农业科学,1997,30(1):33-37.
    109.周建明,朱群,白永延,等.水分胁迫诱导表达的小麦基因的cDNA片段克隆和序列分析[J].科学通报,1998,43(22):2419-2422.
    110.朱振东,贾继增.小麦SSR标记的发展及其应用[J].遗传,2003,25(30):355-360.
    111.庄巧生,王恒立主编.小麦育种理论与实践进展[M].北京:科学普及出版社,1987,364-365.
    112.庄巧生.中国小麦品种改良及系谱分析[M].北京:中国农业出版社,2003,473-474.
    113. Anamthawat-Jonsson K, Heslop-Harrison J S. Isolation and characterizatio of genome-specific DNA sequences in Triticeae species[J]. Mol Gen Genet, 1993, 240: 151-158.
    114. Appels R, Moran LB. Molecular analysis of alien chromatin introduced into wheat. In Gene manipulation in plant improvement[J]. Stadler Genet. Symp., 1984, 16: 529-557.
    115. Ayala L, Henry M, Gonzalez-de-Leon D, et al. Adiagnostic molecular marker allowing the study of Th. Intermedium derived resistance to BYDV in bread wheat segregaing populations[J]. Theor Appl Genet, 2001, 102: 942-949.
    116. Barclay I. R. High frequencies of haploid production in wheat (Triticum aestivum L.) by chromosome elimination[J]. Nature (London), 1975, 256: 410-411.
    117. Bedbrook J R, Jones J D G, O'Dell M, et al. Amolecular description of telomeric heterochromatin in Secale species[J]. Cell., 1980, 19: 545-560.
    118. Botstein DR, white RL, Skolnick M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphism[J]. Am. J. Hum. Genet., 1980, 32: 314-331.
    119. Bournival B, Obanni M, Abad A et al. Isolation of a new species-specific repetitive sequence from Thinopyrum elongtum and its use in the studies of alien translocations[J]. Genome, 1993, 37: 97-104.
    120. Bryan G J, Stephenson P, Cillin A, et al. Low levels of DNA sequence variation among adapted genotypes of hexaploid wheat[J]. Theor Appl Genet, 1999, 99: 192-198.
    121. Busch W., R. G. Herrmann & U. Hohmarm, Repeated DNA sequences isolated by microdissection, Comparative analysis in Hordeum vulgare and Triticum aestivum [J]. Theor. Appl. Genet., 1996, 93: 164-171.
    122. Busch W., R. Martin, R. G. Herrmann et al. Repeated DNA sequences isolated by microdissection l. karyotyping of barley (Hordeum vulgare L)[J]. Genome, 1995, 38: 1082-1090.
    123. Cai X, Jones S S, Murray T D. Molecular cytogenetic characterization of Thinopyrum and wheat-Thinopyrum translocated chromosomes in a wheat-Thionopyrum amploid[J]. Chromosome Res, 1998, 6: 183-189.
    124. Cai X., S. Jones. Direct evidence for high level of autosyndetic pairing in hybrids of Thinopyrum intermedium and Th. ponticum with Triticum aestivum[J]. Theor. Appl. Genet., 1997, 95: 568-572.
    125. Cauderon Y and Saigne B. New interspecific and intergeneric hybrids involving Agropyrum[J]. Wheat Inf Serv, 1961, 12: 13-14.
    126. Chagué V, Fahima T, Dahan A, et al. lsolaton of microsatellite and RAPD markers flanking theYr15 gene of wheat using NILs and BSAs[J]. Genome, 1999, 42: 1051-1056.
    127. Chantret N. Location and mapping of the powdery mildew resistance gnen MLRE and detection of a resistance QTL by bulked segregant analysis with microsatellites in wheat[J] . Theor Appl Genet,2000,100:1217-1224.
    128. Chantret N. Location and mapping of the powdery resistance gene MIRE and detection of resistance QTL by bulked segregant analysis (BSA) with microsatellite in wheat[J]. Theor. Appl. Genet., 2001,100:1217-1224.
    129. Chen X.M., Epidemiology and control of stripe rust on wheat[J]. Can J Plant Pathol 2005,27:314-337.
    130. Chen X.M., Jones S.S., Line R.R. Chromosomal location of genes for stripe rust resistance in spring wheat cultivars Compair, Fielder, Lee, and Lemhi and interactions of aneuploid wheats with races of Puccinia striiformis[J]. Phytopathology, 1995a, 85:375-381.
    131. Chen X.M., Line R.F., Jones S.S.. Chromosomal location of genes for resistance to Puccinia striiformis in winter wheat cultivars Heines VII, Clement, Moro, Tyee, Tres, and Daws[J]. Phytopathology, 1995b, 85:1362-1367.
    132. Chen X.M., Moore M., Milus E.A., et al. Wheat stripe rust epidemics and races of Puccinia striifornis f sp. tritici in the United States in 2000[J]. Plant Disease, 2002,86:39-46.
    133. Chen X.M., Soria M.A., Yan G.P, et al. Development of Sequence Tagged Site and Cleaved Amplified Polymorphic Sequence Markers for Wheat Stripe Rust Resistance Gene Yr5[J]. Crop Science, 2003,43: 2058-2064.
    134. Chen X.M.,Line R.F., Leung H.. Genome scanning for resistance gene analogs in rice, barley, and wheat by high resolution electrophoresis[J]. Theor. Appl. Genet.. 1998,97:345-355.
    135. C.Uany,J.Carlos Brevis,X.M.Chen,et al.High-temperature adult-plant(HTAP) stripe rust resistance gene Yr36 from Triticum turgidum ssp.dicoccoides is closely linked to the grain protein content locus Gpc-Bl[S]. Theor.Appl.Genet., 2005,112:97-105.
    136. Daud H. M., J. P. Gustafson, Molecular evidence for Triticum speltoides as a B-genome progenitor of wheat (Triticum aestivum)[J]. Genome , 1996,39:543-548.
    137. Devos K M,Bryan G J,Cillins A J,et al. Application of two microsatellite sequences in wheat stroage proteins as molecular markers[J]. Theor Appl Genet, 1995,90:247-252.
    138. Devos K M. The use of random amplified polymorphic DNA markers in wheat[J]. Theor. Appl. Genet., 1992,84:567-572.
    139. Dewey D.R. The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae[M]. In: Gulstafson JP (ed) Gene manipulation in plant improvement. Plenum Publishing Corporation, New York, 1984,209-279.
    140. Dograr N,Akin-Yalin S,Akkaya M S.Discriminating durum wheat cultivars using highly polymorphic simple sequence repeat DNA markers[J]. Plang Breeding,2000,l 19:360-362.
    141. Donini P, Law JR, Koebner RMD, et al. Temporal trends in the diversity of UK wheat[J]. Theor. Appl. Genet., 2000,100:912-917.
    142. Dubin H J,Johnson R,Stubbs R W. Postulated genes for resistance to stripe rust in selected CIMMYT and related wheat[J]. Plant Dis, 1989,73:472-475.
    143. Dvorak J. Transfer of salt tolerance from Elytrigia pontica(Podp.). to wheat by the addition of an incomplete Elytrigia genome[J]. Crop Sci., 1985,21:306-309.
    144. Dvorak J. Homoeology between Agropyron elongatum chromosomes and Triticum aestivum chromo-somes[J]. Can J Genet Cytol, 1980, 21:243-254.
    145. Dvorak J.Chen K C, Phylogenetic relationships between chromosomes of wheat and chromosome 2E of Elytrigia[i]. Can J Genet Cytol, 1984,26:128-132.
    146. Dvorak J.Lassner M W, &Kota R S. The distribution of ribosomal RNA genes in the Triticum speltoides and Elytrigia elongate genomes[i}. Can J Genet Cytol, 1984,26:628-632.
    147. Eujayl I,Sorrells M E,Baum M, et al. Isolation of EST derived microsatellite markers for genotyping the A and B genomes of wheat[J]. Theor Appl Genet, 2002,104:399-407.
    148. F. P. Han,B. Liu,G.Fedak, et al. Genomic constitution and variation in five partial amphiploids of wheat-Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis[J]. Theor Appl Genet, 2004,109:1070-1076.
    149. Fahima T,Roder M S,Grama A, et al. Microsatellite DNA polymorphism divergence in Triticum dicoccoides accessions highly resisitant to yellow rust[J]. Theor Appl Genet,1998,96(2):187-195.
    150. FENG DS, CHEN FG, ZHAO SY, et al. High-Molecular-Weight Glutenin Subunit Genes in Decaploid Agropyron elongatum [J]. Acta Botanica Sinica 2004, 46 (4): 489-496.
    151. Flavell R,Smith D B.Nucleotide sequence organization in the wheat genome [J]. Heredity, 1976,37:231-252.
    152. Flavell R. Repetitive DNA and chromosome evolution in plants[J]. Philos Trans R Soc Lond B.1986, 312:227-242.
    153. Friebe B, Zeller FJY, Maikai Y, et al. Characterization of rust-resistant wheat-Agropyron intermedium derivatives by C-banding in situ hybridization and isozyme analysis[J]. TAG, 1992, 83:775-782.
    154. Friebe B. Characterization of wheat-alien translocation conferring resistance to disease and pet: Current state[J]. Euphytica, 1996, 91:59-87.
    155. GF.Marais, Z.A.Pretorius, C.R.Wellings, et al. Leaf rust and stripe rust resistance genes transferred to common wheat from Triticum . dicoccoides[5]. Euphytica, 2005,143:115-123.
    156. G.F.Marais,B.McCallum,J.E.Snyman,er al. Leaf rust and stripe rust resistance genes Lr54 and Yr37 transferred to wheat from Aegilops kotschyi[J]. Plant Breeding, 2005,124:538-541.
    157. Gill BS, Friebe B, Endo TR, Karyotype and nomenclature system for description of chromosome bands and structural abberation in wheat[J]. Genome, 1991, 34:830-839.
    158. Guidet F L Y, Rogowsky P ,Taylor C , et al. Cloning and characterization of a new rye specific repeated sequence[J]. Genome ,1991, 34:81-87.
    159. Gupta J K,Varshney R K,Sharama P C,et al. Molecular markers and their application on wheat breeding[J]. Plant Breedng, 1999,118:369-390.
    160. Gupta P K,Balyan H S,Edwards K J,et al. Genetic mappping of 66 new microsatellite(SSR) in bread wheat[J]. Theor Appl Genet, 2002,105:413-422.
    161. Hammer K,Filatenko A A,Korzun V. Microsatellite markers a new tool for distinguishing diploid wheat species[J]. Genetic Resources and Crop Evolution, 2000,47:4979-505.
    162. Harjit-Singh,Prasad M,Varshney R K, et al. STMS markers for grain protein content and their validation using near-isogenic lines in bread wheat[J]. Plant Breeding, 2001,120:273-278.
    163. Hart GE, Tuellen R. Chromosomal location of eleven Elytrigia elongatum isozyme structural genes[J]. Genet. Res., 1983,41:181-202.
    164. Hartl L, Mori S, Schweizer C. Identification of a diagnostic molecular marker for the powdery mildew resistance gene Pm4b based on fluorescently labelled AFLP[C]. In Proc 9th Int. Wheat Genet. Univ. Expansion Press, Univ. of Saskatchewan, Saskatoon. 1998, 3:111-113.
    165. Hartl L, Weiss H, Zouer FJ, et al. Use of RFLP markers for the identification of alleles of the Pm3 locus conferring powdery mildew resistance in wheat[J]. Theor. Appl. Genet., 1994, 86:959-963.
    166. Helentjaris T, Slocum M, Wright S. et al. Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphism[J]. Theor. Appl. Genet, 1986, 72:761-769.
    167. Heslop-Harrison. Detection and characterization of 1B/1R translocations in hexaploid wheat [J]. Heredity, 1990,65:385-392.
    168. Huang XQ, Hsam SLK, Zellr FJ. Molecular mapping of the wheat powdery mildew resistance gene Pm24 and marker validation for molecular breeding[J]. Theor. Appl. Genet., 2000, 101:407-414.
    169. Inagaki M H, Mujeeb-Kazi A. Progress in polyhaploid production techniques of hexaploid wheat through wide crosses[C]. Second Int.Triticeae Symp., Logan, Utah, USA. 1994.
    170. Iqbal N., Reader S.M, Caligari P.D.S et al. Characterization of Aegilops uniaristata chromosomes by comparative DNA marker analysis and repetitive DNA sequence in situ hybridization [J]. Theor Appl Genet, 2000, 101 (8):1173-1179.
    171. Islam A K M R, Shepherd K W, Sparrow D H B. Isolation and characterization of euplasmic wheat-barley chromosome addition lines[J]. Heredity, 1981, 46:161-174.
    172. Islam A K M R, Shepherd K W, Sparrow D H B. Production and characterizations of wheat-barley addition lines[C]. Proceeding of the 5th International wheat Genetics Symposium, New Delhi, 1978, 365-371.
    173. Jiang J M, Gill B S. Nonisotopic in situ hybridization and plant genome mapping, the first 10 years[J]. Genome, 1994,37:717-725.
    174. JM Jiang,B.Friebe, B.S.Gill. Recent advances in alien gene transfer in wheat[J]. Euphytica, 1994,73:199-212.
    175. Jing Wang ,Fengning Xiang,Guangmin Xia. Agropyron elongatum chromatin localization on the wheat chromosomes in an introgression line[J]. Planta, 2005,221(2): 1443-1446.
    176. Johnson R. and Dyck P.L..Resistance to yellow rust in Tricicum spelta var. album and bread wheat cultivars Thatcher and Lee[C]. Proceedings of the 6~(th) European and Mediterranean Cereal Rusts Conference, Grignon 1984, 71-74.
    177. Johnson R. and Minchin PN. Genetics of resistance to yellow (stripe) rust of wheat in some differential cultivars[J]. Vortrage fur Pflanzenzuchtung 1992, 24:227-229.
    178. Kanazin V,Marek L.F., Shoemaker R.C.. Resistance gene analogs are conserved and clustered in soybean[J]. Proceeding of the national academy of science, 1996,93:11746-11750.
    179. Korzun V, Roder M S,Worland A J,et al. Intrachromosomal mapping of genes for dwarfing(Rht 12) and vernalination response(Vrnl) in wheat using RFLP and microsatellite markers[J]. Plant Breeding, 1997,116:227-232.
    180. Korzun V,Borner A,Worland A J,et al. Application of microsatellite markers to distinguish intervarietal chromosome substitution llines of wheat[J]. Euphytica,1997,95:149-155.
    181. Korzun V,Reder M,Wendehake K, et al. Integration of dinucleotide microsatellites from hexaploid bread wheat into a genetic linkage map of durum wheat[J]. Theor Appl Genet, 1999,98:1202-1207.
    182. Korzun V.Roder M S,Ganal M W,et al. Grenetic analysis of the dwarfing gene(Rht8) in wheat.Part I. Molecular mapping of Rht8 on the shour arm of chromosome 2D of bread wheat[J]. Theor Appl Genet, 1998,96(8): 1104-1109.
    183. Laurie D A, Bennett M D. The effect of the crossability loci Krl and Kr2 or fertilization frequency in hexaploid wheatxmaize crosses[J]. Theor. Appl. Genet., 1987, 73:403-409.
    184. Laurie D A, Bennett M D. Wheatxmaize hybridization[J]. J. Genet. Cytol., 1986, 28:313-316.
    185. Laurie D A. Factors affecting fertilization frequency in crosses of Triticum aestivum cv. HighburyxZea myscv.Seneca60[J]. Plant Breeding, 1989, 103:133-140.
    186. Laurie D A.Sylvie R..High frequencies of fertilization and haploid seedling production in crosses between commercial hexaploid wheat varieties and maize[J]. Plant Breeding, 1991,106.182-189.
    187. Li W. L., P. D. Chen, L. L. Qi et al. Isolation characterization and application of a species specific repeated sequence from Haynaldia villosa[J]. Theor. Appl. Genet., 1995, 90:526-533.
    188. Littiejohn G.M., Pienaar R. de V. Thinopyrum distichum addition lines: production, morphological and cytological characterization of disomic addition lines and stable addition - substitution line[J]. Theor. Appl.Genet.,1995,90:33-42.
    189. Liu SB, Wang HG Breeding and molecular cytogenetic identification of wheat-Thinopyron intermedium addition lines resistant to powdery mildew [J]. Chinese Science Bulletin,2002,47(22): 1892-1896.
    190. Lrlley T,Stachel M. Microsatellite can differentiate wheat varieties from diffenent agroecological areas and of different quality[C]. In: A E Slinkard, Ed., Proceedings of the 9th International Wheat Genetics Symposium.University Extension press, University of Saskatchewan,Canada, 1998,3:123-125.
    191. Lukaszewski A.J. A Comparison of several approaches in the development of disomic alien addition lines of wheat[C]. Proceedings of the 7th International Wheat Genetics Symposim, Cambridge, U K, 1988,363-368.
    192. Lukaszewski A.J. Translocation and modification of chromosome in Triticale×wheat hybrids[J]. Theor. Appl. Genet., 1983, 64:239-248.
    193.Lupton F.G.H.著.北京农业大学遗传育种研究室译.小麦育种的理论基础[M].北京:北京农业大学 出版社,1998.
    194. Ma Z Q,Roder M S,Sorrells M S. Frquencies and esquence characteristics of di,tri-,and tetra-nucleotide microsatellites in wheat[J]. Genome, 1996,39:123-130.
    195. Maleki L., Faris J.D., Bowden R.L.,et al. Physical and Genetic Mapping of Wheat Kinase Analogs and NBS-LRR Resistance Gene AnaIogs[J]. Crop Sci.,2003, 43:660-670.
    196. Manifesto M M,Schlatter A R,Hopp H E,et al. Quantitative evaluation of genentic diversity in wheat germplasm using molecular markers[J]. Crop Science,2001,41:682-690.
    197. Mao L., W. X. Zhai, H. Hu et al. Cloning and characterization of a repetitive sequence in rye (Secale cereal)[J]. Plant Science, 1994, 100:51-57.
    198. Matsumura,S., Hybrid between wheat and Agropyron[J]. Jap.J.Genet., 1948, 23:27-29.
    199. Mclntosh R.A. Alien sources of disease resistance in bread wheats[M]. In: Sasakuma T, Kinoshita T (eds) Nuclear Organ Genomes of Wheat Species.Yokohama City University, Yokohama, Japan, 1991, 320-332.
    200. Mclntosh R.A., Wellings C.R. and Park R.F CSIRO. Australia Wheat Rusts: An Atlas of Resistance Genes[M]. Austrila,1995.
    201.McIntyre CL,Clarke C,Apples R. Amplification and dispersion of repeated DNA sequences in the Triticeae[J]. Plant Syst Evol 1988,160:39-59.
    202. Miller TE. Fluorescent in situ hybridization—a useful aid to the introduction of alien genetic variation into wheat[J]. Euphytica, 1996, 89:113-119
    203. Mujeeb-Kazi A. Production and cytogenetics analysis of hybrids between Triticum and some casepitose Agropyron species[J]. Genome, 1987, 29:537-553.
    204. Mukai Y,Nakahara Y,Yamamoto M.Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybirdization using total genomic and highly repeated DNA probes[J]. Genome. 1993,36:489-494.
    205. Mukai YB. Detection of barley chromatin added to wheat by genomic in situ hybridization[J]. Genome, 1991,34:448-452.
    206. Muramatsu M. Cytogenetics of decaploid Agropyron elongatum (Elytrigia elongation) (2n=70).I. Frequency of decavalent formation[J]. Genome, 1990,33:811-817.
    207. Nachit M M,Elouafi L,Pagnotta M A,et al. Molecular linkage map for an intraspecific recombinant inbred population of durum wheat(Triticum turgidum L.var.durum)[J]. Theor Appl Genet,2001,102: 177-186.
    208. O'Mara J.G.. Cytogenetic studies on Tritical I. A method for determining the effects of individual secale chromosomes on Triticum[J]. Genetics, 1940,25:401 -408.
    209. Parlevliet J.E. Durability of resistance against fungal, bacterial and viral pathogens[J]. Euphytica,2002, 124:147-156.
    210. Payne P I, Holt L M, Lawrence et al. The genetics of gliadin and glutenin, the major storage proteins of the wheat endosperm[J]. Qual plant foods Hum Nutr, 1982, 31:229-241.
    211. Payne P I.& Lawrence G J. Catalogue of alleles for the complex gene loci, Glu-Al, Glu-B1, and Glu-D1 which code for high-molecular-weight subunits of glutenin in hexaploid wheat[J]. Cereal Research Communication. 1983, 11:29-35.
    212. Peil A, Schumann E, Schubert V, et al. Molecular markers for Aegilops mark grafii chromosomes. Proceedings of the 9th International Wheat Genetics Symposium,Vol.3. University of Saskatchewan[C]. Canada: University Extensionpress, 1998.
    213. Peil A,Korzum V,Schubert V,et al. The application of wheat microsatellites to indentify disomic Triticum aestivum Aegilops markgrafii addition lines[J]. Theor Appl Genet, 1998,96:138-146.
    214. Peng J H.Fahima T,Roder M S,et al. Microsatellite high-denesity mapping of the stripe rust resistance gene YrH52 region of chromosome 1B and evalution of its marker-assisted selection in the F_2 geenration in wild emmer wheat[J]. New Phytol.,2000,146:141-154.
    215. Penner G A,Zirino M,S Kruger, et al. Accelerated recurrent parent selection in wheat with microsatellite markers[M]. In: A E Slinkard, Ed., Proceedings of the 9th International Wheat Genetics Symposium.University Extension press, University of Saskatchewan,Canada,1998,l:131-134.
    216. Pestsova E,Ganal M W,Roder M S. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat[J]. Genome,2000,43:689-697.
    217. Pestsova E,Salina E,Borner A,et al. Microsatellites confirm the authenticity of intervarietal chromosome substitution lines of wheat[J]. Theor Appl Genet,2000,101:95-99.
    218. Peto,F.H.. Hybridization of Triticum and Agropyron II. Cytology of the male parents and F_ generation[J]. Can.J.Res., 1936, 14 Sec C:203-214.
    219. Plaschke J,Ganal M W,Roder M S. Detection of genetic diversity in closely related bread wheat using microsatellite markes[J]. Theor Appl Genet.,1995,91(6):1001-1007.
    220. Prasad M,Varshney R K,Roy J K,et al. The use of microsatellites for detecting DNA polymorphism genotype identification and genetic diversity in wheatfJ]. Theor Appl Genet,2000,100:584-592.
    221. Prinner G A.RAPD analysis of plant genomes[M]. Methods of Genome Analysis in Plants.Pub.CRC press Inc., 1996:251-268.
    222. Q. Chen, R. L. Conner, F. Ahmad, et al. Molecular characterization of the genome composition of partial amphiploids derived from Triticum aestivum ×Thinopyrum ponticum and T. aestivum ×Th. intermedium as sources of resistance to wheat streak mosaic virus and its vector, Aceria tosichelIa[J]. Theor Appl Genet, 1998, 97:1 -8 .
    223. Q. Chen, R.L. Conner, A. Laroche, et al. Molecular cytogenetic evidence for a high level of chromosome pairing among different genomes in Triticum aestivum — Thinopyrum intermedium hybrids[J]. Theor Appl Genet, 2001, 102:847-852.
    224. Qin G.J., Chen P.D., Gu H.Y.,et al. Isolation of resistance gene analogs from wheat based on conserved domains of resistance genes[J]. Acta Botanica Sinica, 2003,45(3):340-345.
    225. Roder M S,Korzum V.Bikram S G,et al.The physical mapping of microsatellite markers in wheat[J]. Genome, 1998,41:278-283.
    226. Roder M S,Korzun V,Wendehake K. A mirosatellite map of wheat [J] Genetics, 1998,149:2007-2023.
    227. Roder M S,Plaschke J,Susanne O K,et al. Abundance,variability and chromosomal lication of micro-satellites in wheat[J]. Mol.Gen.Genet.,1995,246:327-333.
    228. Rong J.K, Millert E, Manisterski J, et al. A new powdery mildew resistance gene introgression from wild emmer into common wheat and RFLP-based mapping[J]. Euphytica, 2000, 115(2):121-126.
    229. S. Tang, Z. Li, X. Jia, et al. Genomic in situ hybridization (GISH) analyses of Thinopyrum intermedium, its partial amphiploid Zhong 5, and disease-resistant derivatives in wheat[J]. Theor. Appl. Genet., 2000, 100:344-352.
    230. Salina E ,Pestsova E G,Adonina I G,et al.Identification of a new family of tandem repeats in Triticeae genomes[M]. Wheat prospects for Global Improvement Kluwer Academin Publishers,1998:297-303.
    231. Sanchez de la Hoz, MP, Davilla JA, Loarce Y, et al. Simple sequence repeat primers used in polymerase chain reaction amplifications to study the genetic diversity in barley[J]. Genome, 1996, 39:112-117.
    232. Shannon M.C. Testing salt tolerance variability among tall wheatgrass lines[J]. Agron J.1978, 70: 719-722.
    233. Sharp P. J., S. Chao & S. Desai, The isolation, characterization and application in the Triticeae of a set of wheat RFLP probes identifying each homoeologous chromosome arm[J]. Theor. Appl. Genet., 1989, 78:342-348.
    234. Stebbins,G.L., Fung Ting-pun. Artificial and natural hybrids in the Gramineae, tribe Hordeae. VI. Chromosome pairing in Secale cereale×A. intermedium and the problem of genome homologies in the triticinae[J]. Genetics, 1953,38:600-608.
    235. Stephenson P,Bryan G, Kirby J, et al. Fifty new microsatellite loci for the wheat genetic map[J]. Theor Appl Genet, 1998,97:946-949.
    236. Stubbs R.W. Stripe rust[M]. In.The Cereal Rusts II. Academic Prcss, Orlando. (Roelfs AP& Bushncll WReds.),1985, 61-101.
    237. Talbert L E,Moylan S L,Hansen L J.Assessment of repetitive DNAvariation among accessions of hexaploid and tetrapliod wheat[J]. Crop Sci,1992,32:366-369.
    238. Talbert L.E.,Blake N.K.,Storlie E.W.,et al.Variability in wheat based on low copy DNA sequence comparisons[J]. Genome, 1995,38:951-957.
    239. Tang S. Genomic in situ hybridization(GISH) analysis of Thinnopyrum intermedium, its partial amphyiploid Zhong5 and disease-resistant derivatives in wheat[J] . Theor Appl Genet,2000,100:344-352.
    240. Tuleen N A,Hart G E. Isolation and characterization of wheat-Elytrigia elongate chromosome 3E and 5E addition and substitution lines[J]. Genome, 1988, 30:519-524.
    241. Wang R R.-C.,Marburger, J. E.,and Hu,C.J. Tissue culture-facilitated production of aneuploid haploid Thinopyrum ponticum and amphiploid Hordeum violaceum X H. bogdenii and their use in phylogenetic studies[J]. Theor Appl Cenet, 1991,81:151-156.
    242. WANG Zhi-Qing,LONG Hai,ZHENG You-Liang,et al.Cloning and Analysis of LMW-GS Genes from Triticum aestevum ssp.tibetanum Shao[J]. Acta Genetica Sinica, 2005,32(1):86-93.
    243. Wellings C.R. and Mclntosh R.A. Puccinia striiformis f, sp. tritici in Australasia: pathogenic changes during the first 10 years[J]. Plant Pathology 1990, 39:316-325.
    244. Welsh J, Mcclell M O. Finger printing genomes using PCR with arbitrary primers [J]. Nucleic Acids Research, 1990,18:7213-7218.
    245. Williams JGR, Kwbelik AK, Livak KJ, et al. DNA polymorphisms amplified by arbitrary primers as useful as genetic markers[J]. Nucleic Acids Research, 1990, 18(22):6531-6535.
    246. X M Liu,C M Smith,B S Gill, et al. Microsatellite markers linded to six Russian wheat aphid resistance genes in wheat[J]. Theor Appl Genet,2001,102:504-510.
    247. X M Liu,C M Smith,B S Gill. Identification of microsatellite markers linked to Russian wheat aphid resistance genes Dn4 and Dn5[J]. Theor Appl Genet.,2002,104:1042-1048.
    248. Y Bougot,J Lemoine,M T Pavoine,et al. Identification of a microsatellite marker associated wieh Pm3 resistance alleles to powdery mildew in wheat[J]. Plant Breeding,2002,121:325-329.
    249. Y Weng,M D Lazar. Amplified fragment length polymorphism and simple sequence repeat-based molecular tagging and mapping of greenbug resistance gene Gb3 in wheat[J]. Plant Breeding, 2002, 121:218-223.
    250. Y. Xin, Z.Y. Zhang, X. Chen, et al. Development and characterization of common wheat-Thinopyrum intermedium translocation lines with resistance to barley yellow dwarf virus[J]. Euphytica,2001,119: 161-165.
    251. Yang Z.J., Li G.R., Chang Z.J., et al. Characterization of a partial amphiploid between Triticum aesti -vum cv. Chinese Spring and Thinopyrum intermedium ssp. Trichophorum[J]. Euphytica, 2006,online.
    252. Young N D. A cautiously optimistic vision or marker-assisted breeding[J]. Molecular Breeding, 1999,5:505-510.
    253. Zhang H B,Devorak J. Isolation of repeated DNA sequences from Lophopyrum elongatum for detection of Lophopyrum chromatin in wheat genomes[J]. Genome, 1990,33:283-293.
    254. Zhang XY ,Dong YS,Wang R R-C.Characterization of genomes and chromosomes in partial amphi -ploids of the hybrids of Triticum aestivum×Thinopyrum ponticum by in situ hybridization,isozyme analysis,and RAPD[J]. Genome,1996,39:1062-1071.
    255. Zhang X Y,Banks P,Larkin P J.Characterization of Thinopyrum intermedium alien chromosomes and their translocations in derivatives of Zhong 5 by multicolor FISH[J]. Chinese Agricultural Sciences(in English version). 1999,3:56-62.
    256. Zhang X Y,Koul A,Petroski R,et al. Molecular verification and characterization of BYDV-resistant germplasm derived from hybrid of wheat with Thinopyrum ponticum and Th.intermedium [J]. Theor.Appl.Genet,1993,91:1033-1039.
    257. Zhiyoung Liu,Qixin Sun,Zhongfu Ni, et al. Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer[J]. Euphytica,2002,123:21 -29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700