用户名: 密码: 验证码:
热量运输机理及其在混沌流强化传热中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济的发展,能源问题已经渗透到社会的各个方面。能源的转换和利用普遍存在于石油、化工、能源、冶金、材料等工程领域以及航空、电子、核能等高科技领域。降低换热设备的重量、减少换热设备的体积、节能降耗等成为了现代热科学研究领域的热点问题。热量传递与优化是能量应用的关键问题,广泛的存在于能量利用的各个过程。
     本文的主要目标是以对流换热的基本物理机理为切入点,以对流换热关键控制分析为基础,以停留时间分布和非线性理论为工具,以类管状流道为基本研究对象,在前人对混沌流研究的基础上,开发出基于新流态的全新的混沌流板翅式换热器翅片,并揭示混沌流强化传热的本质。
     本文的研究工作包括:
     从对流换热的能量方程出发,重新分析层流和湍流流动特性,得到这两种流动中传热的控制因素,建立新的流动传热控制模型,得到了能量方程新的表达方式,从而指出影响对流换热的关键因素,为开发新的强化传热方法提供理论和实验的指导。
     从热量运输的观点出发得知,在类管状流道中,径向流动改善速度热量的运输方向;切向流动增加热量的装载效率,这两种流动对于传热有利。在粘性耗散一定的条件下,以热量传递外界消耗机械能最小为优化目标,得到了三角形流道内由于扭曲和摆动而导致的最佳换热流场。
     提出一种新型板翅式换热器翅片,并对其流动截面上的动力学进行分析发现,这个简化的动力学模型完全符合Duffing方程。流道内流动在合适的条件下可能演化为混沌流。通过数值计算的方法证实了流道中流动情况与假定情况相似,表明通过假定简化后的流动动力学模型具有较高的可信度。
     将热量运输的观点指导下获得的最佳流场和混沌流场相比较发现,两者很相似。混沌流道内多纵向涡的分布符合三角形流道内层流对流换热的最佳流场的纵向涡的分布。通过分析发现,这种基于混沌流现象的纵向涡可显著强化管内层流换热而流阻增加很少。效能因子η_e最高可以达到接近200%,其换热增加显著强于流阻的增强。
     结合传质的特点,并将反应器内研究混合情况的停留时间分布(RTD)概念引入混沌流传热研究中,扩展了Pe准数的物理含义,指出在Pe准数是衡量管内对流换热的重要标志参数,揭示了混沌流强化传热的本质。对混沌流的传热效果做了定量的分析,并提出了预测强化传热能力的方法。
     以数值计算为主,结合实验验证研究发现,在混沌流翅片这样复杂的流道内,层流向湍流转变的临界雷诺数有所降低。通过改变流道结构参数、流动状态、介质特性等条件,建立不同的计算模型,计算结果发现流速是影响混沌流翅片流道内流动与传热的主要因素,并回归出流动阻力系数和传热无因次准数关系式。
     本文的研究内容,为开发新的强化传热技术以及类管状体内混沌流强化传热的研究提供了理论和实验的支持。
Along with social economy development, the energy question already seeped to society's each aspect. The energy transformation and the use exist generally in project domains as well as the petroleum, chemical industry, energy, metallurgy, material and the aviation, the electron, the nuclear power and so on the high tech domain. How to reduce the heat exchange equipment the weight, heat exchange equipment volume and the consumption of energy have become the modern hot scientific research domain hot topic. The thermal transmission and the optimization are the energy application key questions which widely exist in each process of energy using.
     Taking the heat transfer conductance basic physical mechanism as a breakthrough point, the heat transfer conductance key control analysis as the foundation, the residence time distribution (RTD) and non-linear theory as study tools, the kind of tubular flow channel as fundamental research object and the research in the predecessor about the chaotic advection as foundation, the chaotic advection fins based on the new fluid state have been developed. At the same time, the strengthened heat transfer the essence due to the chaotic advection has been promulgated.
     This article research work includes:
     Embarking from the energy equation of heat transfer in the convection, analyzing the flow quality of laminar and turbulence respectively, the controlling factors which in these two kind of flowing transfers heat are found out. By establishing the new flowing and heat transfer control model, the energy equation new expression is obtained. This expression points out the key factors influencing heat transfer in the convection and provides the instruction to develop the new strengthened heat transfer method, which have the important fundamental research and the project practical value.
     The heat conveyance viewpoint shows that in kind of tubular flow channel, the radial flow improvements speed and gradient of temperature relations and the tangential flowing increases thermal the efficiency of loading. These two kinds of flowing are advantageous regarding the heat transfer. Under the condition of constant viscous dissipation, the best heat transfer flow field which causes as a result of the distortion and swinging in the triangle flow channel is obtained.
     One kind of new fin based on the chaotic advection is proposed. Dynamic analysis on the section of channel shows that this simplified dynamics model conforms to the Duffing equation completely. The flow in the flow channel possibly evolutes to the chaotic advection under the appropriate condition. The flow situation and the hypothesis situation in the channel are similar confirmed through the numerical simulations. The numerical simulations indicate that the simplified dynamics model have the high confidence level.
     The best flow field hinted by the heat conveyance viewpoint and the chaotic flow field are very similar. In chaotic advection channel, the longitudinal vortexes distribution in the triangle flow channel laminar is congruent the distribution of the best flow field about convection heat transfer. The analysis discovery that this kind flows based on the chaotic longitudinally vortexes is possible obviously to strengthen heat transfer in the laminar of tube and the flow resistance increases very few at the same time. The efficiency indexesη_e is bigger than high may achieve close 200%. The heat transfer enhancement is remarkable stronger than the enhancement of flow resistance.
     The concept of resident time distribution (RTD) studied in the reactor in the mixer is introduced into the research of heat transfer in chaotic advection integrating mass transfer characteristic. The Pe number's physical meaning is expanded and is pointed out that the Pe number becomes the important symbol parameter to the longitudinal mix and the radial flow in the pipe. The heat conveyance viewpoint promulgates the essence strengthening heat transfer in the chaotic advection. These studies analyses the effect of heat transfer due to the chaotic advection and proposes a method to forecast its.
     The numerical simulations and experiment studies indicate that the critical Reynolds number transiting from laminar to turbulence will reduce in the complex flow channel of the chaotic advection fins such. Through changing flow channel conditions, such as design parameter, flow regime, medium characteristic, and the different computation models are established. The computed results discover that the velocities are major effect factors for the flowing and the heat transfer in the chaotic advection fins. The dimensionless accurate number relationships of flowing friction coefficient and heat transfer are obtained.
     This article research content support to develop in the new strengthened heat transfer technology and provide the theory and the experimental in the chaotic flow channels
引文
[1]崔海亭,彭培英.强化传热新技术及其应用[M].北京:化学工业出版社,2006.
    [2]Bergles A. E. Handbook of heat transfer applications [M]. New York: McGraw-Hill, 1985.
    [3]Bergles A. E. Heat transfer enhancement-the encouragement and accommodation of high heat fluxes [J]. ASME Journal of Heat Transfer, 1997, 119: 8-19.
    [4]Bergles A. E. ExHFT for fourth generation heat transfer technology [J]. Experimental thermal and fluid science, 2002, 26:335-344.
    [5]苏民.去年我国一次能源生产量20.6亿吨标准煤[N].经济日报,2006-09-12.
    [6]宣能啸.我国能效问题分析[J].当代石油石化,2004,12(9):6-9.
    [7]Bergles A. E. Advanced enhancement-third generation heat transfer technology, or the 'final frontier' [C]. Trans I Chem E, 2001, 79:437-444.
    [8]Bergles A. E., Meyer, J. P., Heat transfer performance during condensation inside horizontal smooth, micro-fin and herringbone tubes [J]. Journal of Heat Transfer, 2006, 128(7): 691-700.
    [9]Lee, S.J.; Ma, C.F.; Bergles, A.E., Optimization of mesh screen for enhancing jet impingement heat transfer [J]. Heat and Mass Transfer/Waerme-und Stoffuebertragung, 2006, 42(6): 501-510.
    [10]Manglik, Raj M. Bergles, A E.Enhanced heat and mass transfer in the new millennium: A review of the 2001 literature [J]. Journal of Enhanced Heat Transfer, 2004, 11(2): 87-118.
    [11]Moghaddam, S., Ohadi, M., Qi, J. Pool boiling of water and FC-72 on copper and graphite foams [J]. Advances in Electronic Packaging 2003, 2: 675-680.
    [12]Park, K., Moon, S., Optimal design of heat exchangers using the progressive quadratic response surface model [J]. International Journal of Heat and Mass Transfer, 2005, 48(11): 2126-2139.
    [13]Bejan A. Convection heat transfer, 3rd Edition [M]. New York: J Wiley, 2004.
    [14]Webb R. L. Principles of enhanced heat transfer [M]. New York: John Willey & Sons, Inc., 1995.
    [15]Li, Z., Grandhi, R.V., Shivpuri, R., Optimum design of the heat-transfer coefficient during gas quenching using the response surface method [J], International Journal of Machine Tools and Manufacture, 2002, 42(5): 549-558.
    [16]Maruoka, N., Sato, K., Yagi, J. I., Akiyama, T., Development of PCM for recovering high temperature waste heat and utilization for producing hydrogen by reforming reaction of methane [J]. ISIJ International, 2002, 42(2): 215-219.
    [17]罗文萍.提高管壳式换热器传热性能的研究[C].2004全国能源与热工学术年会论文 集(2),2004.
    [18]Liu Z.H., Qiu Y.H., Boiling Heat Transfer Enhancement of Water/Salt Mixtures on Roll-Worked Enhanced Tubes in Compact Staggered Tube Bundles [J]. Chemical Engineering & Technology, 2004, 11(27): 1187-1194.
    [19]Taslim M E, Li T, Spring S D. Measurements of heat transfer coefficients and friction factors in passages rib-roughened on all walls [J]. Journal of Turbomachinery, Transactions of the ASME, 1998, 120(3): 564-570.
    [20]Eckels S J, Doerr T M, Pate M G. In-tube heat transfer and pressure drop of r-134a and ester lubrication mixtures in a smooth tube and a micro-fin tube part Ⅱ-condensation [J].ASHRAE Transactions, 1994. 100(2):283-294.
    [21]Torii, K.; Kwak, K.M.; Nishino, K. Heat transfer enhancement accompanying pressure-loss reduction with winglet-type vortex generators for fin-tube heat exchangers [J]. International Journal of Heat and Mass Transfer, 2002, 45(18): 3795-3801.
    [22]Kuhn, S. Z.; Kang, H. K.; Peterson, P. F. Study of mixing and augmentation of natural convection heat transfer by a forced jet in a large enclosure [J]. Journal of Heat Transfer, 2002, 124(4): 660-666.
    [23]尾花英郎著(徐中权译).热交换器设计手册[M].北京,烃加工出版社,1987.
    [24]Bougriou, C.; Bessaih, R. Determination of apparent heat transfer coefficient by condensation in an industrial finned-tube heat exchanger: Prediction [J]. Applied Thermal Engineering, 2005, 25(11-12): 1863-1870.
    [25]田茂诚,林颐清,程林,张冠敏.汽—水换热器内流体诱导振动强化传热试验[J].化工学报,2001,52(3):257-261.
    [26]安恩科,姜富明,魏敦崧,陈之航.高压直流电场强化垂直管内沸腾传热试验研究[J].同济大学学报,2001,29(5):560-563.
    [27]刘艳革,许中义,孙翰书.新型螺旋槽管的轧制及其轧具的设计和制造[J].石油化工设备,1995,24(6):46-48.
    [28]张昌德.列管式换热器螺旋槽管的轧制[J].石油化工设备,1997,26(4):38-40.
    [29]Zhao, L.; Guo, L. J; Bai, B. F; Hou, Y. C.; Zhang, X. M. Forced convective boiling heat transfer and pressure drop characteristics of two-phase flow inside a small horizontal helically coiled tubing once-through steam generator [C]. Proceedings of the ASME Summer Heat Transfer Conference, v 2003, Proceedings of the 2003 ASME Summer Heat Transfer Conference, 2003, 2: 677-685.
    [30]杨冬,陈听宽,罗毓珊等.螺旋槽管中单相水与油湍流摩擦阻力与传热特性[J].化工学报,1999,50(6).
    [31]李广福,周士强.整体挤压双金属翅片管的研制[J].黑龙江石油化工,1996,3:43-46.
    [32]Webb, R. L., Enhancement of Single-Phase Heat transfer [M]. Handbook of Single-Phase Heat Transfer, New York, 1987, 17.1-17.62.
    [33]Kays W.M., London A.L. Compact heat exchanger. 3rd ed [M]. McGraw-Hill, New York, 1984.
    [34]Wang, L.B.; Zhang, Y.H.; Su, Y.X.; Gao, S.D. Local and average heat/mass transfer over flat tube bank fin mounted in-line vortex generators with small longitudinal spacing [J]. Journal of Enhanced Heat Transfer, 2002, 9(2): 77-87.
    [35]Smotrys, M.L.; Ge, H.; Jacobi, A.M.; Dutton, J.C. Flow and heat transfer behavior for a vortex-enhanced interrupted fin [J]. Journal of Heat Transfer, 2003, 125(5): 788-794.
    [36]Manohar S. Sohal, Kahoru Torii, James E. O'Brien, Gautam Biswas. Application of vortex generators and oval tubes to enhance performance of air-cooled condensers and other heat exchangers [R]. New Energy Industrial Technology Development Organization.
    [37]张迎恺.加氢装置用双金属轧制翅片管高压空冷器的研制.石油化工设备技术,2000,21(1):9-11.
    [38]戎宗义.带插入件的管状换热器的设计计算[J].冶金能源,1987,6:43-47.
    [39]峰.管内插入扭带强化传热的试验研究[D].中国原子能科学研究院,2002.
    [40]王俊升,苏福永,温治等.大型环形加热炉用高效节能空气换热器的研制[J].冶金能源,2005,3.
    [41]崔苗,吴建国,沈小军.插入件换热器传热系数的数值分析[J].材料与冶金学报,2005,4(4):266-268.
    [42]杨锡红,高效管状换热器的研究[J].江苏冶金,1996,3:10-11,23.
    [43]张华,周强泰.光管内插入扭带传热与流动阻力的试验研究[J].节能技术,2005,23(2):122~125
    [44]Guo Z Y, Li D Y, Wang B X. A novel concept and device of heat transfer augmentation [J]. Int. J. Heat Mass Transfer, 1998, 41: 2221-2225.
    [45]Guo Z Y, Wang S. Novel concept and approaches of heat transfer enhancement [C]. Cheng P, ed. Proceedings of symposium on engineering in the 21th century.
    [46]过增元.对流换热的物理机制及其控制:速度场和热流场的协同[J].科学通报,2000,45(19):2118-2122.
    [47]Zimparov, V., Extended performance evaluation criteria for enhanced heat transfer surfaces: Heat transfer through ducts with constant heat flux [J]. International Journal of Heat and Mass Transfer, 2001, 44(1): 169-180.
    [48]董其伍,刘敏珊.纵流壳程换热器[M].北京:化学工业出版社,2006.
    [49]王永庆.纵流壳程换热器不同支承结构壳程特性研究与分析[D].郑州:郑州大学,2005.
    [50]稽训达.铝制板翅式换热器的真空钎焊[J].石油化工设备,1989,18(2):31-34.
    [51]Muzychka, Y.S.; Yovanovich, M.M., Modeling the f and j characteristics for transverse flow through an offset strip fin at low Reynolds number [J]. Journal of Enhanced Heat Transfer, 2001, 8(4): 243-259.
    [52]Muzychka, Y.S.; Yovanovich, M.M. Modeling the f and j characteristics of the offset strip fin array [J]. Journal of Enhanced Heat Transfer, 2001, 8(4): 261-277.
    [53]Davis, Richard A., A project to design and build compact heat exchangers [J]. Chemical Engineering Education, 2005, 39(1): 38-41.
    [54]Haslego, C.; Polley, G. Compact heat exchangers-Part 1: Designing plate-and-frame heat exchangers [J]. Chemical Engineering Progress, 2002, 98(9): 32-37.
    [55]Shah R K, London A. L. Effects of nonuniform passages on compact heat exchanger performance [J]. J. Eng. Power, 1980, 102A: 653~659.
    [56]Lorenz E. Deterministic non-periodic flow [J]. Atmos. SCI., 1963, 20: 130.
    [57]Li T. Y., Yorke, J. A. period three implies chaos [J]. Am. Math., 1975, 82: 985-992.
    [58]Feigenbaum M J. Quantitative universality for a class of nonlinear transformations [J]. Journal of Statistical Physics, 1978, 19(1): 25-52.
    [59]Feigenbaum M. J. The universal metric properties of nonlinear transformations [J]. Journal of Statistical Physics. 1979, 21(6): 669-706.
    [60]Takens F. Detecting Strange Attractors in Turbulence [J]. Lecture Notes in Mathematics, 1981, 898.
    [61]Grebogi C, Ott E, Yorke, J A. Crises, sudden changes in chaotic attractors, and transient chaos [J]. Physica D: Nonlinear Phenomena, 1983, 7(5): 181-200.
    [62]Nicolis J S, Meyer K. G, Haubs G. Non-uniform chaotic dynamics with implications to information processing [J]. Z. Naturf.38a, 1983:1157-1169.
    [63]Wolf A, Swift J B, Swinney H L and Vastano J A. Determining Lyapunov exponents from a time series [J]. Physica 16D, 1985: 285-317.
    [64]杜杰,陆金桂,曹一家.短期负荷预测最大Lyapunov指数预报模式预测值的判定[J].电网技术,2006,30(20):20-24.
    [65]李松,贺国光.基于最大Lyapunov指数改进算法的交通流混沌判别[J].武汉理工大学学报:交通科学与工程版,2006,30(5):747-750.
    [66]Chen, Z. M.; Djidjeli, K.; Price, W.G. Computing Lyapunov exponents based on the solution expression of the variational system [J]. Applied Mathematics and Computation (New York), 2006, 174(2): 982-996.
    [67]Kohno, Kiyotaka; Inouye, Yujiro; Kawamoto, Mitsuru, A super-exponential deflation method incorporated with higher-order correlations for blind deconvolution of MIMO linear systems [J]. Signal Processing, 2006, 86(11): 3505-3512.
    [68]Stoop R, Parisi J. Calculation of Lyapunov exponents avoiding spurious an elements [J]. Playsica D, 1991, 50: 89-94.
    [69]Broomhead D, King G P. Extracting qualitative dynamics from experimental data [J]. Physica D, 1986, 20: 217-236.
    [70]郝柏林.从抛物线谈起——混沌动力学引论[M].上海:上海科技出版社,1993.
    [71]李后强,汪富泉.分形理论及其在分子科学中的应用[M].北京:科学出版社,1993.
    [72]Leon Glass, Michal C. From clock to chaos [M]. Mackey, Princeton university press, 1988.
    [73]Takens F. Determining strange attractors in turbulence [J]. Lecture notes in Math, 1981, 898: 361-381.
    [74]Mokrani A., Castelain C., Peerhossaini H. The effects of chaotic advection on heat transfer [J]. Int. J. Heat & Mass Transfer, 1997, 40(13): 3089-3104.
    [75]Castelain C, Mokrani A., and Legentilhomme P., Peerhossaini H. Residence time distribution in twisted pipe flows: helically coiled system and chaotic system [J]. Experiments in Fluids, 1997, 22: 359-368.
    [76]Jones S W, Thomas O M, Aref H. Chaotic advection by laminar flow in a twisted pipe [J]. J. Fluid Mech. 1989, 209: 335-357.
    [77]Dean W R. Note on the motion of fluid in a curved pipe [J]. Philos. Mag., 1927, 4: 208-223.
    [78]Dean W R. The streamline motion of fluid in a curved pipe (second paper) [J]. Philos. Mag. S. 1928, 7(5): 673-695.
    [79]Thierry Lemenand, Hassan Peerhossaini. A thermal model for prediction of the Nusselt number in a pipe with chaotic flow [J]. Applied Thermal Engineering, 2002, 22: 1717-1730.
    [80]Janssen L. A. M., Hoodendoorn C. J. Laminar convection heat transfer in helical coiled tubes [J]. J. Heat Mass Transfer, 1978, 21:1197-1206.
    [81]Lefevre A., Mota, J. P. B., Rodrigo, A.J.S., Saatdjian E. Chaotic advection and heat transfer enhancement in Stokes flows [J]. International Journal of Heat and Fluid Flow, 2003, 24: 310-321.
    [82]Venkat Ganesan, Michelle D. Bryden, Howard Brenner. Chaotic heat transfer enhancement in rotating eccentric annular-flow systems [J]. Phys. Fluids, 1997, 9 (5): 1296-1306.
    [83]Saatdjian E., Leprevost J. C. Chaotic heat transfer in a periodic two-dimensional flow [J]. Physics of fluids, 1998, 10(8): 2102-2104.
    [84]Saatdjian E., Midoux N. Chaotic mixing and heat transfer between confocal ellipses: Experimental and numerical results [J]. Phys. Fluids, 1996, 8 (3): 677-691.
    [85]陈涛,张国亮.化工传递过程基础[M].北京化学工业出版社,2002.
    [86]赵立新,蒋明虎,李枫等.旋流器分散相液滴受力分析——液——液水力旋流器速度 场研究之五[J].石油机械,1995,27(5):24-27.
    [87]崔运静,仇性启,王丽娟.液液分离水力旋流器流场激光测试研究[J].流体机械,2005,33(6):4-6.
    [88]张琳,俞秀民,宣益民等.自转清洗扭带管对流换热强化机理的实验研究[J].热能动力工程,2003,18(6):608-611.
    [89]朱冬生.插入物强化管壳式换热器管内高粘度流体的传热[J].石油炼制与化工,1998,29(7):39-42.
    [90]张先掉,尹丹模.换热器技术的发展和突破[J].冶金能源,1997,16(2):52-54.
    [91]王军,林华,袁志树.扭带插入件强化圆管内换热的计算方法[J].节能技术,2001,19(4):24-25.
    [92]Aref H., Stirring by chaotic advection [J]. Fluid Mech., 1984, 143, 1-21.
    [93]Sawyers D., Sen M. and Chang H. C., Effect of chaotic interfacial stretching on biomolecular chemical reaction in helical-coil reactors [J]. Chem. Eng. 1996, 64, 129-139.
    [94]Mokrani A., Castelain C. and Peerhossaini H., The effect of chaotic advection on heat transfer, [J]. Heat Mass Transfer, 1997, 40, 3089-3104.
    [95]Guer Y. L., Peerhossaini J. Order breaking in Dean flow [J]. Phys, Fluids A, 1991, 3(5): 1029-1032.
    [96]Acharya N., Sen M., H. Chang C. Heat transfer enhancement in coiled tubes by chaotic mixing [J]. Int. J. Heat Mass Transfer, 1992, 35(10): 2475-2489.
    [97]Peerhossaini H, Castelain C., Guer Y, L. Heat exchanger design based on chaotic advection [J]. Exp. Thermal Fluid Sci, 1993, 7(4): 333-344.
    [98]Chagny C., Castelain C., Peerhossaini H. Chaotic heat transfer for heat exchanger design and comparison with a regular for large ranges of Reynolds numbers [J]. Appl. Thermal Eng., 2000, 20: 1615-1648.
    [99]周昆颖.紧凑换热器[M].中国石化出版社,北京,1998.
    [100]Brancher J.P., Leprevost J. C. Laminar mixing induced by a twisted quadripolar Stokes flow [J]. International Journal of Heat and Mass Transfer, 2004, 47:1561-1567.
    [101]Smale, S., Differentiable Dynamical Systems [J], Bull. Amer. Math. Soc., 1967, 73: 747-817.
    [102]张筑生.微分动力系统原理[M].科学出版社,北京,1987.
    [103]李继彬.混沌与Melnikov方法[M].重庆,重庆大学出版社,1989.
    [104]V. J. Melnikov, On the stability of the center for time periodic perturbations [J]. Trans. Moscow Math. Soc. 1963, 12 (1).
    [105]Guckenheimer J. and Holmes P., Nonlinear oscilltors, dynamical systems, and bifurcations of vector fields applied mathematical science [M]. Springer-Verlag, New York, 1983, 42.
    [106]吕金虎,陆君安,陈士华.混沌时间序列分析及其应用[M].武汉,武汉大学出版社,2002.
    [107]Barana G., Tsuda I. A new method for computing Lyapunov exponents [J]. Phys. Lett. A, 1993, 175: 421-427.
    [108]Wolf A., Swift J. B., Swinney H. L. and Vastano J. A. Determining Lyapunov exponents from a time series [J]. Physica 16D, 1985, 285-317.
    [109]Rosenstein M. T., Collins J. J. and De luca C. J. A practical method for calculating largest Lyapunov exponents from small data sets [J]. Physica D, 1993, 65:117-134.
    [110]Fluent Inc. FLUENT 6.1 User's Guide [M]. New Hampshire, the U.S. 2003, 1.
    [111]G Batchelor. An K. Introduction to Fluid Dynamics. Cambridge Univ. Press, Cambridge, England, 1967.
    [112]Guo Z Y. Mechanism and control of convective heat transfer-Coordination of velocity and heat flow fields [J]. Chinese Science Bulletin, 2001, 46 (7): 596-599.
    [113]夏再忠.导热和对流换热过程的强化与优化[D].北京,清华大学,2001,10.
    [114]孟继安.基于场协同理论的纵向涡强化换热技术及其应用[D].北京,清华大学,2003,10.
    [115]陶文铨.数值传热学(第二版)[M].西安,西安交通大学出版社,2004,9.
    [116]Pirter Wesseling. Principles of Computational Fluid Dynamics (影印版) [M].北京,科学出版社,2006.
    [117]Ling F. H. Chaotic mixing in a spatially periodic continuous mixer [J]. Phys. Fluids A, 1993, 5(9): 2147-2160.
    [118]Louise H. Kellogg. Mixing by chaotic convection in an infinite Prandtl number fluid and implications for mantle convection [J]. Phys. Fluids A, 1991, 3 (5): 1374-1378.
    [119]Aung W. Cooling technology for electronic equipment [M]. New York: Hemisphere, 1988.
    [120]Peterson G P, Ortega A. Thermal control of electronic equipment and devices [M]. Advances in Heat Transfer. 1990, 20: 181-314.
    [121]Erdogan M. E., Chatwin P. G., The effects of curvature and buoyancy on the laminar dispersion of solute in a horizontal tube [J]. J Fluid Mech. 1967, 29: 465-484.
    [122]Jones S. W., Young W. R., Shear dispersion and anomalous diffusion by chaotic advection [J]. J. Fluid Mech. 1994, 280: 149-172.
    [123]Pauley W. R., Eaton J. K., The effect of embedded longitudinal vortex arrays on turbulent boundary layer heat transfer [J]. J. of heat transfer, 1994, 116:871-878.
    [124]Zhu J. X., Mitra N. K., Fiebig M. Effects of longitudinal vortex generators on heat transfer and flow loss in turbulent channel flow [J]. Int. J. heat Mass Transfer, 1993, 36:2339-2347.
    [125]Zhu J. X., Fiebig M., Mitra N. K. Numerical investigation of turbulent flows and heat transfer in a rib-roughened channel with longitudinal vortex generators [J]. Int. J. heat Mass Transfer, 1995, 38:495-501.
    [126]Fiebig M. Embedded vortices in internal flow: heat transfer and pressure loss enhancement [J]. Int. J. Heat and Fluid Flow, 1995, 16: 376-388.
    [127]董其伍,刘敏栅,孔松涛.一种混沌流翅片及包含该翅片的板翅式换热器[P].中国专利,申请号:200610128281.4.
    [128]姜明健,罗晓蕙.水在微尺度槽中单相流动和换热研究[J].北京联合大学学报,1998,12(1):71-75.
    [129]李云开,杨培岭,任树梅,杨玲.滴灌灌水器迷宫式流道内部流体流动特性分析与试验研究[J].水利学报,2005,36(7):0559-9350(2005)07-0886-05.
    [130]黄卫星,陈文梅.工程流体力学[M].化学工业出版社,北京,2002.
    [131]张美杰,汪厚植,黄奥等.底吹氩中间包钢液流动特性的数值模拟研究[J].钢铁钒钛,2005,12(26).
    [132]Yogeshwar SAHAl, Toshihiko EMI. Melt flow characterization in continuous casting tundishes [J]. lSlJ International, 1996, 6(36): 667-672.
    [133]JB/T 10379-2002换热器热工性能和流体阻力特性通用测定方法[S].
    [134]李玲,徐忠.方管内气固两相流动速度的LDV测量[J].实验力学,1998,13(2).
    [135]徐月亭,蒋浩康.压气机转子内流场的三维LDV测量[J].工程热物理学报,1998,19(2).
    [136]尹晔东,王运东,费维扬.激光多普勒测速仪在化学工程中的应用[J].现代化工,2000,20(2).
    [137]龚允怡,彭志军,史春涛.应用LDV测量柴油机高压喷雾对空气的卷吸[J].天津大学学报,1996,29(1).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700