用户名: 密码: 验证码:
船体建造精度控制关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全面采用精度控制技术是实现现代化造船的“里程碑”。如果从船体零件下料开始,以“补偿量”取代“余量”,将简化造船生产的工艺流程,节约大量的工耗、物耗,加快造船速度。据调查显示:在船体建造过程中,装配时的主要作业仅占总装配工时的1/6,而用于调整作业的工时占1/2,作业后的清理占1/3。因此,船厂应用船体建造精度控制方法的目标是最大限度地消除调整作业量,减少清理工作量,以节约生产工时,并节省材料和能源。因此可以说,研究船舶建造精度控制技术具有重要意义。
     本论文主要研究了如下关键技术:
     (1)提出了船体曲面分段建造精度控制技术需要解决的核心问题。船体曲面分段建造过程的精度控制是船体建造的难题之一,其根本问题是如何确定船体曲面外板的精度控制尺寸补偿量,如何建立正确的船体曲面外板的精度补偿量的数学模型。本文指出了曲面外板的补偿量主要有两个部分组成,一是曲面外板热加工成型产生的加工补偿量,二是曲面外板上焊接加强材产生的装配补偿量。本文在应用开发的船体曲面外板局部收缩量计算系统的基础上,指出了通过数值实验来建立曲面外板加工补偿量实验样本的方法,提出了选取曲面外板加工补偿量实用数学模型的方法;同时介绍了曲面外板装配补偿量的实验测试方法,在此基础上开发相应的数据库系统,通过算例分析,提出了建立曲面外板装配补偿量实用数学模型的研究方法。
     (2)提出了海洋结构物建造过程中的重量、重心位置精度控制方法,为船舶制造的重量、重心位置精度控制技术研究提供了帮助。海洋结构物空船的重量、重心控制是海洋工程项目管理的一项重要內容,其目的是在制造过程中对海洋结构物空船的重量和重心位置进行精度控制,达到完工后其可变载荷能力满足设计的要求,保证该结构物在海洋中确定的作业要求。业主对海洋结构物空船重量和重心位置建造精度的要求也非常高,此项要求在招标文件、建造合同以及技术规范中均提出。文中重点研究海洋结构物空船的重量、重心精度控制技术的关键技术,开发了重量、重心数据库的结构设计,采用VB和ACESS实现了该数据库的主要功能;应用尺寸链原理推导了海洋结构物空船重量、重心公差分配计算公式;提出了在建造过程中进行重量、重心误差的动态调整控制方法。本文的部分成果已用于船厂的生产中。
Application of overall accuracy control technology is the milestone of realization of modem shipbuilding industry. If we start from hull components material nesting and replace margin by compensation amount, this will simplify the process of shipbuilding construction, great amount of man-hours and materials will be saved, thus the shipbuilding speed will be increased significantly. According to investigation, during the hull construction process, only one-sixth of the overall manhours are for assembly, but half of the overall man-hours are used for adjustment while one-third of the overall man-hours are for cleaning-up. So the goal of application of hull construction accuracy control method in the shipyards is to abolish adjustment and reduce cleaning up amount to the maximum level, extensive amount of man-hours, materials and energy will be saved. In conclusion, the study of ship construction accuracy control is of great importance.
     This paper mainly studied the following key technologies:
     (1) Key issues to be resolved in application of accuracy control technology of hull curved sections construction. Accuracy control technology of hull curved sections construction process is one of the issues in hull construction, the fundamental solution is how to define the accuracy control compensation amount of the outer shell of hull curved sections and how to correctly establish the model of accuracy compensation amount of outer shell of hull curved sections. This paper points out that there are tow main parts in accuracy compensation of curved hull section, one is processing compensation amount during hot processing of the curved outer shell and the other one is the assembly compensation amount during welding applied on the curved outer shell. Based on the application of the developed area shrinking amount calculation system of the processing of curved outer shell, this paper has pointed out the method of establishment of test samples of processing compensation amount of the curved outer shell through statistic experiments and forwarded method of selection of practical model of processing compensation amount of the curved outer shell; at the same time, it introduced the inspection method of assembly compensation amount of the curved outer shell; and developed relevant data base based on the above. Through calculation and analysis, this paper raised the research method in establishment of practical model of assembly compensation amount of the curved outer shell.
     (2) The control method of weight and centre of gravity of offshore structures and floaters, which provides assistance in the study of accuracy control technology of weight and centre of gravity of shipbuilding. Weight and centre of gravity control of offshore structures and floaters is one the key aspects in the project management of offshore engineering. Its aim is to control the weight and centre of gravity control of offshore structures and floaters during construction process and the. variable load will satisfy the requirement of the specification and working condition at sea. The client has very demanding requirement in weight and centre of gravity accuracy control of offshore structures and floaters during construction. This requirement will be reiterated in the tendering documents, construction contract and specification. This paper mainly studied the key technology of weight and centre of gravity accuracy control of offshore structures and floaters, developed structural design of weight and centre of gravity data base and realized its main function by using VB and ACESS. And the tolerance distribution calculation formula of weight and centre of gravity of offshore structures and floaters was worked out by utilizing dimension chain principle. The dynamic adjustment and control method of weight and centre of gravity tolerance during construction was raised. Some of the results of this paper has been applied in the shipyard.
引文
[1]中国船舶工业总公司科技局.现代造船模式研究报告[M].1999年6月
    [2]叶家玮。现代造船技术概论[M]。华南理工大学出版社,2001,7
    [3]徐兆康。船舶建造工艺学[M]。人民交通出版社,2005,3
    [4]刘玉君,李艳君。船体建造精度控制中的尺寸链计算方法[J]。大连理工大学学报,2004,45(2):81-87
    [5]纪卓尚,刘玉君。造船精度控制技术的探讨[J]。造船技术,1996,(9)25-27
    [6]「工作精度」特集[M]。日本造船学会志,第833号。
    [7]Richard Lee Storch, Sethipong Anutarasoti, Smith Sukapanpotharam. Implementation of Variation Merging Equations for Production Data Collections in Accuracy Control: A Case Study[J]. Journal of Ship Production, 1999, 15(1):21-31.
    [8]Yasuhisa Okumoto. Dimensional Error of Assembled Blocks[J]. Journal of Ship Production, 2001, 17(1):8-15.
    [9]野本敏治,武市祥司,青山和浩。溶接变形予測基精度管理研究[J]。日本造船学会论文集,第181号,249~260
    [10]武市祥司,青山和浩,野本敏治。精度管理用位置決作業支援研究[J]。日本造船学会论文集,第188号,399~407
    [11]奥本泰久,存瀨晃平,田中朝子。遺的船殼搭载[J]。日本造船学会论文集,第188号,553~558。
    [12]山川武人。溶接变形事前对策·後理 第1回溶接变形凳生[J]。溶接技术,1999,5:140~144
    [13]山川武人.溶接变形事前对策·後理 第2回溶接变形種類上变形量予測[J]。溶接技术,1999,6:143~148
    [14]山川武人。溶接变形事前对策·後理 第3回溶接变形事前对策[J]。溶接技术,1999,7:148~]52
    [15]George J Bruce, M.Z. Yuliadi, A. Shahab. Towards a Practical Means of Predicting Weld Distortion. Journal of Ship Production, 2001,17 (2) ,62~68
    [16]Watana M, Satoh K. Fundamental study on buckling of thin steel plate due to bead-welding[J]. Journal of Japan Welding Society, 1959,27(6):13-20.
    [17] Taniguchi C. Out-of-Diane distortion caused by fillet welds in aluminum[D]. Master' s thesis. MIT, Cambridge, Mass, 1972.
    [18] Satoh K, Terasaki T. Effect of welding conditions on residual stress distributions and welding deformation in welded structures materials[J]. Journal of Japan Welding Society, 1976, 45(1):42-53.
    [19] Karlsson L, Jonsson M, Lindgren L E, et al. Residual stresses and deformations in a welded thin-walled pipe[J]. Pressure Vessels and Piping Division, 1989, 173(7):23-27.
    [20] Masubuchi K. Prediction and control of residual stresses and distortion in welded structures[J]. Welding Research Abroad, 1997, 43(6-7):2-16.
    [21] McDill J M J, Oddy A S, Reed R C. Predicting residual stress and distortion when welding aeroengine alloys [J]. Canadian Aeronautics and Space Journal, 1998, 44(2):68-72.
    [22] Teng T L. Analysis of residual stresses and distortions in T-joint fillet welds[J]. International Journal of Pressure Vessels and Piping, 2001, 78(8):523-528
    [23] Ueda Y, Ma N X. Expression of inherent strain in form of form of function and its estimation[J]. Journal of the Japan Welding Society, 1993, 11(1): 189-198.
    [24] Koji Gotoh, Masahiro Toyosada, Shoji Takechi. A practical estimation method of the skin plate distortion derived from fillet weld. [J]. Japan Shipbuilding Acad. Paper Volume2001, 189:291-298
    [25] A. Bachorski, M.J. Painter, A. J. Smailes. Finite-element prediction of distortion during gas metal arc welding using the shrinkage volume approach[J]. Journal of Materials Processing Technology(1999), 92-93:405-409
    [26] Seung Ⅱ Seo, Chang Doo Jang. A Study on the Prediction of Deformations of Welded Ship Structures[J]. Journal of Ship Production, 1999,18(2):73~81
    [27] Daniewicz S R, Mc Aninch M D, McFarland B. Application of distortion control technology during fabrication of large offshore structures[C]. Proc. Of AWS/ORNL International Conference on Modeling and Control of Joining Processes, 1993.
    [28] Tso-Liang Teng, Chin-Ping Fung, Peng-Hsiang Chang. Analysis of residual stresses and distortions in T-joint Fillet welds[J]. International Journal of Pressure Vessels and Piping, 2001,78:523-538
    [29] O.A. Vanli, P. Michaleris. Distortion Analysis of Welded Stiffeners. Journal of Ship Production, 2001, 17 (4) : 226~240.
    [30] A. Bachorski, M.J. Painter, A.J. Smailes, et al. Finite-element prediction of distortion during gas metal arc welding using the shrinkage volume approach[J]. Journal Materials Processing Technology, 1999,92-93: 405-409
    [31] 田锡唐,顾福明,高进强。大型圆柱形壳体上圆形焊缝的焊接变形[J]。焊接学报,1996,18(1):50-56
    [32] 汪建华,戚新海,钟小敏等。焊接结构三维热变形的有限元模拟[J]。上海交通大学学报,1994,28(6):59-65。
    [33] 汪建华,陆皓。预测焊接变形的残余塑性应变有限元方法[J]。上海交通大学学报,1997,31(4):53-56
    [34] 薛忠明,曲文卿,柴鹏,张彦华。焊接变形预测技术研究进展[J]。焊接学报,2003,24(3):87-91。
    [35] 刘黎明,郑赞.基于人工神经网络的船舶高强钢焊接变形分析预测[J].焊接学报2002(1),27-29
    [36] 叶家玮。船体建造测量及数据处理技术[M]。华南理工大学出版社,2001,9
    [37] 卫洪兴。船体建造中余量和补偿量编码探讨[J]。造船技术,1996,(9) 33-37
    [38] 刘玉君,李艳君。运用BP神经网络对船用钢焊接收缩量建模研究[J]。大连理工大学学报,2004,44(4):533-535
    [39] 刘玉君,李艳君。焊接反变形实验验证[J]。造船技术,2005,(2)35-38
    [1] 陆庆雄.船体建造精度管理.中国船舶工业总公司船舶建造精度管理指导组,1988
    [2] 孙松年.日本船厂船体结构精度控制与精确生产的近况[J].造船技术,1998(10):6-14
    [3] 黄浩.船体建造工艺手册,国防工业出版社,1989
    [4] 康汉元.船台无余量装配.人民交通出版社,1980
    [5] 阿特列斯泰恩【苏】.船体结构的制造和安装精度【苏】.人民交通出版社,1982.5
    [6] 关于精度管理.日本造船学会论文集,1998.11
    [7] 王勇毅.船体建造工艺学.人民交通出版社,1989
    [8] 林燮葆.船体建造精度管理的研究.造船技术,1994(8),5-10
    [9] VISUAL C++6.0数据库开发.人民邮电出版社,2004
    [10] 陈明.神经网络模型.大连理工大学出版社,1995
    [11] 戴葵.神经网络实现技术.国防科技大学出版社,1998
    [12] 徐永群,朱怡权.BP神经网络计算法及其应用研究,黄冈师范学院学报,2000(3),74-78
    [13] 预测焊接变形的精度管理.日本精度管理论文集,1998.11
    [14] 纵材预装切口安装方法及精度控制.日本精度管理论文集
    [15] 陈楚.船体焊接变形.国防工业出版社,1985
    [16] 曹一鸣.船体分段结构焊接变形的材料力学原理.造船技术,2000(1),29-30
    [17] 徐建设,陈以一.搭接接头与T型接头焊接角变形的分析.钢结构,2002(2),43-44,61
    [18] 刘黎明,郑赞.基于人工神经网络的船舶高强钢焊接变形分析预测。焊接学报2002(1),27-29
    [19] 王永祥,钟剑.基于数据库的焊接变形预测分析系统.航天工艺,2001(2),6-9
    [20] 马继等.预测焊接变形几种方法的比较.造船技术,2002(1),27-29
    [21] 黄石生,李迪.焊接过程的神经网络建模及控制研究.机械工程学报,1994(3),24-30
    [22] 裴浩东.人工神经网络及其在焊接中的应用.甘肃工业大学学报,1996(1),1-6
    [23] 田德志.曲面分段焊接变形推定法.日本造船学会论文集,1992.
    [24] Yiliu Tu. Automatic scheduling and control of a ship welding assembly line. Elsevier Science, 1996(3), 169-177
    [25] Chon Liang Tsai, Myoung Soo Han. THERMAL AND MECHANICAL EVOLUTION OF WELDING-INDUCED BUCKLING DISTORTION. Journal of the Chinese Institute of Engineers, 2004, 905-918
    [26] 王启平.机械制造工艺学.哈尔滨工业大学出版社,1995
    [27] 潘宝俊.互换性与测量技术基础.中国标准出版社,1997
    [28] 陈耕云.分层抽样估计精度控制方法的研究.统计与预测,1999(5):21-23,17
    [29] 韩之俊,曹秀玲.IS09000族标准统计技术.中国科学出版社,2000
    [30] 王基生,赵之渊.尺寸链的计算机计算和分析.制造技术与机床,1994(5),34-35
    [31] 王兆证.基于装配数据库的尺寸链自动生成.机械设计与制造工程,2002(5),12-13
    [32] 华中平.利用工艺尺寸链综合计算工序余量、工序尺寸及公差.湖北工学院学报,1994(3):75-80
    [33] 工作精度管理的新方法.日本造船学会论文集,1994.
    [34] Robert R. Hardison. Accuracy Control—The Keystone of Quality in Shipbuilding. Materials Evaluation, 1998(1), 62-60
    [35] 提高吊装的精度及系统化.日本造船学会论文集.1998.11
    [36] 船舶艏艉弯曲分段的精度管理.日本造船学会论文集,1998.11
    [1] 刘玉君,王东,纪卓尚等.水火弯板工艺参数优化设计.大连理工大学学报.2000,3(2):207-209.
    [2] 刘玉君,纪卓尚,邓燕萍.船体帆型外板水火成型工艺参数预报系统.中国造船,2000,9(3).80-83.
    [3] M.Ishiyarna, Y.Tango.Advanced Line-Heating Process for Hull-steel Assembly. Journal of Ship Production. Vol.16,No.2,May 2000.121-132.
    [4] Y.Tango,M.Ishiyama, S.Nagahara, et al. Automated Line Heating for Plate Forming by IHI-ALPHA System and its Application to Construction of Actual Vessels- System Outline and Application Record to date(in Japanese). Journal of the Society of Naval Architects of Japan, 2003, 6(193). 85-95.
    [5] J.G.Shin, C.H.Ryu, J.H.Nam.A Comprehensive Line-Heating Algorithm for Automatic Formation of Curved Shell Plates. Journal of Ship Production. Vol.20, No.2, May 2004.69-78
    [6] J.G.Shin, Y.G.Kim, J.H.Nam.An integrated approach to determine optimal process information of large scale line heating precess with deformation simulation. Journal of Ship Production. Vol.20, No4, November 2004.211-220.
    [7] 刘玉君,张迪夫,纪卓尚等.基于BP网络的水火弯板局部收缩量建模研究.大连理工大学学报,1999.11(6):797-801.
    [8] 刘玉君,纪卓尚,戴寅生.水火弯板建模系统研究.船舶工程,1999(2).25-27.
    [9] 刘玉君,张迪夫,纪卓尚等.水火弯板局部变形的量化分析.大连理工大学学报.1998,7(4):405-409.
    [10] 纪卓尚,刘玉君,戴寅生等.水火弯板模拟方法研究.中国造船,1999,5(2).81-86.
    [11] 纪卓尚,刘玉君,孙振烈等.船体曲面钢扳水火加工成型工艺的理论与应用研究.中国造船,1998,10.118-124.
    [12] 刘玉君,雷云天,纪卓尚.钢板水火加工变形主要参数实验分析.船舶工程,1998(6).28-30.
    [13] 董大栓,柳存根,谭家华.水火弯板变形的描述方法.中国造船,2003,3(1).84-88.
    [14].董大栓,柳存根,谭家华.帆形板水火弯板加工的研究.造船技术,2002(1).21-24.
    [15] 董大栓,柳存根,谭家华.水火弯板成形后板表面形状的数学模型.上海交通大学学报.2003,7(7).1002-1006.
    [16] 唐焕文,秦学志.实用最优化方法.大连:大连理工大学社,1994
    [17] 卢险峰.最优化方法应用基础.上海:同济大学出版社,2003.
    [18] 孙家昶.样条函数与计算几何.北京:科学出版社,1982.
    [19] 朱心雄等.自由曲线曲面造型技术.北京:科学出版社,2000.
    [20] 李岳生,齐东旭.样条函数方法.北京:科学出版社,1979.
    [21] 盛骤,谢式千,潘承毅。概率论与数理统计,高等教育出版社,1996。
    [22] 刘玉君,纪卓尚,戴寅生.水火弯板加工工艺参数对收缩量的影响实验分析.造船技术,1996(7).18-21.
    [23] 刘玉君,纪卓尚,董守富.曲面成形收缩量的近似计算.大连理工大学学报,1996,2(1):88-93.
    [24] 刘玉君,纪卓尚,董守富.水火弯板局部收缩和整体变形的理论分析.中国造船,1995,5(2).90-100.
    [25] 田锡唐,顾福明,高进强。大型圆柱形壳体上圆形焊缝的焊接变形[J]。焊接学报,1996,18(1):50-56
    [26] 汪建华,戚新海,钟小敏等。焊接结构三维热变形的有限元模拟[J]。上海交通大学学报,1994,28(6):59-65。
    [27] 汪建华,陆皓。预测焊接变形的残余塑性应变有限元方法[J]。上海交通大学学报,1997,31(4):53-56
    [28] 汪建华,魏良武。焊接变形和残余应力预测理论的发展遗应用前景(1)[J]。焊接,2001,9:5-7。
    [29] 汪建华,魏良武。焊接变形和残余应力预测理论的发展遗应用前景(2)[J]。焊接,2001,10:4-6。
    [30] 汪建华,陆皓。焊接残余应力形成机制与消除原理若干问题的讨论[J]。焊接学报,2002,23(3):75-79。
    [1] David J.Kruglinski,Scot Wingo,George Shepherd编著,《Visual C++6.0技术内幕》,1999年,北京希望电子出版社
    [2] D.I.Jaramillo and A.N.Perakis, Fleet Deployment Optimization for Linear Shipping part2, mplementation and Results, Maritime Policy and Management. 1991, VOI. 18, No.4, 23-5262
    [3] John L.Everett, Amoldo C.Hax, Victor A.Lewinson and Donald Nudds, Optimization of a fleet of large tanker and bulkers-A Linear Programming Approach, Marine Technology. October 1972, 430-438
    [4] J.C.Trevett, Fleet Planning Models, Aeronautical Journal March, 1983, Fleet Planning Symposium, 88-94
    [5] Harry Benford, A simple Approach to Fleet Deployment, Maritime Policy and Management. 1981, Vol.8, No.3, 223 228
    [6] 滕素珍.数理统计学.大连:大连理工大学出版社,2000.
    [7] 王世连,刘寅东主编.船舶设计原理.大连:大连理工大学出版社,2002.
    [8] 徐兆康主编.船舶建造工艺学.北京:人民交通出版社,2000.
    [9] 刘正林主编.船舶机械制造工艺学.北京:人民交通出版社,1999.
    [10] 中国造船工程学会,上海交通大学编著.船舶工程辞典.北京:国防工业出版社,1988.
    [11] 张宝华编.造船专业英语.哈尔滨:哈尔滨工程大学出版社,2003.
    [12] 党坤编.汉英/英汉船舶轮机词汇.大连:大连海事大学出版社,2004.
    [13] 柴欣编著.Visual Basic程序设计基础.北京:中国铁道出版社.2003.
    [14] 宁正元主编.Visual Basic程序设计教程.北京:清华大学出版社.2004.
    [15] 郑阿奇主编.SQL Server实用教程.北京:电子工业出版社.2005.
    [16] 宋振会编著.SQL Server 2000中文版基础教程.北京:清华大学出版社.2005.
    [17] 周颖编著.Visual Basic 6.0实例精通.北京:清华大学出版社.2000.
    [18] 刘大玮,马传宝,孙颖洁编著.SQL Server数据库项目案例导航.北京:清华大学出版社.2005.
    [19] 李鸿吉编著.Visual Basic 6.0数理统计实用算法.北京:科学出版社.2003.
    [20] 飞思科技产品研发中心编著.Visual Basic.NET编程指南.北京:电子工业出版社.2003.
    [21] 刘韬,骆娟,何旭洪编著.Visual Basic数据库系统开发实例导航.北京:人民邮电出版社.2003.
    [22] 刘韬,楼兴华编著.SQL Server 2000数据库系统开发实例导航.北京:人民邮电出版社.2004.
    [23] 求是科技编著.SQL Server 2000数据库开发技术与工程实践.北京:人民邮电出版社,2004.
    [24] Alex Kriegel,Boris M.Trukhnov著.SQL宝典.北京:电子工业出版社,2003.
    [25] 钟义信,等。智能理论与技术—人工智能与神经网络。人民邮电出版社,1992。
    [26] 戚德虎,等。BP网设计。计算机工程与设计,1998.2。
    [27] 闻新,周露,王丹力,熊晓英编著。MATLAB神经网络应用设计。科学出版社,2001。
    [28] 罗晓沛。数据库技术,清华大学出版社,1999
    [29] 戚德虎,康继昌。BP神经网络的设计[J]。计算机工程与设计,1998,19(2):48~50。
    [30] 张政寿,二维尺寸链理论及计算,国防工业出版社,1988。
    [31] 张荣瑞,尺寸链原理及应用,机械工业出版社,1986。
    [32] 盛骤,谢式千,潘承毅。概率论与数理统计,高等教育出版社,1996。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700