用户名: 密码: 验证码:
湖南部分工矿区水稻田As污染现状及其化学萃取修复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
As是一种剧毒、致癌元素。因为灌溉水的原因,土壤As污染往往更多地发生在水田中。湖南是“有色金属之乡”,一些工矿区附近的稻田存在不同程度的As污染。稻田As污染降低水稻的产量,还通过食物链影响人体健康。水稻是湖南的主要粮食作物,稻田As污染危害大而又难于治理,因此对其修复措施的探讨有着非常重要的理论和现实意义。本研究通过采样分析对湖南一些被广泛关注的工矿区稻田的As污染状况做了一个初步的调查和评价,探讨了As污染稻田土壤化学萃取修复的效果及其机理。研究的主要结论如下:
     1.对土壤作出的污染状况评价表明,13个被调查地区中,9个地区的稻田土壤受到了As污染,其中有4个地区属于As和重金属的复合污染。这4个受As和重金属的复合污染的地区中,2个地区的主要污染因子是As,一个地区的主要污染因子是Zn、Cd,另外一个地区的主要污染因子是Zn。岳阳平江县三阳乡、株州石峰区新桥村、衡阳常宁县松柏镇这3个地区稻田土壤的As污染是最严重的。株州石峰区新桥村和衡阳松柏镇这2个地区受As和重金属的复合污染是最严重的。糙米污染状况评价表明,所有调查地区稻田出产的糙米都不同程度地受到了相邻工矿区的影响。岳阳临湘市忠防镇、岳阳平江县三阳乡、益阳邓石桥乡、株州石峰区新桥村、衡阳常宁松柏镇出产的糙米受到了较严重的As污染。但仅有益阳邓石桥乡邓石桥村2#和衡阳常宁松柏镇2#这2个采样点糙米样品的As含量超过了食品卫生标准(0.7 mg╱kg)。
     水稻各部分As含量的大小顺序是根系>秸秆>谷壳>糙米,且都与土壤As含量存在极显著的线性关系。在As污染土壤中,不同品种的水稻糙米对土壤As的累积能力表现出了一定的差异,“两优培九”这个超级稻品种的糙米对As的富集系数较高。尽管所调查的这些工矿区有一部分属于As和重金属的复合污染,但水稻产量主要取决于土壤的As污染程度。用反映土壤环境质量的综合污染指数P_综来评价和估计土壤As和重金属的污染对水稻产量的影响没有单项污染指数P_(As)好。
     2.萃取剂的筛选试验表明,在所采用的酸液、碱液和盐溶液中,H_3PO_4、KOH、KH_2PO_4对土壤As的去除有较好的效果。动力学研究表明,H_3PO_4、KH_2PO_4、KOH去除土壤中的As需要的平衡时间分别为360、360、720 min。在描述As去除的4个动力学模型中,Elovich模型和一级动力学模型分别是最佳和最差的模型,说明As从土壤中的去除可能并不是一个简单的一级反应,而是包含了土粒膨胀、吸附位活化、表面扩散等诸多因素的复杂过程。
     3.2种稻田土壤的化学萃取试验表明,H_3PO_4、KH_2PO_4、KOH对土壤中As的去除有明显的效果,并且对金水村土壤效果要好于邓家塘村土壤。200 mmol/L的H_3PO_4、KH_2PO_4、KOH对邓家塘土壤As的去除率分别为22.85%、20.21%、27.35%,对金水村土壤As的去除率分别为39.82%、14.33%、36.84%。3种萃取剂对不同形态As的去除存在明显的选择性,主要去除了一些对作物有效性较高的形态的As。在邓家塘土壤中,H_3PO_4、KH_2PO_4去除大部分的Ca结合态As;而在金水村土壤中,H_3PO_4去除了大部分的Fe结合态As和Ca结合态As,KH_2PO_4主要去除Fe结合态As。在这2种土壤中,KOH都去除了大部分的Al结合态As和Fe结合态As。此外,萃取剂的重复萃取以及不同萃取剂的组合使用能明显提高土壤As的去除率,使土壤As含量接近甚至基本达到土壤环境质量3级标准。因此,化学萃取治理As污染的稻田土壤是有效的。
     KH_2PO_4对As的去除机理是PO_4~(3-)置换了土壤中粘土矿物和水合氧化物吸附的As,H_3PO_4去除As是PO_4~(3-)对As的置换和作为酸来溶解土壤中与As结合的组分这2种机理协同作用的结果,KOH对As的去除机理是OH置换出了土壤吸附的As。而PO_4~(3-)和OH~-置换土壤中的As可能存在2种机制:第一,2个配位平衡的竞争;第二,沉淀平衡和配位平衡之间的竞争。
     4.化学萃取也给土壤带来了一些负面影响,主要表现为,改变了土壤的pH值,造成了Ca、Mg、Fe、Al、Si这些土壤组分的溶出。H_3PO_4和KOH分别降低了和提高了土壤的pH值,KH_2PO_4对土壤pH值影响较小。较高浓度的H_3PO_4导致了2种土壤大量Ca、较多的Mg和si的溶出,还导致了金水村土壤较多的Fe、Al的溶出。KH_2PO_4和KOH造成土壤组分的溶出相对较少。动力学的实验表明,3种萃取剂对土壤pH的影响、导致的Ca的溶出以及H_3PO_4、KH_2PO_4导致的Mg的溶出都能在很短的时间内达到了平衡,而As去除达到平衡需要的时间稍长一些。如果要最大限度地去除土壤中的As,就不可避免地影响土壤的pH值,导致一些土壤组分(尤其是Ca、Mg)的溶出。
     5.因为供试土壤的As污染并不是非常严重,化学萃取对土壤中水稻的萌发和幼苗生长产生的影响更多地表现为抑制作用,对As毒害的缓解作用没有得到明显的体现。H_3PO_4和KOH萃取抑制了土壤中水稻种子的萌发,但仅在浓度为200 mmol/L时水稻的发芽率才有显著降低;而KH_2PO_4萃取对土壤中水稻种子的萌发无显著影响。H_3PO_4和KOH萃取降低了苗高、根长和鲜重,但在浓度较低时影响不大。KH_2PO_4对水稻幼苗生长的抑制作用较小,并且100 mmol/L的KH_2PO_4对幼苗的生长,尤其是对鲜重有显著的促进作用。相对而言,KH_2PO_4是一种有效而且对环境友好的萃取剂。
     6.综合评价,尽管应用H_3PO_4、KH_2PO_4、KOH的化学萃取修复技术对土壤产生了一些负面效应,但是化学萃取能迅速、有效地降低稻田土壤的As含量,永久地减轻甚至消除As对作物的毒害、对人体健康的威胁。同时,化学萃取还具有操作简单方便的优点。而且,可以通过控制萃取剂浓度,选择对环境相对友好的萃取剂等措施来减少和消除化学萃取对土壤产生的负面效应。显然,化学萃取修复技术有诸多优点,有希望应用于大面积As污染较严重的稻田的治理。
Arsenic (As) is known to be a very toxic element and carcinogen to humans.Owing to polluted irrigation water, paddy fields are prone to be contaminated with As.Non-ferrous metal abounds in Hunan province, and some paddy fields round someindustry and mine zones have been contaminated with As. Arsenic contamination ofpaddy fields can reduce rice yield and cause damage to human health through foodchain, and, at the same time, remediation of As contaminated paddy field is verydifficult. Therefore studies of remediation of As contaminated paddy field are ofimportance. Paddy soils and rice plants were sampled and analyzed to investigate andevaluate As contamination of paddy fields round some industry and mine zones inHunan province, and laboratory batch experiments were conducted to studyremediation of As contaminated paddy field by chemical extraction. The main resultswere summarized as follow:
     1. Evaluation of soil As contamination showed that 9 zones had beencontaminated with As, among which 4 zones had been contaminated with both As andheavy metals. The main pollutants were As for 2 zones, Zn and Cd for another zone,and Zn for the other zone. Arsenic contaminations of paddy soils were the mostserious in Sanyang town of Pingjiang county (Yueyang city), Xinqiao village ofShifeng county (Zhuzhou city), and Songbai town of Changning county (Hengyangcity), and complex contaminations of As and heavy metal were the most serious inXinqiao village of Shifeng county (Zhuzhou city), and Songbai town of Changningcounty (Hengyang city). Evaluation of brown rice As contamination indicated thatbrown rice produced from all sites had been contaminated with As by nearby industryand mine zones. Arsenic contaminations of brown rice were the most serious inZhongfang town of Linxiang city (Yueyang city), Sanyang town of Pingjiang county(Yueyang city), Dengshiqiao town of Heshan county (Yiyang city), Xinqiao village of Shifeng county (Zhuzhou city), and Songbai town of Changning county (Hengyangcity). However there were only 2 sample sites, 2# sampling site in Dengshiqiao townof Heshan county (Yiyang city) and 2# sampling site in Songbai town of Changningcounty (Hengyang city), failing to meet tolerance limit in grain (0.7 mg/kg).
     Arsenic contents in various tissues of rice plants were in the order of roots>straw>husk>brown rice, and there existed extremely significant linear relationships betweenAs contents in various tissues and soil As contents. In As contaminated paddy soils,there were differences of ability of As uptake among various rice plants. Althoughsome zones were contaminated with both As and heavy metals, rice yield mainlyrelated to soil As contamination. The single pollution index of As was moreappropriate for evaluating effects of complex pollution on rice yield than the generalpollution index.
     2. In all extractants applied in batch experiments, phosphoric acid (H_3PO_4),potassium hydroxide (KOH), and potassium dihydrogen phosphate (KH_2PO_4) provedto be effective in removing As from soils. Arsenic removal could reach equilibriumwithin 360, 360, 720 min for H_3PO_4, KOH, and KH_2PO_4, respectively. Elovich modeland first-order model proved to best and worst fit the kinetic data of As removal,respectively, among four models used in kinetic study, indicating that As removalshould not be a simple process.
     3. Batch experiments of 2 paddy soils showed that H_3PO_4, KH_2PO_4, and KOHwere effective in removing As from the soils, and removal efficiencies from Jinshuisoil were more than those from Dengjiatang soil. In Dengjiatang soil, As removalefficiency of 22.85%, 20.21%, and 27.35% was attained and, in Jinshui soil, removalefficiency of 39.82%, 14.33%, and 36.84% was attained due to using H_3PO_4, KH_2PO_4,and KOH of 200 mmol/L, respectively. Three extractants mainly removed those Asspecies which availabilities were high. Both H_3PO_4 and KH_2PO_4 removed the greatmass of As of Ca-bound from Dengjiatang soil, H_3PO_4 and KH_2PO_4 removed thegreat mass of As of Fe- and Ca-bound and many As of Fe-bound from Jinshui soil,respectively, and KOH removed the great mass of As of Al-and Fe-bound from 2soils. In addition, As removal efficiency could be greatly promoted by twice extractions and combined application of two extractants. Hence chemical extractionwas effective in remedying As contaminated soil.
     The mechanism of As removal by KH_2PO_4 was that absorbed As was displacedby phosphate ions (PO_4~(3-)). The mechanism of As removal by KOH was displacementreaction of hydroxyl ions (OH~-) with As. The effectiveness of H_3PO_4 could beattributed to the synergetic function as a donor of PO_4~(3-) which displace As and as anacid to dissolve metallic components of the soil with which As was associated. PO_4~(3-)and OH~- displaced As through 2 mechanisms, which were a competition between 2coordination reactions and a competition between precipitation reaction andcoordination reaction.
     4. Three extractants resulted in change of soil pH values and dissolution of soilcomponents (calcium (Ca), magnesium (Mg), and silicon (Si)). H_3PO_4 decreased soilpH values, KOH increased soil pH values, but KH_2PO_4 hardly led to change of soilpH values. At high concentrations, H_3PO_4 resulted in dissolution of a great deal of Caand some Si and Mg from 2 soils, and dissolution of some A1 and Fe from Jinshui soil.While dissolution of soil components due to using KH_2PO_4 or KOH was much lessthan H_3PO_4. Kinetic study showed that both changes of soil pH values and dissolutionof Ca and Mg due to using 3 extractants were more rapid than As removal from soil.Therefore effects of extractants on soil properties would be inevitable if As wasfurthest removed.
     5. Chemical extraction inhibited germination and seedling growth of rice plants.H_3PO_4 and KOH decreased germination ratios of rice, seedling heights, root lengthsand fresh weights. At lower concentration (100 mmol/L), however, H_3PO_4 and KOHdid not result in decrease in germination ratios and had only slight effects on seedlingheights, root lengths and fresh weights. KH_2PO_4 proved not to have remarkableeffects on germination ratios, and promoted growth of seedling at the concentration of100 mmol/L. Among these three extractants, KH_2PO_4 proved to be not only effectivein removing As from soil but also environment-friendly.
     6. Although chemical extraction of As from soils resulted in negative effects onsoil to a certain degree, chemical extraction could rapidly and effectively remove As from soils and permanently alleviate or eliminate As toxicity to crops and damage tohuman health, and was easy to operate. In addition, negative effects of chemicalextraction could be minimized through adoption of some countermeasures, such asapplication of environment-friendly extractants and choice of proper concentrations ofextractants. In a word, chemical extraction could be applied to large-scale paddyfields with serious As contamination due to its effectiveness, rapid kinetics, andoperational easiness.
引文
[1] Moon D H, Dermatas D, Menounou N. Arsenic immobilization by calcium-arsenic precipitates in lime treated soils [J]. Science of the Total Environment, 2004, 330(1-3): 171-185.
    [2] Juillot F, Ildefonse Ph, Morin G, et al. Remobilization of arsenic from buffed wastes at an industrial site: mineralogical and geochemical control [J]. Applied Geochemistry, 1999, 14(8): 1031-1048.
    [3] Merwin I, Pruyne P T, Ebel J G, et al. Persistence, phytotoxicity, and management of arsenic, lead and mercury residues in old orchard soils of New York state [J]. Chemosphere, 1994, 29(6): 1361-1367.
    [4] 刘文菊.根表铁膜对水稻吸收和转运砷的影响机制研究[D].北京:中国科学院研究生院,2005:1-20.
    [5] 中华人民共和国国家统计局.中国统计年鉴-2006[M].北京:中国统计出版社,2006:461-498.
    [6] 谢正苗,黄昌勇,何振立.土壤中砷的化学平衡[J].环境科学进展,1998,6(1):22-37.
    [7] Baur W H, Onishi B M H. Arsenic [A]. In: Wedepohl K H (Edictor), Handbook of Geochemistry [C]. Springer-Verlag, Berlin. 1969.
    [8] Arehart G B, Chryssoulis S L, Kesler S E. Gold and arsenic in iron sulfides from sediment-hosted disseminated gold deposits-implications for depositional processes [J]. Economic Geology, 1993, 88: 171-185.
    [9] Fleet M E, Mumin A H. Gold-bearing arsenian pyrite and marcasite and arsenopyrite from Carlin Trend gold deposits and laboratory synthesis [J]. Americal Mineralogist, 1997, 82: 182-193.
    [10] Boyle R W, Jonasson I R. The geochemistry of Arsenic and its use as an indicator element in geochemical prospecting [J]. Journal of Geochemical Exploration, 1973, 2:251-296.
    [11] Dudas M J. Enriched levels of arsenic in post-active acid sulfate soils in Alberta [J]. Soil Science Society of America Journal, 1984, 48: 1451-1452.
    [12] Pettine M, Camusso M, Martinotti W. Dissolved and particulate transport of arsenic and chromium in the Po River (Italy) [J]. The Science of the Total Environment, 1992, 119: 253-280.
    [13] Hall G E M, Pelchat J C, Gauthier G. Stability of inorganic arsenic (Ⅲ) and arsenic (Ⅴ) in water samples[J]. Jounal of Analytical Atomic Spectrometry, 1999, 14: 205-213.
    [14] Oscarson D W, Huang P M, Defosse D, et al. The oxidative power of Mn (Ⅳ) and Fe (Ⅲ) oxides with respect to As (Ⅲ) in terrestrial and aquatic environments[J]. Nature, 1981, 291:50-51.
    [15] Manning B A, Fendorf S, Bostick B, et al. Arsenic (Ⅲ) oxidation and Arsenic (Ⅴ) adsorption reactions on synthetic birnessite [J]. Environmental Science and Technology, 2002, 36:976-981.
    [16] Johnson D L, Pilson M E. The oxidation of arsenite in seawater [J]. Environment Letters, 1975, 8: 157-171.
    [17] Scott M J, Morgan J J. Reactions at oxide surfaces. 1. Oxidation of As (Ⅲ) by synthetic birnessite [J]. Environmental Science and Technology, 1995, 29: 1898-1905.
    [18] Cullen W R, Reimer K J. Arsenic speciation in the environment [J]. Chemical Reviews, 1989, 89: 713-764.
    [19] Turpeinen R, Pantsar-Kallio M, Haggblom M, et al. Influence of microbes on the mobilization, toxicity and biomethylation of arsenic in soil [J]. The Science of the Total Encironment, 1999, 236: 173-180.
    [20] Tamaki S, Frankenberger W T. Environmental biochemistry of arsenic [J]. Reviews of Environmental Contamination and Toxicology, 1992, 124: 79-110.
    [21] 北师大环境科研组.砷的环境地球化学[A]∥区域环境学术讨论会文集[C].北京:科学出版社,1977.
    [22] Krysiak A, Karczewska A, 2007. Arsenic extractability in soils in the areas of former arsenic mining and smelting, SW Poland [J]. Science of the Total Environment (in press).
    [23] Warren G P, Alloway B J, Lepp N W, Singh B, Bochereau F J M, Penny C. Field trials to assess the uptake of arsenic by vegetables from contaminated soils and soil remediation with iron oxides [J]. The science of the Total Environment, 2003, 311: 19-33.
    [24] Leist M, Casey R J, Caridi D. The management of arsenic wastes: problems and prospects [J]. Journal of Hazardous Materials, 2000, 76: 125-138.
    [25] Bhattacharya P, Mukherjee A B, Jacks G, Nordqvist S. Metal contamination at a wood preservation site: characterization and experimental studies on remediation [J]. The Science of the Total Environment, 2002, 165-180.
    [26] Tokunaga S, Hakuta T. Acid washing and stabilization of an artificial arsenic-contaminated soil [J]. Chemosphere, 2002, 46: 31-38.
    [27] 陈怀满.环境土壤学[M].北京:科学出版社,2005:附录
    [28] 翁焕新,张霄宇,邹乐君.中国土壤中砷的自然存在状况及其成因分析[J].浙江大学学报(工学版),2000,34(1):88-92.
    [29] 国家环境保护局南京环境科学研究所.GB15618-1995土壤环境质量标准[S],1995.
    [30] 王春旭,李生志,许荣玉,等,环境中砷的存在形态研究[J].环境科学,1993,14(4):53-57.
    [31] 陈同斌.土壤溶液中的砷及其与水稻生长效应的关系[J].生态学报,1996,16(2):147-153.
    [32] Driehaus W, Seith R, Jekel M. Oxidation of arsenate with manganese oxides in water treatment [J]. Water Research, 1995, 29(1): 297-305.
    [33] 常思敏,马新明,蒋媛媛,等.土壤砷污染及其对作物的毒害研究进展[J].河南农业大学学报,39(2):161-166.
    [34] 陈静,王学军,朱立军.pH值和矿物成分对砷在红土中迁移的影响[J].环境化学,2003,22(2):121-125.
    [35] 李勋光,李小平.土壤砷吸附及砷对水稻的毒性[J].土壤,1996,28(2):98-100.
    [36] 魏显有,王秀敏,刘云惠,等.土壤中砷的吸附行为及其形态分布研究[J].河北农业大学学报,1999,22(3):28-30.
    [37] 雷梅,陈同斌,范稚连,等.磷对土壤中砷吸附的影响[J].应用生态学报,2003,14(11):1989-1992.
    [38] Jachson B P, Miller W P. Effectiveness of phosphate and hydroxide for desorption of arsenic and selenium species from iron oxides [J]. Soil Science Society American Journal, 2000, 64(5): 1616-1622.
    [39] Alam M G M, Tokunaga S, Maekawa T. Extraction of arsenic in a synthetic arsenic-contaminated soil using phosphate [J]. Chemosphere, 2001(8), 43: 1035-1041.
    [40] Jones D L, Darrah P R. Organic acids in the rhizosphere - a critical review [J]. Plant and Soil, 1998, 205: 25-44.
    [41] 陶玉强,姜威,苑春刚,等.草酸盐影响污染土壤中砷释放的研究[J].环境科学学报,2005,25(9):1232-1235.
    [42] 陈同斌,刘更另.土壤中砷的吸附和砷对水稻的毒害效应与pH值的关系[J].中国农业科 学,1993,26(1):63-68.
    [43] 许嘉琳,杨居荣,荆红卫,等.砷污染土壤的作物效应及其影响因素[J].土壤,1993,26(6):50-58.
    [44] 朱云集,王晨阳,马元喜,等.砷胁迫对小麦根系生长及活性氧代谢的影响[J].生态学报,2000,20(4):707-710.
    [45] 胡家恕,童富淡,邵爱萍,等.砷对大豆种子萌发的伤害[J].浙江农业大学学报,1996,22(2):121-125.
    [46] 刘登义,王友保.Cu、As对作物种子萌发和幼苗生长影响的研究[J].应用生态学报,2002,13(2).179-182.
    [47] Rossman T G. Molecular and genetic toxicology of arsenic [M]. Amsterdam: Gordon and Breach Publishers, 1998: 171-187.
    [48] 杨文婕,刘更另.砷对植物衰老的影响[J].植物生理学通讯,1997,33(1):54-55.
    [49] 中华人民共和国卫生部.GB4810-94食品中砷限量标准[S],1994.
    [50] Ullrich-Eberius C I, Sanz A, Novacky A J. Evaluation of arsenate- and vanadate- associated changes of electrical membrane potential and phosphate transport in Lemna gebba G1 [J]. Journal of Experimental Botany, 1989, 40:119-128.
    [51] Carbonell-Barrachina A A, Aarabi M A, DeLaune R D, et al. The influence of arsenic chemical form and concentration on Spartina patens and Spartina alterniflora growth and tissue arsenic concentration [J]. Plant and Soil, 1998, 198: 33-43.
    [52] Hartley-Whitaker J, Ainsworth G, Meharg A A. Copper- and arsenate-induced oxidative stress in Holcus lanatus L. clones with differential sensitivity [J]. Plant, Cell and Environment, 2001, 24: 713-722.
    [53] Schmoger M E V, Oven M, Grill E. Detoxification of arsenic by phytochelatins in plants [J]. Plant Physiology, 2000, 122: 793-801.
    [54] Vatamaniuk O K, Mari S, Lu Y P, Rea P A. Mechanism of heavy metal ion activation of phytochelatin (PC) synthase: blocked thiols are sufficient for PC synthase-catalyzed transpeptidation of glutathione and related thiol peptides [J]. Journal of Biological Chemistry, 2000, 275: 31451-31459.
    [55] Hartley-Whitaker J, Ainsworth G, Vooijs R, Ten Bookum W M, Schat H, Meharg A A. Phytochelatins are involoved in differential arsenate tolerance in Holcus lanatus [J]. Plant Physiology, 2001, 126: 299-306.
    [56] 孙波,骆永明.超积累植物吸收金属机理的研究进展[J].土壤,1999,31(3):113-119.
    [57] Ma L Q, Komar K M, Tu C, et al. A fern that hyperaccumulates arsenic [J]. Nature, 2001, 409(6820): 579.
    [58] 陈同斌,韦朝阳,黄泽春.砷超富集植物蜈蚣草及其对砷的富集特征[J].科学通报,2002,47(3):207-210.
    [59] 韦朝阳,陈同斌,黄泽春,等.大叶井口边草—一种新发现的富集砷的植物[J].生态学报,2002,22(5):777-778.
    [60] Srivastava M, Ma L Q, Santos J A G. Three new arsenic hyperaccumulating ferns [J]. Science of the Total Environment, 2006, 364:24-31.
    [61] Salido A L, Hasty K L, Lim J M, Butcher D J. Phytoremediation of Arsenic and lead in contaminated soil using Chinese brake ferns (Ptetis vittata) and Indian mustard (Brassica juncea) [J]. International Journal of Phytoremediation, 2003, 5(2): 89-103.
    [62] Liu W J, Zhu Y G, Smith F A, Smith S E. Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in solution culture [J]? Journal of Experimental Botany, 2004, 55: 1707-1713.
    [63] Liu W J, Zhu Y G, Smith F A, Smith S E. Do phosphorus nutrition and iron plaque alter arsenate (As) uptake by rice seedlings in hydroponic culture [J]? New Phytologist, 2004, 162: 481-488.
    [64] 周卫,汪洪,李春花,等.添加碳酸钙对土壤中镉形态转化与玉米叶片镉组分的影响[J].土壤学报,2001,38(2):219-225.
    [65] Chen X B, Wright J V, Conca J L, et al. Evaluation of heavy metal remediation using mineral apatite [J]. Water, Air, & Soil Pollution, 1997, 98(1-2): 57-78.
    [66] Gworek B. Inactivation of cadmium in contaminated soils using synthetic zeolites [J]. Environment Pollution, 1992, 75(3): 269-271.
    [67] Gupta V K, Saini V K, Jain N. Adsorption of As(Ⅲ) from aqueous solutions by iron oxide-coated sand [J]. Journal of Colloid and Interface Science, 2005, 288(1): 55-60.
    [68] Lenoble V, Laclautre C, Deluchat V, et al. Arsenic removal by adsorption on iron(Ⅲ) phosphate [J]. Journal of Hazardous Materials, 2005, 123(1-3): 262-268.
    [69] Sun H W, Wang L, Zhang R H, et al. Treatment of groundwater polluted by arsenic compounds by zero valent iron [J]. Journal of Hazardous Materials, 2006,129(1-3): 297-303.
    [70] Ann J S, Chon Chul-Min, Moon Hi-Soo, et al. Arsenic removal using steel mamufacturing byproducts as permeable reactive materials in mine tailing containment systems [J]. Water Research, 2003, 37 (10): 2478-2488.
    [71] Deschamps E, Ciminelli V S T, HOll W H. Removal of As(HI) and As( V) from water using a natural Fe and Mn enriched sample [J]. Water Research, 2005, 39 (20): 5212-5220.
    [72] Xu Y H, Nakajima T, Ohki A. Adsorption and removal of arsenic(V) from drinking water by aluminum-loaded Shirasu-zeolite [J]. Journal of Hazardous Materials, 2002,92(3): 275-287.
    [73] Bang S, Patel M, Lippincott L, et al. Removal of arsenic from groundwater by granular titanium dioxide adsorbent [J]. Chemosphere, 2005,60(3): 389-397.
    [74] Voigt D E, Brantley S L. Chemical fixation of arsenic in contaminated soils [J]. Applied Geochemistry, 1996, 11(5): 633-643.
    [75] Moore T J, Rightmire C M, Vempati R K. Ferrous iron treatment of soils contaminated with arsenic-containing wood-preserving solution [J]. Soil and Sediment Contamination, 2000, 9(4): 375-405.
    [76] Warren G P, Alloway B J, Lepp N W, et al. Field trial to assess the uptake of arsenic by vegetables from contaminated soils and soil remediation with iron oxides [J]. The Science of the Total Environment, 2003, 311(1-3): 19-33.
    [77] Hartley W, Edwards R, Lepp N W. Arsenic and heavy metal mobility in iron oxide-amended contaminated soils as evaluated by short- and long-term leaching tests [J]. Environmental Pollution, 2004,131(3): 495-504.
    [78] Miller B J, Akhter M A H, Cartledge F K, et al. Treatment of arsenic-contaminated soils. II: treatability study and remediation [J]. Journal of Environmental Engineering, 2000, 126(11): 1004-1012.
    [79] Reed B E, Carriere P C, Moore R. Flushing of a Pb( II) contaminated soil using HCl, EDTA, and CaCl_2 [J]. Journal of Environmental Engineering, 1996,122 (1): 48-50.
    [80] van Benschoten J E, Matsumoto M R, Young W H. Evaluation and analysis of soil washing for seven lead-contaminated soils [J]. Journal of Environmental Engineering, 1997, 123 (3): 217-224.
    [81] Peters R W. Chelant extraction of heavy metals from contaminated soils [J]. Journal of Hazardous Materials, 1999, 66 (2): 151-210.
    [82] Abumaizar R J, Smith E H. Heavy metal contaminants removal by soil washing [J]. Journal of Hazardous Materials, 1999, 70(1-2): 71-86.
    [83] Mulligan C N, Yong R N, and Gibbs B F. Removal of heavy metals from contaminated soil and sediments using the biosurfactant surfactin [J]. Journal of Soil Contamination, 1999, 8(2): 231-254.
    [84] 湖南省统计局.湖南统计年鉴-2005[M].北京:中国统计出版社,2005:219-234.
    [85] 湖南省统计局.湖南统计年鉴-2006[M].北京:中国统计出版社,2006:227-242.
    [86] 张艳芬.浅谈湖南有色金属矿山的现状与发展[J].湖南有色金属,2006,22(1):72-74.
    [87] 冷永进.科学制定湖南有色金属工业“十一五”发展战略[J].湖南有色金属,2006,22(2):64-67.
    [88] 湖南省统计局.湖南统计年鉴2004[M].北京:中国统计出版社,2004:237-240.
    [89] 刘扬林,蒋新元.株州市白马乡土壤和农作物重金属污染评价[J].土壤,2004,36(5):551-556.
    [90] 李小江,易艳红.清水塘地区土壤重金属污染现状及修复技术研究[J].环境科学与技术,2004,27(3):61-62.
    [91] 曾清如,周细红,铁柏清,杨仁斌.铅锌矿自然扩散晕内重金属的污染特征及其防治技术[J].农村生态环境,1997,13(1):12-15.
    [92] 曾清如,杨仁斌,铁柏青,等.郴县东西河流域重金属污染农田的防治技术和生态利用模式[J].农业环境保护,2002,21(5):428-431
    [93] 谢华,廖晓勇,陈同斌,等.污染农田中植物的砷含量及其健康风险评估—以湖南郴州邓家塘为例[J].地理研究,2005,24(1):151-159.
    [94] 胡纯齐.砷致癌研究的新进展[J].环境与健康杂志,1985,2(5):49-50
    [95] 王振刚,严于伦.石门雄黄矿地区居民砷暴露研究[J].卫生研究,1991,28(1):12-14
    [96] 王振刚,何海燕,严于伦,等.石门雄黄矿附近地区慢性As中毒流行病学特征[J].环境与健康杂志,1999,10(1):4-6
    [97] 陈同斌.砷毒田中有机肥对水稻生长和产量的影响[J].生态农业研究,1995,3(3):17-20.
    [98] 鲁如坤.土壤农业化学分析法[M].北京:中国农业出版社,1999:106-336.
    [99] 柴立元,何德文.环境影响评价学[M].长沙:中南大学出版社,2006:255-280.
    [100] 农业环境背景值协作组.我国十三省(市)主要农业土壤及粮食作物中有害元素的环境背景值研究[J].农业环境保护,1986,(3):1-11.
    [101] 陈怀满.土壤—植物系统中的重金属污染[M].北京:科学出版社,1996:32-68.
    [102] 李勋光,李小平,陈付清等.不同砷化合物对水稻生长与砷吸收的影响[A]∥土壤环境容量研究[C].北京:气象出版社,1986:75-83.
    [103] Hale J R, Foos A, Zubrow J S, et al. Better characterization of arsenic and chromium in soils: a field-scale example [J]. Journal of Soil Contamination, 1997, 6: 371-389.
    [104] Wasay S A, Parker W, Geel P J, et al. Arsenic pollution of a loam soil: retention form and decontamination [J]. Journal of Soil Contamination, 2000, 9: 51-64.
    [105] Wasay S A, Haron M D, Tokunaga S. Adsorption of fluoride, phosphate, and arsenate ions on lanthanum-impregnated silica gel [J]. Water Environment Research, 1996, 68: 295-300.
    [106] 王玉枝.实用大学化学手册[M].湖南:湖南科学技术出版社,2005:610-612.
    [107] 曾敏,廖柏寒,曾清如,等.重金属污染土壤清洗导致几种营养元素流失的研究[J].水土保持学报,2006,20(1):25-29.
    [108] 武斌,廖晓勇,陈同斌,等.石灰性土壤中砷形态分析方法的比较及其最佳方案[J].环境科学学报,2006,26(9):1467-1473.
    [109] Sparks D L, Jardine P M. Comparison of kinetic equations to describe K-Ca exchange in pure and in mixed systems [J]. Soil Science, 1984, 138: 115-122.
    [110] 王代长,蒋新,卞永荣等.模拟酸雨条件下Cd~(2+)在土壤及其矿物表面的解吸动力学特征[J].环境科学,2004,25(4):117-122.
    [111] 张鼎华,叶章发,罗水发.福建山地红壤磷酸离子(H_2PO_4~-)吸附与解吸的初步研究[J].山地学报,2001,19(1):19-24.
    [112] 刘凡,介晓磊,贺纪正,等.不同pH条件下针铁矿表面磷的配位形式及转化特点[J].土壤学报,1997,34(4):367-374.
    [113] 章钢娅.红壤中SO_4~(2-)解吸动力学研究[J].土壤学报,2001,38(2):235-240.
    [114] Livesey N T, Huang P M. Adsorption of arsenate by soils and its relation to selected chemical properties and anions [J]. Soil Science, 1981, 131: 88-94.
    [115] 雷梅,陈同斌,范稚连,等.磷对土壤中砷吸附的影响[J].应用生态学报,2003,14(11):1989-1992.
    [116] Jang M, Hwang J S, Choi S I, et al. Remediation of arsenic-contaminated soils and washing effluents [J]. Chemosphere, 2005, 60: 344-354.
    [117] 杭州大学化学系分析化学教研室.分析化学手册[M].北京:化学工业出版社,1997:99-171.
    [118] 中南矿冶学院分析化学教研室等.化学分析手册[M].北京:科学出版社,1984:613-630.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700