1. [地质云]滑坡
微细通道内单相和两相阻力损失特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微细通道在微机电系统、微电子、生物、通讯,尤其是航空航天上的广泛应用使得微尺度流动及换热特性研究成为当前重要的研究课题。近二十年来,大量的实验及分析结果说明微细通道内流动和换热与常规尺度通道的结果不同,具有明显的尺度效应,同时,不同研究者实验得到的结果大相径庭,甚至相互矛盾。本文以揭示微细通道内流动的机理为目的,以局部阻力特性为着重点,对微细通道内的单相和两相流动进行了实验研究及理论分析。
     本文首先针对微细通道流动的实验需要,发展了缝隙测压的压力测量技术,就缝隙测压的可行性以及缝隙宽度大小对压力测量的影响进行了实验研究。首先采用缝隙测压技术(缝隙宽度分别为33μm、67μm和132μm)测量不同的流体流过内径为336μm的不锈钢管时的摩擦阻力;然后将所得的实验数据与经典公式进行比较。实验结果显示,应用缝隙测压这种压力测量技术于微管内流体压力的测量是可行的。当取压缝隙宽度与管径之比ξ≤0.2时,测量误差很小,且随着流体Re数的增大变化很小,因此为了减小测量误差,取压缝隙宽度最好小于0.2倍管径。
     其次,采用缝隙测压的方法,分别以去离子水、甲苯、无水乙醇和氮气为实验工质,首次测量了内径在330μm~850μm的微管内单相以及氮气-水气液两相流体的突扩及突缩局部阻力损失。实验是在室温和大气压力下进行的。单相流体的雷诺数范围为589~8520,气液两相质量干度为2.6×10-3~1.63×10-1。实验结果表明,1)对于单相流体突扩流动来说,当较小管内流体处于层流阶段时,微管内流体突扩局阻系数稍大于常规管内的实验结果;当较小管内流体处于湍流阶段时,微管内液体突扩局阻系数和常规管的对应值基本一致,但微管内气体突扩局阻系数远远大于常规管的对应值,其原因可能是由于气体的局部马赫数大于0.3,气体的可压缩性不能忽略,因此常规管内局部阻力系数的数据处理不再适用于微管内可压缩流体。2)对于单相流体突缩流动来说,当较小管内流体处于层流阶段时,微管内流体突缩局阻系数远远大于常规管内的实验结果;当较小管内流体处于湍流阶段时,微管内流体的突缩局阻系数和常规管的对应值基本一致,K_c = 0.5×(1-σ)~(0.75)能较好地预测微管内的突缩局部阻力系数。3)对于气液两相流体突变(突扩及突缩)流动来说,均相流模型远远低估了微管内突扩局部阻力损失,而远远高估了微管内突缩局部阻力损失;滑移比S = (ρ_L/ρ_G)~(1/3)的滑移流模型能够较好地预测微管内突变局部阻力损失,说明在突变区域流体间出现了速度滑移。4)得出了单相突缩阻力预测关系式,并采用洛克哈特-马丁内利的实验数据处理方法以及该预测关系式,得出了两相突缩阻力的预测关系式及使用范围。
     第三,由于尺度的减小使得微细通道通常具有较大的相对粗糙度。二维粗糙元模型预测及数值计算结果显示,由于粗糙元的存在,3%的相对粗糙度将对管内突缩流动阻力产生较大的影响。粗糙元存在导致涡流区的增大及涡流损失的增加可能是导致微细粗糙管内突缩流动阻力增加的原因。
     最后,采用高速摄像仪以及压差波动相结合的方法,以氮气-去离子水为实验工质,对水力直径为0.99mm的矩形小通道内的两相流流型及摩擦压降变化进行了实验研究。实验结果表明,除了由于表面张力增强而引起的泡状流流型(此流型中圆形气泡占据整个通道)不同以外,小通道中的流型和常规通道中的流型大致相同。两相流摩擦压降预测关系式的选用与流型具有密切关系。从总体来说,L-M关系式比其它预测关系式的偏差都小,能更好地预测了两相流压降变化。
Due to the widespread applications of microchannels in MEMS, microelectronics, bioengineering and biotechnology, communication, specially in aerospace,the study of characteristics of microscale momentum and heat transfer becomes an important subject of recent investigation. Recently twenty years, a large number of research results show the characteristics of momentum and heat transfer in microchannels are different from those in conventional one and with scale effect, and the conclusions and the results have obvious confusions or contradictions each other. The main purpose of the present study is to clarify some mechanisms about fluid flowing through microchannels. The experimental study and theoretical analysis on single- and two-phase flow in microchannels is performed in this work with emphasis put on the minor pressure drop in microchannels.
     Firstly, a novel pressure measurement technique, the tiny gaps on the tubes, was developed. In order to verify the feasibility of pressure measurement though a gap, the experiments of water and nitrogen flow through the stainless microtube with inner diameters 336μm were performed. The relationship between friction factor and Reynolds number is obtained by measuring the pressure drop and the flow rate. The experimental results show the pressure measurement through gaps for microtubes is a feasible method. The error of pressure measurement is very small for the ratio of gap width and tube diameterξ< 0.2 and doesn’t change with the increasing of fluid velocity, so the width of gap should be smaller than 0.2D.
     Secondly, this thesis investigated single-phase and gas-liquid two-phase flow across the abrupt expansion and contraction in microtubes with the diameter from 330μm to 850μm, using de-ionized water, toluene, ethanol and nitrogen at room temperature and atmospheric as the working fluids. The experimental results on pressure drop with measurement though gaps were used to characterize the minor losses in microtubes. The ranges of single-phase flow Reynolds numbers and mass quality in two-phase flow were 589~8520 and 2.6×10~(-3)~1.63×10~(-1) in the smaller tube respectively. In single-phase flow experiments, the expansion loss coefficients were slightly larger than the experimental results from conventional tubes in the laminar flow; while in the turbulent flow, the expansion loss coefficients were roughly consistent with those from conventional tubes with exception of expansion loss coefficients for nitrogen showing a linear change with Reynolds number in the smaller tube, the reason may be that the local Mach number is more than 0.3, the effect of compressibility should be fully considered, so the data deduction method for flow area change in conventional tube doesn’t suitable for microtubes. The contraction loss coefficients were larger than those from the conventional tubes in the laminar flow; while in the turbulent flow, the contraction loss coefficients were slightly smaller than those from conventional tubes and predicted well by Kc = 0.5×(1-σ)~(0.75). In two-phase flow experiments, the two-phase flow pressure drops caused by expansion were significantly lower than the homogeneous flow model and those by contraction significantly higher than the homogeneous flow model; the slip flow model with a velocity slip ratio S = (ρ_L/ρ_G)~(1/3) showed a good prediction that reveals the occurrence of velocity slip. An empirical correlation for two-phase flow pressure drops caused by the sudden contraction was developed based on the proposed contraction loss coefficients correlation for single-phase flow and Lockhart-Martinelli correlation. Thirdly, microtubes are commonly characterized by higher relatively roughness.
     Computions are carried out to investigate the effect of two-dimensional roughness elements on the sudden contraction pressure drop in microtubes and a preliminary theoretical model is brought forward. It can be concluded that higher pressure loss for incompressible fluid flowing through sudden contraction in rough microtubes can be partly attributed to the roughness elements.
     Finally, by the means of combination of high-speed camera and pressure signal fluctuation, two-phase frictional pressure drop and flow regimes in small horizontal rectangular channels with 0.99mm inner diameter were experimentally investigated, using nitrogen and water. The flow regime map and the characteristics of frictional pressure drop in different flow regimes were obtained. Comparisons between the experimental data and some predictions indicate that the L-M model shows a better predictive ability than the other empirical correlations.
引文
1 尹执中, 胡栀林, 过增元. 微流动系统的发展概况. 流体机械. 2000, 28(4): 33~37.
    2 D. B.Tuckerman, R. F. Pease. Optimized convective cooling using micromachined structure. J.Electrochemical Society. 1982, 129(3): 98
    3 姜培学, 李勐, 马永. 微型换热器的实验研究. 压力容器. 2003, 20(2): 8~12
    4 D. B.Tuckerman, R. F. Pease. High performance Heat Sinking for VLSI. IEEE Electron DeviceLetters, EDL2, 1981, 126~129
    5 过增元. 当前国际传热界的热点-微电子器件的冷却. 中国科学基金. 1998, (2):20~25
    6 M. B. Bowers, I. Mudarwar. High Flux Boiling in Low Flow rate, Low Pressure DropMini-Channel and Micro-Channel Heat Sink. Int. J. Heat Mass Transfer, 1994, 37:321~332
    7 J. Pfahler, J. Harley and H. Bau. Liquid and Gas Transport in Small Channels. 1990, ASMEDSC-vol, 19:149~157
    8 J. Pfahler, J. Harley and H. Bau. Gas and Liquid Flow in Small Channels. 1991, DSC-vol,32:49~60
    9 X. F. Peng, G. P. Peterson and B. X. Wang. Friction flow characteristics of water flowing throughrectangular microchannels. Experimental Heat Transfer. 1994, 7:249~264
    10 X. F. Peng, G. P. Peterson, Convective heat transfer and flow friction for water flow inmicrochannel structures. Int. J. Heat Transfer Mass Transfer. 1996, 39:2599~2608
    11 G. M. Mala, D. Q. Li. Flow characteristics of water in microtubes. Int. J. Heat Fluid Flow. 1999,20(2):142~148
    12 辛明道, 师晋生. 微矩形槽道内的受迫对流换热性能实验. 重庆大学学报. 1994, 17(3):117-122
    13 X. N. Jiang, Z. Y. Zhou, J. Yao, et al. Micro-fluid flow in microchannel, Transducers’95,Stockholm, Sweden, 1995, 317~320
    14 P. Wu, W. A. Little, Measurement of friction factors for the flow of gases in very fine channelsused for microminiature, Joule-Thompson Refrigerators, Cryogenics, 1983, 23(5):273~277
    15 S. B. Choi, R. F. Barron and R. Q. Warrington. Fluid flow and heat transfer in Microtubes, ASMEDSC, 1991, 32:123~133
    16 J. C. Harley, Y. F. Huang, H. H. Baut, et al. Gas flow in micro-channels, J. Fluid Mechanics, 1995,284:257~274
    17 D. Yu, R. Warrington, R. Barron and T. Ameel. An Experimental and Theoretical Investigation ofFluid Flow and Heat Transfer In Microtubes, ASME/JSME Thermal Engineering Conference:1995, (1):523~530
    18 K.C. Pong, M. C. Ho, J.Q. Liu, et al., Non-linear pressure distribution in uniform microchannels,Application of Microfabrication to Fluid Mechanics. ASME, 1994, FED-Vol.197:51~56
    19 W. Y. Lee, Y. K. Lee, M. Wong & Y. Zohar, Microchannels in series with gradualcontraction/expansion, Proc. Intl Mech. Engng Congr. & Exposition, 2000, MEMS-(2):467~472
    20 S. Y. K.Lee, M. Wong and Y. Zohar, Pressure losses in microchannels with bends, Proc. Intl MicroElectro Mech. Systems Conf. 2001a, MEMS’01:491~494
    21 S. Y. K. Lee, M. Wong and Y. Zohar, Characterization of a mixing layer microdevice, Proc. 11thIntl Conf. Solid-state Sensors and Actuators. 2001c, Transduces’01:1206~1209
    22 X. LI, W. Y. Lee, M. WONG, & Y. Zohar, Gas flow in constriction microdevices. SensorsActuators. 2000, (83):277~283
    23 Y. K. Lee, M. Wong and Y. Zohar, Microchannels in series connected via a contraction/expansionsection, Fluid Mech. 2002, (459):187~206
    24 I. E. Ide’chick, 实用流体阻力手册. 华绍曾, 杨学宁. 国防工业出版社. 1985.
    25 J. M. Yin, C. W. Bullard and P. S. Hrnjak. Single phase pressure drop measurements inmicrochannel heat exchanger. Heat Transfer Engineering. 2002, (23): 3-12.
    26 F. F. Abdelall, G. Hahn and S. M. Ghiaasiaan. Pressure drop caused by abrupt flow area changes insmall channels, Experimental Thermal and Fluid Science. 2005, (29):425~434
    27 M. Suo, P. Griffith. Two-phase flow in capillary tubes. J. Basic Eng. 1964, (86): 576~582.
    28 D. Barnea, Y. Luninski, Y. Taitel. Flow in small diameter pipes. Can J. Chem. Engng. 1983, (61):617~620.
    29 C.A. Damianides, J.W. Westwater. Two-phase flow patterns in a compact heat exchanger and insmall tubes. In: Proc. Second UK National Conf. On Heat Transfer, Glasgow, 14-16 September.Mechanical Engineering Publications, London, 1988:1257~1268.
    30 A.M. Barajas, R.L. Panton. The effect of contact angle on two-phase flow in capillary tubes. Int. J.Multiphase Flow. 1993, (19):337~346.
    31 T. Fukano, A. Kariyasaki. Characteristics of gas–liquid two-phase flow in a capillary. Nuc. Eng.Design. 1993, (141):59~68.
    32 K. Mishima, T. Hibiki. Some characteristics of air–water two-phase flow in small diametervertical tubes. Int. J. Multiphase Flow. 1996, (22): 703~712.
    33 K.A. Triplett, S.M. Ghiaasiaan, S.I. Adbel-Khalik, D.L. Sadowski, Gas–liquid two-phase flow inmicrochannels. Part I: Two-phase flow patterns. Int. J. Multiphase Flow. 1999, (25): 377~394.
    34 J.W. Coleman, S. Garimella, Characteristics of two-phase patterns in small diameter round andrectangular tubes. Int. J. Heat Mass Transfer. 1999, (42): 2869~2881.
    35 C.Y. Yang, C.C. Shieh, Flow pattern of air–water and two-phase R-134a in small circular tubes.Int. J. Multiphase Flow. 2001, (27): 1163~1177.
    36 L. Zhao, K.S. Rezkallah, Gas–liquid flow patterns at microgravity conditions. Int. J. MultiphaseFlow. 1993, (19): 751~763.
    37 T. S. Zhao, Q. C. Bi, Co-current air–water two-phase flow patterns in vertical triangularmicrochannels. Int. J. Multiphase Flow. 2001, (27): 765~782.
    38 S. M. Ghiaasiaan, S. I. Abdel-Khalik. Two-phase flow in microchannels. Adv. Heat Transfer. 2001,(34): 145~254.
    39 K. S. Rezkallah. Weber number based flow-pattern maps for liquid-gas flows at microgravity. Int.J. Multiphase Flow. 1996, 22(6): 1265-1270.
    40 希特斯洛尼. 多相流动和传热手册. 鲁钟琪. 机械工业出版社. 1993.
    41 I. Y. Chen, K. S. Yang and C. C. Wang. An empirical correlation for two-phase frictionalperformance in small diameter tubes, Int. J. Heat Mass Transfer. 2002, (45):3667~3671.
    42 K. A. Triplett, S. M. Ghiaasiaan, S. I. Abdel-Khalik, A. Lemouel and B.N. McCord. Gas–liquidtwo-phase flow in microchannels, Part II: void fraction and pressure drop, Int. J. MultiphaseFlow.1999, (25):395~410.
    43 B. Lowry, M. Kawaji. Adiabatic vertical two-phase flow in narrow flow channels. AICHESymposium Series 84. 1988, 263: 133-139
    44 H. Ide, H. Matsumura. Frictional pressure drops of two-phase gas-liquid flow in rectangularchannel. Exp. Thermal Fluid Sci. 1990, 3: 362-372
    45 M. W. Wambsganss, J. A. Jendrzejczyk, D. M. France, N. T. Obot. Frictional pressure gradients intwo-phase flow in a small horizontal rectangular channel. Exp. Thermal Fluid Sci. 1992, 5: 40-56
    46 K. Mishima, T. Hibiki. Some characteristics of air-water two-phase flow in small diameter verticaltubes. Int. J. Multiphase Flow. 1996, 22:703-712
    47 K. Mishima, T. Hibiki, H. Nishihara. Some characteristics of gas-liquid flow in narrow rectangularducts. Int. J. Multiphase Flow. 1993, 19(1): 115-124
    48 H. Fujita, T. Ohara, M. Hirota, H. Furuta. Gas-liquid flows in flat channels with small channelclearance. Proceedings of the Second International Conference on Multiphase Flow. Kyoto, Japan.1995
    49 H. J. Lee, S. Y. Lee. Pressure drop correlations for two-phase flow within horizontal rectangularchannels with small heights. Int. J. Multiphase Flow. 2001, (27): 783~796.
    50 T. S. Zhao, Q. C. Bi. Pressure drop characteristics of gas-liquid two-phase flow in verticalminiature triangular channels. Int. J. Heat Mass Transfer. 2001, (44):2523~2534.
    51 D. Chisholm. Brief communications of two-phase flow in bends. Int. J. Multiphase Flow. 1980,6(2): 363~367
    52 赵剑云. 气液两相流体流过孔板和弯管的局部阻力损失的研究. 西安交通大学能源与动力工程学院. 1989
    53 S. W. Churchill. Friction equation spans all flow regimes. Chem Engng. 1977, 84: 91~92
    54 P. A. Lottes. Expansion loss in two-phase flow. Nuclear Science and Engineering. 1961, 9: 26~31
    55 A. Attou, M. Giot and J. M. Seynhaeven. Modeling of steady-state two-phase bubbly flow througha sudden enlargement, Int. J. Heat Mass Transfer. 1997, (40):3375~3385.
    56 O. J. Mender. Sudden expansion losses in single- and two-phase flow. Docter of Philosophy.University of Pittsburgh. 1963
    57 N. S. Al_Ferov, Y. N. Shul_Zhenko, Pressure drops in two-phase flows through local resistances,Fluid Mech.-Sov. Res. 1977, (6):20~33.
    58 A. Attou, L. Bolle, Evaluation of the two-phase pressure loss across singularities. ASME FED.1995, (210):121~127.
    59 J. Schmidt, L. Friedel, Two-phase pressure drop across sudden contractions in duct areas, Int. J.Multiphase Flow. 1997, (23):283~299.
    60 G. E. Geiger. Sudden contraction losses in single and two-phase flow. Docter of Philosophy.University of Pittsburgh. 1964
    61 H. R. van den Berg, C. A. ten Seldam and P. S. van der Gulik. Compressible laminar flow in acapillary. J. Fluid Mech., 1993, 246:1~20
    62 J. C. Harley, Y. F. Huang and H. H. Bau. Gas flow in micro-channels. J. Fluid Mechanics, 1995,(284):257~274.
    63 Z. Y. Guo, X. B. Wang, Compressibility effect on the gas flow and heat transfer in a micro tube.Int. J. Heat Mass Transfer. 1997, 40:3251~3254
    64 Z. Y. Guo, X. B. Wang, Further Study on Compressibility Effect on the Gas Flow and HeatTransfer in a Microtube, Microscale Thermophysical Engineering. 1998, 2:111~120
    65 Z. X. Li, Z. Z. Xia and D. X. Du, Analytical and experimental investigation on gas flow in amicrotube, Kyoto University-Tsinghua University Joint Coference on Energy and Environment,1999, Kyoto, Japan, 1~6.
    66 Z. X. Li, D. X. Du and Z. Y. Guo, Investigation on the characteristics of frictional resistance of gasflow in microtubes, Proceedings of Symposium on Energy and Environment in the 21th Century,2000, (2):658~664.
    67 G. P. Celata, M. Cumo, M. Gulielmi and G. Zummo, Experimental investigation of hydraulic andsingle phase heat transfer in 0.130mm capillary tube, Proceedings of International conference onHeat Transfer and Transport Phenomena in Microscale, Wallingford, U.K., 2000, 108~113.
    68 Z. X. Li, D. X. Du and Z. Y. Guo, Experimental study on flow characteristics of liquid in circularmicrotubes, Proceeding of international conference on Heat Transfer and Transport Phenomena inMicroscale, New York, USA, 2000, 162~167.
    69 G. M. Mala, D. Li, C. Werner, et al., Flow characteristics of water through a microchannel betweentwo parallel plates with electrokinetic effects, Int. J. Heat and Fluid Flow, 1997, 5(18):491~496.
    70 C. Yang, D. Li, Analysis of electrokinetic effects on the liquid flow in rectangular microchannels,Colloids Surfaces A: Physicochem. ENG. Aspects 1998, (143):339~353.
    71 G. P. Celata, M. Cumo, M. Guglielmi and G. Zummo, Experimental investigation of hydraulic andsingle phase heat transfer in 0.130 mm capillary tube, Microscale Thermophys. 2000, Eng.(6):85~97
    72 Z. X. Li, D. X. Du and Z. Y. Guo. Expeimental study on flow characteristics of liquid in circularmicrotubes, Microscale Thermophysical Engineering, 2003,7:253~265
    73 W. M. Kays, A. L. London, Compact Heat Exchangers, 3rd ed., McGraw-Hill, New York, 1984
    74 S. E. Turner, H.W. Sun and M. Faghri, Local pressure measurement of gaseous flow throughmicrochannels, Proceedings of the ASME Heat Transfer Division, 1999, HTD-Vol. 364-3, 71~79
    75 B. Xu, K. T. Ooi, N. T. Wong and W. K. Choi, Experimental investigation of flow friction forliquid flow in microchannels, Int. Comm. Heat Mass Transfer, 2000, (8):1165~1176
    76 W. M. Kays, Loss coefficient for abrupt changes in flow cross section with low Reynolds numberflow in single and multiple tube systems, Trans. ASME, 1950, (72):1067-1074
    77 埃贝尔. 压力测量-压力计和传感器. 陈道龙. 原子能出版社. 1989: 23.
    78 Z. G. Liu, Visual study and analysis on flow and heat transfer in microchannel, Doctoral degreethesis, Institute of Engineering Thermophysics,2005
    79 F. M. White, Fluid mechanics. 5th edition, 北京: 清华大学出版社,2004.
    80 T. R. Lahey, F. J. Moody, The thermal hydraulics of boiling water nuclear reactors, second ed.,American Nuclear Society, LaGrange Park, IL, 1993.
    81 S. M. Zivi. Estimation of steady state steam void-fraction by means of principle of minimumentropy production. ASME Trans. Series C.1964, (86):237-252
    82 L. F. Moody, Friction factors for pipe flow, Trans. ASME, 1994, 66: 671~684.
    83 鲁钟琪. 流体力学. 北京: 机械工业出版社, 1987: 167.
    84 H. Schlichting, Boundary layer theory, 7th edition, McGraw-Hill Book Company, 1979, 615-617.
    85 D. X. Du, Effect of compressibility and roughness on flow and heat transfer in microtubes,Doctoral degree thesis, Tsinghua University, 2000.
    86 W. Qu, G. M. Mala, D. Li, Pressure-driven water flows in trapezoidal silicon microchannels, Int. J.Heat and Mass Transfer, 43: 353-364.
    87 陶然, 权晓波, 徐建中. 微尺度流动研究中的几个问题. 工程热物理学报, 2001, 22(5):433~438.
    88 F. Durst, T. Loy, Investigation of laminar flow in a pipe with sudden contraction of cross sectionalarea, Computer & Fluids, 1985, 13(1): 15-36.
    89 W. M. Kays, M. E. Crawford, Convective heat and mass transfer. New York: McGraw-Hill, 1980
    90 T. S. Zhao, Q. C. Bi. Co-current air-water two-phase flow patterns in vertical triangularmicrochannels. Int. J. Multiphase Flow. 2001, 27: 765-782
    91 K. A. Triplett, S. M. Ghiaasiaan, S. I. Abdel-Khalik and D. L. Sadowski. Gas–liquid two-phaseflow in microchannels, Part I: two-phase flow patterns. Int. J. Multiphase Flow. 1999, 25(3):377–394.
    92 M. K. Akbar, D. A. Plummer and S. M. Ghiaasiaan. On gas-liquid two-phase flow regimes inmicrochannels. Int. J. Multiphase Flow. 2003, 29: 855-865
    93 D. Chisholm, A theoretical basis for the Lockhart-Matinelli correlation for two-phase flow, Int. J.Heat and Mass Transfer, 1967, 10: 1767-1778.