用户名: 密码: 验证码:
忻州盆地第四系地下水流动系统分析与水化学场演化模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下水系统的复杂性、隐蔽性给全面认识地下水系统特征带来困难。长期以来,人们试图用多种手段来认识地下水系统,也只能够获取地下水系统的部分信息。地下水是环境变化的受体和信息载体。基于地下水系统理论,提取、融合孤立零散的信息,可以降低不确定性,帮助我们正确认识地下水系统的本来面目。本文以忻州盆地第四系孔隙地下水系统为例,用多种技术手段和常规水文地质分析相结合,定量提取和融合零散信息,以综合的、系统的观点研究地下水流动系统。
     忻州盆地为山西省境内汾河地堑的最北部的新生代断陷盆地,地处干旱半干旱地区,地下水是其最重要的供水水源。上世纪80年代以来,随着社会经济的快速发展,人口的增长,水资源需求剧增,强烈的工农业活动和采矿改变着地下水天然赋存环境和区域水循环条件。盆地第四系地下水水位不断下降,地下水水质不断恶化,可利用地下水资源日趋减少,引发了一系列相关的水资源—环境问题,严重影响了城市工农业的发展。由于水资源管理方法不当,缺乏环境保护意识,水资源的开发利用与生产实践之间的矛盾日益突出。因此,有必要对人为活动和天然条件相互作用的地下水环境演化进行系统研究。以往忻州盆地的调查研究多停留在对盆地地下水系统定性的描述,主要使用传统水文地质分析方法进行地下水系统描述分析,对系统的级次划分还有着不同认识。从系统分析的角度重新认识忻州盆地地下水流动系统,有助于正确认识三维空间的水化学场和正确解释区域水化学特征所呈现的复杂现象,对于深入揭示相关地下水环境问题的根源、推动地下水流动理论的发展有着积极意义。此外,对明确地下水资源的时空演变和水循环演化规律,水资源开发利用规划方案论证、决策以及水资源的可持续利用具有现实意义。
     本次研究以系统理论为指导,将整个忻州盆地第四系孔隙地下水作为研究对象进行系统分析;利用多种技术手段提取忻州盆地第四系孔隙含水系统的介质组成及其结构、边界条件、补给径流排泄与动态均衡等信息,构建地下水流模型;系统分析了盆地地下水渗流场、水化学场(包括水化学组分和同位素组成)的定性或半定量的特征;揭示了水化学特征对盆地地下水流动系统的指示作用及地下水渗流场的空间演变规律;利用水位动态、同位素和水文地球化学模拟等多信息结合地下水渗流数值模拟模型进行识别和验证,定量或半定量地分析了地下水补给来源、补给方式、径流速度、径流途径、排泄方式及水化学演化的主要地球化学作用等。
     研究取得以下认识和结论:
     (1)忻州盆地第四系地下水系统外部相对独立,内部结构相对复杂。根据盆地构造底界势差可划分为繁峙断陷、代县凹陷、原平凹陷、奇村断阶、金银山隆起,忻定凹陷六个次级构造单元。区域上将其划分为三级地下水系统。
     (2)忻州盆地第四系孔隙水系统含水介质主要为冲洪积物,包括砂砾石、中粗砂、粉细砂、黄土、亚砂土、亚粘土、粘土。采用GMS5.0软件中的TINs模块和Solid模块构建了忻州盆地第四系地层和岩性三维可视化结构模型。
     (3)盆地内孔隙含水系统接受周边岩溶水系统、裂隙含水系统的侧向补给。忻州盆地地下水总体表现为由盆地周边山前倾斜平原区向中部冲积平原区汇集,并沿滹沱河现代河谷区由上游向下游径流。地下水的补给来源包括大气降水渗入补给、盆地周边地下水侧向径流补给、河渠渗漏补给、灌溉渗入补给和水库渗漏补给。地下水排泄途径主要有蒸发排泄、地表水、以泉的形式排泄和人工开采。
     (4)盆地系统地下水水位埋深由滹沱河谷两侧山前向盆地中心,变化范围由山前丘陵地区>20m到河谷地带<5m。浅层地下水位动态类型在山前倾斜平原上部属于入渗—径流型,在山前倾斜平原及冲湖积平原的大部分地区属于入渗—径流—开采型,在滹沱河现代河床两侧冲积平原区及冲洪积交接地带局部地段属于综合型;而中层地下水位动态类型在盆地周边山前倾斜平原上部属于入渗—径流—开采型,盆地的大部分地区属于径流型。
     (5)对忻州盆地进行了地下水均衡分析计算。2004年整个研究区内的水均衡分析计算结果表明,区内地下水总补给量为44104.35×10~4m~3/a,主要以降雨入渗和侧向流入为主,二者分别占总补给量的52.06%和26.52%,河道水库渗漏量、渠道渗漏和灌溉回渗分别占12.36%、3.92%和5.15%。总排泄量为44918.37×10~4m~3/a,其中地下水开采占总排泄量的56.01%,其次是地表基流量和潜水蒸发,分别占总排泄量的25.12%和18.85%。总体均衡误差为-1.78%,多年平均排泄量略大于多年平均补给量。
     (6)根据研究区的地下水流数值模拟模型,得到了典型地下水流动系统剖面渗流场特征。按照输出不同模拟层的地下水流速矢量,将流速范围>0.7m/d、0.5~0.7m/d、0.2~0.5m/d、0.05~0.2m/d和<0.05m/d分别划分为极强径流带、强径流带、一般径流带、弱径流带和极弱径流带。中层地下水平均水流速度较浅层地下水平均水流速度小。对浅层地下水而言,地下水在单元格(1×1km~2)内穿过其中心节点地下水流径上的平均滞留时间变化范围是1.87~1361.95a;而中层地下水中地下水平均滞留时间变化范围是3.44~1440.94a。总体上,中层地下水比浅层地下水的平均滞留时间要长1.57~78.99a。
     (7)结合渗流场和水化学场特征,对忻州盆地典型地下水流动系统进行了系统划分。典型剖面流动系统研究表明,孔隙地下水流动系统在空间上存在着明显的级次性,即在阳武河洪积扇一带存在局部流动系统和中间流动系统,在原平大营断陷、奇村宽谷地带存在着局部流动系统、中间流动系统和区域流动系统。
     (8)对忻州盆地不同水体的主要水化学指标进行统计,分析了盆地内不同地下水流动系统的水化学分布特征,即地下水型、矿化度、宏量水化学组分Ca~(2+)、Mg~(2+)、Na~(2+)、SO_4~(2-)、HCO_3~-、Cl~-、NO_3~-等离子含量的空间分布。探讨了地下水渗流场与水化学组分的关系。利用地下水中特殊离子成分(如Cl~-)和各类离子比值(如rCa/rNa、rMg/rNa、rCa/rCl、rNa/rCl、rSO_4/rCl、rHCO_3/rCl等)的标志作用,判断了盆地不同地下水流动系统中的水化学成分,总体上不仅受水动力条件、地下水位埋深以及地下水在径流途径上的沿程累积作用影响,存在有规律的变化,还受含水层介质矿物组成影响发生着不同程度的水文地球化学作用。在地下水流速缓慢的下游,地下水化学特征往往表现为局部流动系统或中间流动系统的排泄带特征,甚至可以代表区域流动系统的排泄带特征。
     (9)忻州盆地常温地下水、地下热水和地表水的稳定同位素δD和δ~(18)O基本落在太原大气降水线上,标志着忻州盆地地下水以大气降水补给为主。本次研究建立了研究区降水高程方程,并计算所有水样的补给高程域。在补给高度为1300m以上时,补给高度与水中Na~+和Cl~-离子成正比,与HCO_3~-离子成反比,表现为由地下热水的渗流途径要比冷水长的变化规律;而地下水中Ca~(2+)、SO_4~(2-)、TDS含量随补给高程变化呈不同斜率增长,表现为由地下冷水到热水的所代表的地下水流动系统不同。大营断陷地下水系统与奇村宽谷地下水系统中,热水的水化学特征可以指示区域地下水流动系统的存在。
     (10)忻州盆地地表水样~(87)Sr/~(86)Sr比值比较低,为0.7125~0.7165;浅层水变化较小,~(87)Sr/~(86)Sr也低,为0.7171~0.7219;中层地下水含量变化较大,为0.7097~0.7307。热水的~(87)Sr/~(86)Sr比值可达0.7495,指示其参与区域地下水循环并在深大断裂裂隙热储中滞留时间长。通过~(87)Sr/~(86)Sr比值与Cl~-离子含量的相关分析表明,盆地(中间)地下水中SO_4~(2-)与~(87)Sr/~(86)Sr值都表现出良好的地下水流程信息,即与Cl~-呈正相关。此外,对不同水体与不同岩性的~(87)Sr/~(86)Sr比值变化范围对比研究,表明地表水和地下水中的溶质主要来源于硅酸盐岩和铝硅酸盐岩的风化或溶解,而碳酸盐矿物溶解对地下水化学组成的影响很小。
     (11)基于大营剖面地下水流动系统和阳武河洪积扇剖面流动系统,结合代表性水样点的水化学分析资料和地下水流数值模拟结果,如用流程→流速→滞留时间等确定反应路径,确定研究区的“可能矿物相”,利用PHREEQC2.11进行一维恒定流的情况下正向水文地球化学模拟。模拟结果表明,阳武河洪积扇地下水的流动速度比大营倾斜平原流动系统要快;揭示了不同系统不同层位的水化学作用机理;浅层地下水受到蒸发浓缩作用影响,可以采用土壤盐类综合体的溶解来表征;水化学模拟结果和实测分析结果基本一致,说明控制水流路径上水化学演化的主要地球化学作用有,CO_2的逸出,石膏、方解石、白云石、钠长石、斜长石、岩盐、萤石等的溶解,高岭石的沉淀、阳离子交换等。
     本文的主要特色体现在,(1)对整个忻州盆地地下水进行系统分析,确定第四系地下水系统的边界,然后将第四系孔隙地下水作为一个相对完整的地下水流动系统进行系统划分;(2)基于地下水系统理论框架,提取和分析含水介质结构、水动力场、水化学场(同位素)和温度场等信息,构建盆地地下水流模型;(3)综合运用多种方法校核地下水流数值模拟模型,包括平面上等水位线对比、点上动态曲线拟合、~(14)C年龄推求地下水平均实际流速、Cl~-、~(87)Sr/~(86)Sr流程指示剂等;(4)通过典型剖面地下水系统渗流场和水化学物质反应—迁移模拟,探讨渗流场与化学场的耦合演变规律。
The complexity and concealment of groundwater system make it difficult to fully understandgroundwater system. For a lone time, people have tried to use various methods to understandgroundwater system. But the only part information of the groundwater system can be obtained.Groundwater is the receptor and information carder in the environmental change. Based on thetheory of groundwater system, distilling and assimilating the isolated and scattered informationcan reduce the uncertainty, and can help us to accurately understand groundwater system in theoriginal. This study takes the porous groundwater in the whole Quartemary of Xinzhou basin as anexample to realize and research groundwater system in the integrated and systemic view,combining multitechniques with the traditional hydrogeological analysis to quantitatively distilland assimilate the scattered data.
     Xinzhou basin is a representative Cenozoic rift basin, located in the northernmost of FenheRiver rift valley in Shanxi Province, and belongs to the arid-semiarid region. Groundwater is theforemost source for water supply. With the double-quick development of the social economy andthe population augment since 1980s, the industrial and agricultural activity and mining made thewater resources requirement increased dramatically. Those have been profoundly changing thenatural environment of groundwater and regional water cycle condition. Groundwater resourcequantity, which can be utilized by human, have reduced by the incessant decline of thegroundwater level and the increasing deterioration of the groundwater quality in the basinQuaternary System. The industrial and agricultural developments in this region have seriouslyinfluenced by those phenomena, and some water resources and environmental problems occur. Theexploitation and utilization of water resources have been increasingly in conflict with theproduction practice due to the unreasonable water resource management and lack of environmentalprotection consciousness. So, it is necessary to research groundwater environmental evolutionunder the interaction between human activities and natural conditions. Most of the formerinvestigation and research in Xinzhou basin have been in the state of qualitative delineation togroundwater system using traditionally analytical hydrogeology methods, and formed differentcomprehensions about the rank demarcation of groundwater system. This research has reknowngroundwater flow system of Xinzhou basin in the view of systematic analysis.The study resultscan help us to correctly understand the three-dimensional hydrochemical field and explain thecomplex phenomena of regional hydrochemical characteristics. These will have certain theoreticalsignificance for revealing the source of groundwater environmental problems, and promoting the development of groundwater flow system theory. It will bring about the practical significance forrealizing the spatial-temporal evolution of groundwater resource and water cycle, and also for thedemonstration and decision-making of water resources development and utilization, and thesustainable use of water resources.
     Under the guidance of system theory, the porous groundwater in the whole QuarternarySystem of Xinzhou basin can be regarded as the research object to carry through the systemanalysis in this study. Groundwater flow model has been set up by distilling and analyzingmulti-information about the constitutes and structure of the water-bearing medium, boundaryconditions, and groundwater recharge, discharge, hydrodynamics and water balance. Somequalitative or semi-quantitative characteristics have been obtained by systematically analyzing thegroundwater flow field and hydrochemical field, including hydrogeochemical components andisotopes constitutes. The study shows that some hydrogeochemical characteristics can indicategroundwater flow system in the basin and spatial evolutionary rule of the groundwater flow field.Based on multi-information and multi-technique, such as groundwater level trends analysis, thestable isotopes analysis, radioactive isotopic age determination and hydrogeochemistry modeling,we distinguished and validated the groundwater numerical modeling and obtained somequantitative or semi-quantitative results, such as the recharge source of groundwater, rechargepattern, flow velocity, transit way, discharge modes and main hydrogeochemical action.
     Some major opinions and conclusions obtained in this research are as follows:
     (1) Groundwater system in Xinzhou basin is the nearly closed one with the relativelycomplex inner structure. According to the tectonic bottom boundary and potential difference, thebasin can be divided into six secondary tectonic units, namely Fanshi depression, Daixiandepression, Yuanping depression, Qicun rupture terrace, Jinyin upheaval and Xinding depression.In the regional scale, the groundwater system of Xinzhou basin was marked off for three ranks.
     (2) The main water-bearing medium of Quaternary porous-water system in Xinzhou basinare alluvium and proluvium, including coarse sand, middle and coarse sand, middle and fine sand,mealy sand, sabulous sand, mild clay, and clay. The models of stratum structure and lithologystructure of the Quaternary stratum in Xinzhou basin were set up by using TINs code and SOLIDcode in GMS5.0 software to realize three-dimension visualization.
     (3) According to the analysis of bedrock lithology in the mountain area around the basin, thehydrodynamic permeability of the strata combination of both planes of mountain front fault, wedeemed that porous water-bearing system of the basin gain the lateral recharge from the ambientKarst-water system and fracture water-bearing system. As a whole, groundwater in Xinzhou basingathers from the slant plain in the mountain front zone to the central alluvial plain, and flows alongthe modern valley from the upper to lower reaches of Hutuo River. The recharge source ofgroundwater includes atmospheric precipitation, lateral subsurface runoff from ambient mountainarea around the basin, leakage of rivers and reservoirs, irrigation percolation and channels leakage.The discharge way mainly includes evapotranspiration, surface base flow, springs and groundwaterexploitation.
     (4) The variation range of the depth of groundwater level in the basin is from more than 20meters in the hilly ground to less than 5 meters in the river valley zone. The dynamic type of the shallow groundwater belongs to the infiltration-runoff type in the upper piedmont plain, theinfiltration-runoff-exploitation type in the lower piedmont plain and most alluvial-lake plain, andthe comprehensive type in the both sides of the modern riverbed of Hutuo river and the localsection of the alluvial transition zone. But for the middle groundwater, the dynamic type is theinfiltration-runoff-exploitation type in the lower piedmont plain, and the subsurface runoff type inthe most area of the basin.
     (5) The results of the calculation of the water balance during 2004 in Xinzhou basin showthat the total recharge of groundwater is 441.04x10~6m~3/a, mainly including the rainfall infiltrationand lateral influx, about 52.06% and 26.52% respectively of the total recharge. Among the otherrecharges, leakage of rivers and reserviors, channels leakage and seepage irrigation return accountfor 12.36%, 3.92% and 5.15%, respectively. And the total discharge of groundwater is449.18x10~6m~3/a, of which about 56.01% is artificial exploitation. Other discharge items, such assurface base flow and evaporation of phreatic water account for 25.12% and 18.85% respectively.As a whole, balance error is-1.78%, and the mean annual discharge is more than the meanrecharge in Xinzhou basin.
     (6) Through groundwater flow numerical modeling, we can attain some characteristics on thetypical groundwater flow cross-sections. According to the output of the actual velocity ofgroundwater, the velocity range of>0.7m/d, 0.5~0.7m/d, 0.2~0.5m/d, 0.05~0.2m/d and<0.05m/dare defined as supper-strong runoff zone, strong runoff zone, general runoff zone, weak runoffzone and supper-weak runoff zone respectively. The average flow velocity in the middlegroundwater is lower than that in the shallow groundwater. For the shallow groundwater, thevariation range of the average residence time, namely the time that groundwater flow needs alongthe pathline through central node of one cell (1×1km~2) , is 1.87~1361.95a. But for the middlegroundwater, the variation range of the average residence time is 3.44~1440.94a. Generally, theaverage residence time in the middle of groundwater is longer than that in the shallow groundwater,and its range is from 1.57 to 78.99a.
     (7) Integrating groundwater flow field with the characteristics and hydrochemical field todemarcate the groundwater flow system of Xinzhou basin, we found that there exists the obviousranks in the space of the loose porous groundwater flow system. The study result of typicalprofiles of groundwater flow system show that there are local flow system and middle flow systemin the proluvial fan of Yangwu river, and there are local flow system, middle flow system andregional flow system in Daying depression and Qicun rupture terrace.
     (8) The hydrochemical distribution characteristics, in the different groundwater flow systemsof the basin, can be obtained from the statistical analysis to the hydrochemical index of the watersamples from the different water body in Xinzhou basin. These characteristics include that thespatial distribution of the water type, total dissolved solid (TDS), and the concentration of majorhydrochemical components (such as Ca~(2+), Mg~(2+), Na~+, SO_4~(2-), HCO_3~- Cl~- and NO_3~-), alsoinclude the relationship between groundwater flow field and hydrochemical components. Inaddition, the indicative action of special ion (such as Cl~-) and the different ion concentration ratio,such as rCa/rNa, rMg/rNa, rCa/rCl, rNa/rCl, rSO_4/rCl and rHCO_3/rCl, can be used to judge thespatial hydrogeochemical evolution action of groundwater system, and indicative significance to groundwater flow field. In the lower reaches of the basin, the flow velocity of groundwater isususally slow, and the hydrochemical characteristics can represent the features of the dischargearea in the local flow system or the middle flow system, even the regional flow system.
     (9) TheδD andδ~(18)O values for the normal groundwater, thermal groundwater and surfacewater in Xinzhou basin plot in close proximity along Taiyuan meteoric water line. This indicatedthat the recharge of groundwater in this basin is mainly controlled by the atmospheric precipitation.In this study, we obtained the precipitation elevation equation of the study area and calculated therange of recharge elevation of water samples. The concentration of Na~+ is in direct proportion tothat of Cl~- and in inverse proportion to that of HCO_3~- when the recharge elevation is more than1300m. This also shows that the transit distance of the thermal water is longer than the coldgroundwater. In addition, the content of Ca~(2+), SO_4~(2-) and TDS increase by the different rate of slopeas the change of the recharge elevation. And it reveals that the cold groundwater and the thermalwater are from the different groundwater flow systems. This point can be identified fromgroundwater system of Daying depression and Qicun rupture terrace, and shows that there are theregional groundwater flow systems indicated by the hydrogeochemical characteristics of thermalwater.
     (10) The ~(87)Sr/~(86)Sr ratio of surface water in Xinzhou basin is relatively low, and its range is0.7125~0.7165. There is little change in the ~(87)Sr/~(86)Sr ratio of the shallow groundwater with therange from 0.7171 to 0.7219. The ~(87)Sr/~(86)Sr ratio of the middle groundwater is changed from0.7097 to 0.7307. The ~(87)Sr/~(86)Sr ratio of the thermal water is up to 0.7495 and shows that thethermal waters participate in the regional groundwater circulation with the long residence time inthe thermal storage of deep fault fissures. The correlation analysis to the ~(87)Sr/~(86)Sr ratio, the contentof Cl~- and SO_4~(2-) ion shows that SO_4~2- and the ~(87)Sr/~(86)Sr ratiodisplay good information ofgroundwater flow, namely with the positive correlation to Cl~-. By contrasting the range of the~(87)Sr/~(86)Sr ratio in the different water samples with that in the different lithology, the researchindicates that the solute in the surface water and groundwater mainly from the weathering ordissolving of silicate rocks, and aluminum silicate rock, while there is little impact on thehydrochemical composition of groundwater caused by the dissolved carbonate minerals.
     (11) Based on the typical groundwater flow system profiles of the Daying and the proluvialfan of Yangwu river, combining the hydrochemical analysis of the representative water sampleswith the result of groundwater flow modeling, the reaction path can be confirmed by flow path,flow velocity and residence time. The "possible mineral phase" can also be confirmed according tothe composition of lithology minerals in the aquifers and its geochemical features. Forwardhydrogeochemistry modeling can be implemented by using PHREEQC2.11 software underone-dimensional invariable velocity. The modeling results show that the flow velocity in theproluvial fan of Yangwu river is faster than that in Daying piedmont plain, and reveal themechanism of hydrochemistry in the different levels in the different groundwater flow system.Shallow groundwater is influenced by the evaporation and concentrated role, and the dissolution ofsoil salts can be used to characterize this impact. The calculated quantitative results fromhydrogeochemistry modeling accord with the measured results. This shows that the majorgeochemical actions, which control hydrogeochemical evolution along groundwater flow path, include CO_2 gaseous escape, the dissolution of gypsum, calcite, dolomite, albite, plagioclase, haliteand fluorite, precipitation of kaolinite and illite, and cation exchange reaction.
     The major advances achieved in this thesis are as follows: (1) The porous groundwater in thewhole Quarternary System can be regarded as an integrated groundwater flow system and bedemarcated by analyzing groundwater in the whole Xinzhou basin. (2) Based on the frame ofgroundwater system theory, groundwater flow model has been built up by distilling and analyzingscattered and single multi-information about bearing water medium, flow field, hydrogeochemistry(include isotope) and temperature field. (3) A suit of integrated methods for calibratinggroundwater flow numerical modeling have been applied in this thesis, such as contrasting waterlevel contour maps in different depth, fitting water head trends-curves on typical observation well,estimating the average practical velocity of groundwater flow by ~(14)C age, judging groundwatertransit distance by Cl~- and ~(87)Sr/~(86)Sr. (4) Coupled evolutionary characteristics have been discussedby groundwater flow modeling and hydrogeochemical reaction-transport modeling on the typicalgroundwater system profiles.
引文
[1] Aeschbach-Hertig W, Schlosser P, Stute M, Simpson HJ, Ludin A, Clark JF, 1998, A ~3H/~3He study of ground water flow in a fractured bedrock aquifer. Ground Water 36: 661-670.
    [2] Anderson M.P., Woessner W.W., 1992, Applied groundwater modeling: Simulation of flow and advective transport[M]. New York: Academic Press Inc., 145-152.
    [3] Aravena R, Wassenaar LI, Plummer LN, 1995, Estimating ~(14)C groundwater ages in a methanogenic aquifer. Water Resour Res 31: 2307-2317.
    [4] B.J.Merkel, B. Planer-Friedrich(德)著,朱义年,王焰新译.2005,地下水地球化学模拟的原理及应用.106-119.
    [5] B.N.久宁著,杨立中主译.深部地下径流的研究方法,地质出版社,P13-17.
    [6] Back W, Herman J S, 1997, American hydrogeology at the millennium: an annotated chronology of 100 most influential papers. Hydrogeol J 5: 37-50.
    [7] Banner J L, Hanson G N, Meyers W J. Water-rock interaction history of regionally extensive dolomites of the Burlington-Keokuk formation. Spec Publ Soc Eeon Paleont Miner, 1988, 43: 97-113.
    [8] Bethke CM, Johnson TM, 2002, Ground water age. Ground Water 40: 337-339.
    [9] Blum J D, Erel Y. A silicate weathering machanism linking increasing in marine ~(87)Sr/~(86)Sr with global glaciation. Nature, 1995, 373: 415-418.
    [10] Bohlke J K, Denver J M, 1995, Combined use of groundwater dating, chemical, and isotopic analyses to resolve the history and fate of nitrate contamination in two agricultural watersheds, Atlantic coastal plain, Maryland. Water Resour Res 31(9): 2319-2339.
    [11] Burns DA, Plummer LN, McDonnell JJ, Busenberg E, Casile G, Kendall C, Hooper RP, Freer JE, Peters NE, Beven K, Schlosser P, 2003, Geochemical evolution of riparian ground water in a forested Piedmont catchment. Ground Water 41: 913-925.
    [12] Burton WC, Plummer LN, Busenberg E, Lindsey BD, Gburek WR, 2002, Influence of fracture anisotropy on ground-water ages and chemistry, Valley and Ridge Province, Pennsylvania. Ground Water 40: 242-257.
    [13] Busenberg E, Plummer LN, 2000, Dating young ground water with sulfur hexafluoride: natural and anthropogenic sources of sulfur hexafluoride. Water Resour Res 36: 3011-3030.
    [14] Carrillo-Rivera J.J, Groundwater Evaluation in Thick Aquifer Units: Theory and Practice in Mexico, 33rd IAH Congress. Groundwater Flow Understanding from Local to Regional Scales[R]. Programa Final, Mexico, Oct. 2004.
    [15] DePaolo D J, Ingram B L., 1985, High-resolution stratigraphy with strontium istopes. Science, 227: 938-941.
    [16] Douglas, M., 1997, Mixing and temporal variations of groundwater inflow at the ConMine, Yellowknife, Canada; An analogue for a radioactive waste repository. Unpublished M.Sc. thesis, Department of Geology, University of Ottawa, Canada, 101.
    [17] E.A.巴斯科夫著,沈照理译.1981,成矿规律研究中的古水文地质分析[M],北京:科学出版社.27-38.
    [18] Edmunds W M, Smedley P L, 2000, Residence time indicators in groundwater: the East Midlands Triassic sandstone aquifer. Appl Geochem 15: 737-752.
    [19] Edmunds WM, Smedley PL, 2000, Residence time indicators in groundwater: the East Midlands Triassic sandstone aquifer. Appl Geochem 15: 737-752.
    [20] Engelen G B, Jones G P. Developments in the analysis of groundwater flow system. Amsterdam: IAHS Press, 1986.
    [21] Engesgaard P, Molson J, 1998, Direct simulation of ground water age in the Rabis Creek aquifer, Denmark. Ground Water 36: 77-582.
    [22] Fontes J-Ch, Gamier J-M, 1979, Determination of the initial 14C activity of the total dissolved carbon: a review of the existing models and a new approach. Water Resour Res 15: 399-413.
    [23] Goode DJ, 1996, Direct simulation of groundwater age. Water Resour Res 32(2): 289-296.
    [24] Goran Aberg, Tonie Wickman, Harry Mutvei.用贻贝壳内锶同位素比值作为酸化指标.人类环境杂志,1995,24:265-267.
    [25] Gourcy L., Aggarwal P., Isotope Hydrology and the Role of the IAEA, 33rd IAH Congress. Groundwater Flow Understanding from Local to Regional Scales[R]. Programa Final, Mexico, Oct. 2004.
    [26] Harballgh A.W., Banta E.R., Hill M.C., McDonald M. G MODFLOW-2000, the U.S. Geological Survey modular ground-water model-User guide to modularizatlon concepts and the ground-water flow process. U.S.Geological Survey Open-File Report, 2000
    [27] Harbaugh, A.W., McDonald M.G Programmer's Documentation for MODFLOW-96 an update to the U.S. Geological Survey modular finite-difference ground-water flow model U.S. Geological Survey Open-File Report, 1996
    [28] Hess J, Bender M L, Schilling J G, 1986, Evolutiono fratioof strontium-87 to strontium-86 in sea water from Cretaceous top recent. Science. 231: 979-984.
    [29] I.J.维诺格拉德,G.M.法利卡斯,1983,利用~(14)C测定三角洲相含水层中地下水的年龄问题(以新泽西滨海平原为例).
    [30] Land M, lngri J, Andersson P S, et al. Ba/Sr, Ca/Sr and ~(87)Sr/~(86)Sr ratios in soil water and groundwater: Implications for relative contributions to stream water discharge[J]. Applied Geochemistry, 2000, 15: 311-325.
    [31] LIANG Xing, JIN Menggui, WANG Xusheng et al. Modeling of paleo—groundwater flow in the eastern pearl river mouth basin.Proc. Int'l Symp. Hydrogeology and the Environment. Beijing: China Environmental Science Press, 2000: 372—377.
    [32] Maloszewski P, Zuber A, 1991, Influence of matrix diffusion and exchange reactions on radiocarbon ages in fissured carbonate aquifers. Water Resour Res 27: 1937-1945.
    [33] Mattle N, Kinzelbaeh W, Beyerle U, Huggenberger P, Loosli HH, 2001, Exploring an aquifer system by integrating hydraulic, hydrogeologic and environmental tracer data in a three-dimensional hydrodynamic transport model. J Hydrol 242: 183-196.
    [34] McDonald M.G., Harbaugh A.W. A modular three-dimensional finite difference ground-water flow model U.S. Geological Survey Techniques of Water Resources Investigations, Book 6. 1988
    [35] McNutt R H, Frape S K, Fritz P., 1984, Strontium isotopic composition of some brines from the
    [55] Sudicky EA, Frind EO, 1981, Carbon-14 dating of groundwater in confined aquifers: implications of aquitard diffusion. Water Resour Res 17: 1060-1064.
    [56] Szabo Z, Rice DE, Plummet LN, Busenberg E, Drenkard S, Schlosser P, 1996, Age-dating of shallow groundwater with chiorofluorocarbons, tritium/helium 3, and flow path analysis, southern New Jersey coastal plain. Water Resour Res 32: 1023-1038.
    [57] T.N.Natasimhan, 2005, Hydrogeology in North America: past and future, Hydrogeology Journal, 13: 7-24.
    [58] Thorstenson DC, Fisher DW, Croft MG, 1979, The geochemistry of the Fox Hills-Basal Hell Creek aquifer in southwestern North Dakota and northwestern South Dakota. Water Resour Res 15: 1479-1498.
    [59] Toth J, The modern scope of hydrogeology and its history of evolution: a one man's viewpoint, 33rd IAH Congress. Groundwater Flow Understanding from Local to Regional Scales[R]. Programa Final, Mexico, Oct. 2004.
    [60] Toth J. 1986. Models of subsurface hydrology of sedimentary basins. In Brain Hitchon et al.(Ed.), Third Canadian/American on Hydrogeology, NWWA, Dublin, Ohio, USA.
    [61] Varni M, Carrera J, 1998, Simulation of groundwater age distributions. Water Resour Res 34(12); 3271-3281 Vitvar T, Balderer W, 1997, Estimation of mean water residence time and runoff generation by ~(18)O measurements in a Pre-Alpine catchment (Rietholzbach, Eastern Switzerland). Appl Geochem 12: 787-796.
    [62] Victor M. Heilweil, Recharge to Desert Bedrock: the NAVAJO Aquifer of the Southwestern United States, 2004, 33rd IAH Congress. Groundwater Flow Understanding from Local to Regional Scales[R]. Programa Final, Mexico, Oct. 2004.
    [63] Vogel J C, Van Urk H, 1975, Isotopic composition of groundwater in semi-add regions of southern Africa. J Hydrol 25: 23-36.
    [64] Wallin B, Peterman Z, 1999, Calcite fracture fillings as indicators of paleohydrology at Laxemar at the _sp Hard Rock Laboratory, southern Sweden. Appl Geochem 14: 953-962.
    [65] Wassenaar LI, Aravena R, Hendry MJ, Fritz P, 1991, Controls on the transport and carbon isotopic composition of dissolved organic carbon in a shallow groundwater system, central Ontario. Water Resour Res 27: 1975-1986.
    [66] Weissmann GS, Zhang Y, LaBolle EM, Fogg GE, 2002, Dispersion of groundwater age in an alluvial aquifer system. Water Resour Res 38(10): 1198, doi: 10.1029/2001WR000907.
    [67] Zoellmann K, Kinzelbach W, Fulda C, 2001a, Environmental tracer transport (3H and SF6) in the saturated and unsaturated zones and its use in nitrate pollution management. J Hydrol 240: 187-205.
    [68] 卞锦字,薛禹群,程诚.上海市浦西地区地下水三维数值模拟[J].中国岩溶,2002,21(3):182-187.
    [69] 柴崎达雄(王秉忱等译),1982,地下水盆地管理,地质出版社.
    [70] 晁念英,王佩仪,刘存福,万军伟,河北平原地下水氘过量参数特征[J],中国岩溶,2004.23(4):335-338.
    [71] 陈崇希.三维地下水流中常规观测孔水位的形成机理及确定方法[J].地球科学,2003,28(5):483-492
    [72] 陈国金,张陵,赵德君.黄腊石滑坡水均衡与地下水系统分析[J].中国地质灾害与防治学报,1997,8(3):27-34,56.
    [73] 陈家军,王红旗,张征.地质统计学方法在地下水水位估值中应用[J].水文地质工程地质,1998(6):7-10.
    [74] 陈建峰,王政友,大同地区地下水弥散试验研究,地下水[J],2000,Vol22(4):168-169.
    [75] 陈劲松,万力.MODFLOW中不同方程组求解方法差异分析[J].工程勘察,2002(2):25-32.
    [76] 陈梦熊,中国水文地质工程地质事业的发展与成就——从事地质工作60年的回顾与思考,地震出版社,2003,407-412.
    [77] 陈梦熊.地下水资源与地下水系统研究[J].长春地质学院学报,1984,17(水文地质专辑):51-55.
    [78] 陈梦熊.中国水文地质环境地质问题研究[M],北京:地震出版社,1998年
    [79] 陈锁忠,黄家柱,张金善.基于GIS的孔隙水文地质层三维空间离散方法[J].水科学进展,2004,15(5):634-639.
    [80] 陈锁忠,马千程.苏锡常地区GIS与地下水开采及地面沉降模型系统集成分析[J].水文地质工程地质,1999(5):26-29.
    [81] 陈喜,陈洵洪.美国SandHills地区地下水数值模拟及水量平衡分析[J].水科学进展,2004,15(2):94-99.
    [82] 崔亚莉,邵景力,李慈君等.玛纳斯河流域山前平原地下水系统分析及其模拟.水文地质工程地质,2003,5:18-22.
    [83] 高佩玲,雷廷武,张石峰.新疆阿图什哈拉峻地区地下水系统模型研究[J].水利学报,2004(4):61-66.
    [84] 郭海清,王焰新,郭华明.地下水系统中胶体的形成机理及其对污染物迁移的影响.地质科技情报,2001,20(3):69-74.
    [85] 郭清海,山西太原盆地孔隙地下水系统演化与相关环境问题成因分析[D].中国地质大学(武汉)博士论文,2005,58-59.
    [86] 韩贵琳,刘丛强.贵州河流河水的锶同位素与喀斯特地区化学风化作用[J].第四纪研究,2000,20(6).570.
    [87] 韩再生.从局部到区域尺度认识地下水流——第33届国际水文地质大会综述,水文地质工程地质,2004(2):118-119.
    [88] 郝治福,康绍忠.地下水系统数值模拟的研究现状和发展趋势,水利水电科学进展,2006.26(1):77-81
    [89] 何庆成.RS和GIS技术集成及其应用[J].水文地质工程地质,2000(2):44-46.
    [90] 贺诗秀.微量元素锶及其同位素的地球化学研究与应用前景,地球科学进展,1997(12):15-19.
    [91] 胡俊锋,王金生,滕彦国,地下水与河水相互作用的研究进展,水文地质工程地质,2004(1):108-113.
    [92] 黄卫星.原平大营地热田成因探讨.山西省环境地质总站,1991:16-18.
    [93] 贾玉鹤,王世杰.生物壳体St/Ca、Mg/Ca、~(87)Sr/~(86)Sr比值在恢复古气候、古环境中的应用——以小渡口剖面为例[J].地质地球化学,2002,30(2):54-58.
    [94] 靳孟贵,张人权,高云福,孙连发.农业.水资源.环境相互协调的可持续发展:以河北黑龙港地区为例.武汉:中国地质大学出版社,1999.
    [95] 靳孟贵,张人权,高云福等.土壤水流动系统及其应用初探.中国农村水利水电,1998,5:7-10,47.
    [96] 蓝先洪.锶同位素的环境指示意义,海洋地质动态,2001(10):4-6.
    [97] 李文鹏,郝爱兵.中国西北内陆干旱盆地地下水形成演化模式及其意义.水文地质工程地质,1999,4:28-32.
    [98] 梁杏,靳孟贵,王旭升等.川西南某电站库水渗漏评价的灰域模拟[J].地质科技情报,1998年增刊(2):15-19
    [99] 梁杏,孙连发,赵风楼等.运用地下水流动系统理论研究水质问题.地球科学,1991,16(1):43-50.
    [100] 梁杏,王旭升,张人权等.珠江口盆地东部第三纪沉积环境与地下水流模式[J].地球科学,2000,25(5):542-546
    [101] 廖华胜,李连侠,LI Shu-guang等.地下水非平稳随机模型及空间变异性与非均匀性相互关系研究的展望[J].水利学报,2004(10):13-21.
    [102] 刘丛强,张劲,李春来等.黄土中CaCO_3含量及锶同位素组成变化与古气候波动纪录[J].地质学 报,2001,75(2):259-265.
    [103] 卢文喜.地下水运动数值模拟过程中边界条件问题探讨[J].水利学,2003(3):33-36.
    [104] 罗毅.分布式生态水文学模型研究取得重大进展:SWATMOD.2K4[J].中国西部环境和生态科学简报,2004,1(6):2-8.
    [105] 马腾,王焰新,邓安利等.岩溶水系统演化与全球变化研究—以山西为例.武汉:中国地质大学出版社,2005.
    [106] 邵飞.柴东地区航放异常成因及其找矿意义.铀矿地质,2002,18(5):302-307.
    [107] 苏春莉.大同盆地区域水文地球化学与高砷地下水成因研究[D].中国地质大学(武汉)博士论文,2006,58-59.
    [108] 孙敬,山西省忻州盆地地下热水系统与水文地球化学模拟研究[D],中国地质大学(武汉)硕士论文,2006:43-47.
    [109] 孙敬,山西省忻州盆地地下热水系统与水文地球化学模拟研究[D],中国地质大学(武汉)硕士论文,2006:50-83.
    [110] 孙连发,王焰新,马腾,等.应用泉钙华环境记录和地下水流动系统探讨娘子关泉群演变历史.地球科学,1997,22(6):648-651.
    [111] 孙敏,李太枫,邱景星等.西沙珊瑚锶温度计:便捷高精度海洋古海水温度代用指标[J].地球化学,2001,30(1):102-104.
    [112] 汪珊.沉积盆地渗流场形成演化的研究方法,地球学报,2001(22):471-476.
    [113] 汪蕴璞,林锦璇等.1995,论含油气盆地含水系统和水文地质的划分[J],地球科学,20(4):393-398.
    [114] 汪蕴璞等.1982,古水文地质研究内容和方法[J],水文地质工程地质,(1):45-49.
    [115] 王大纯,张人权,史毅虹等.水文地质学基础[M].北京:地质出版社,1995.81-85.
    [116] 王大纯,张人权等.1986,水文地质学基础[M].北京:地质出版社.
    [117] 王世杰,董丽敏,林文祝等.泥河湾有孔虫化石群的锶同位素研究[J].科学通报,1995,40(22):2072-2074.
    [118] 王玮.水文地质数值模拟中节点地面标高的获取方法[J],长安大学学报:地球科学版,2003,25(2):41-45.
    [119] 王焰新,郭华明,阎世龙等.浅层孔隙地下水系统环境演化及污染敏感性分析—以山西大同盆地为例.北京:科学出版社,2004
    [120] 王焰新,沈照理,Strontium hydrogeochemistry of thermal groundwaters from Baikal and Xinzhou2001, Science in China, Ser. E, Vol44, Supp. 138-143.
    [121] 王焰新,孙连发,罗朝辉等.指示娘子关泉群水动力环境的水化学-同位素信息分析[J].水文地质工程地质,1997,24(3):1-5.
    [122] 王增银,刘娟,王涛,汪玉松,胡进武.锶元素地球化学在水文地质研究中的应用进展[J],地球科技情报,2003(22):91-95.
    [123] 魏加华,王光谦,邵景力等.GIS在地下水研究中的应用进展[J].水文地质工程地质,2003(2):94-98.
    [124] 魏连伟,邵景力,崔亚莉等.模拟退火算法反演水文地质参数算例研究[J].吉林大学学报:地球科学版,2004,34(4):612-616.
    [125] 文冬光、沈照理、钟佐燊.水—岩相互作用的地球化学模拟理论及应用[M].北京:中国地质大学出版社,1998.
    [126] 吴剑锋,朱学愚.由MODFLOW浅谈地下水流数值模拟软件的发展趋势[J].工程勘察,2000(2):12-15
    [127] 武强,徐华.地下水模拟的可视化设计环境[J].计算机工程,2003,29(6):69-70.
    [128] 武选民,陈崇希,史生胜等.西北黑河额济纳盆地水资源管理研究—三维地下水流数值模拟.地球科学[J], 2003,28(5):527-537.
    [129] 武选民,史生胜,黎志恒等.西北黑河下游额济纳盆地地下水系统研究(上)[J],水文地质工程地质,2002,1:16-20.
    [130] 武选民,史生胜,黎志恒等.西北黑河下游额济纳盆地地下水系统研究(下)[J],水文地质工程地质,2002,2:30-33.
    [131] 箫丰,王志明,李森.同位素技术在某核废处置场区水文地质条件研究中的应用,铀矿地质,1995(11):244-253.
    [132] 徐恒力,王增银,梁杏等.水资源开发与保护,地质出版社,2001,24-27.
    [133] 薛禹群,叶淑君,谢春红.多尺度有限元法在地下水模拟中的应用[J].水利学报,2004(7):7-13.
    [134] 杨旭,杨树才,黄家柱.基于GIS的地下水数值模拟模型拟合方法[J].计算机工程,2004,30(11):50-51.
    [135] 张明江,门国发,陈崇希等.渭干河流域三维地下水流数值模拟[J].新疆地质,2004,22(3):238-243.
    [136] 张人权,国外水文地质研究中应用同位素方法的现状[J],水文地质工程地质,1981.6:55-58.
    [137] 张人权,水文地质学发展的若干趋向,水文地质工程地质[J].1987.17-19.
    [138] 张人权.水文地质学的研究动向,当代地质科学技术进展—1989,中国地质大学出版社,1990.
    [139] 张祥伟,竹内邦良.大区域地下水模拟的理论和方法[J].水利学报,2004(6):7-13.
    [140] 张征,张人权,徐恒力,刘淑春等.岩溶含水介质渗透性空间结构分析的模型及其应用[J].中国岩溶,1995,14(2):113-121.
    [141] 张宗祜,施德鸿,任福弘等.论华北平原第四系地下水系统之演化.中国科学(D辑),1997,27(2):168-173.
    [142] 张宗祜,沈照理,薛禹群,任福弘等.华北平原地下水环境演化[M].地质出版社,2000,53-89
    [143] 张宗祜,沈照理,薛禹群,任福弘等.华北平原地下水环境演化[M].地质出版社,2000,127-128.
    [144] 赵继昌,耿冬青,彭建华等.长江河源区的河水主要元素与Sr同位素来源[J].水文地质工程地质,2003,30(2):89-93.
    [145] 周练,刘存富,凌文黎等.锶同位素在水文地质中的示踪意义——以冀中坳陷地下水为例[J].地球学报,1997,118(增刊):313-315.
    [146] 周平根,马和平,鲜文凯.大型滑坡地下水系统的概念模型_以长江三峡库区宝塔滑坡为例[J].工程地质学报,2002,2:186-190.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700