用户名: 密码: 验证码:
浸渍—氧化法制备β-PbO_2-SPE复合膜电极的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SPE(solid polymer electrolyte)复合膜电极以其电解质简单、电流效率高、能耗低、副反应少、操作弹性大和催化活性好已成为电化学材料研究领域热点之一。现有的制备PbO_2—SPE复合膜电极的方法有机械施压法(热压法)和电化学沉积法两种,但这两种方法各有特点,也各存在不足。为此,本文首次提出并采用浸渍—氧化法制备β-PbO_2—SPE复合膜电极,旨在将催化活性更好的β-PbO_2通过化学方法直接沉积到SPE基膜上。作为河南省杰出人才创新基金项目(项目编号:521001400),本文以Nafion阳离子膜作为基膜,进行了基膜类型的选择与活化、制备技术与工艺条件优化、电极性能表征、电极改性和评价以及膜电极电催化降解苯酚研究,具有较高的学术理论意义和工程应用前景。
     基膜是制备β-PbO_2—SPE复合膜电极的基础,依据Nafion膜的结构特征,通过净化实验和溶胀实验,以及SEM、EDS测试,表明Nafion324膜是较理想的基膜,确定出了基膜活化的方法及步骤,获得了基膜充分溶胀条件。在5种氧化实验方案基础上,获得浸渍-氧化法制备β-PbO_2—SPE复合膜电极的工艺路线。通过理论分析和较细致的单因素实验,首次优化出制备β-PbO_2—SPE复合膜电极最佳工艺条件为:浸渍过程中用超声波搅拌,温度50℃,浸渍液浓度配比为0.05 mol·L~(-1)Pb(NO_3)_2+1.0mol·L~(-1)NH_4Ac,浸渍时间2.0h;氧化过程中超声搅拌强度为40W,温度为40℃;氧化时间2.0h。在优化条件下经过8-11次重复浸渍—氧化过程,可制成完整的β-PbO_2—SPE复合膜电极。经过XRD、SEM、EDS测试,表明β-PbO_2—SPE复合膜电极沉积层主要成分为β-PbO_2,晶粒细小,致密且均匀分布在基膜上,与基膜结合牢固。稳态极化曲线显示,在1.0mol·L~(-1)H_2SO_4溶液中β-PbO_2—SPE复合膜电极析氧电位约为100mv(vs.SCE),交换电流密度为i~0=7.182×10~(-3)A·cm~(-2),电极的稳定性较好、耐腐蚀性强。循环伏安曲线证明膜电极具有电化学降解苯酚的能力,苯酚在膜电极上降解过程准可逆,受扩散控制。
     根据化学沉积过程中添加剂的作用原理,从络合和缓冲型添加剂中选择F~-、从改性型添加剂中选择Fe~(2+)、从稳定镀液型添加剂中选择重金属离子Co~(2+),分别制备出3种改性β-PbO_2—SPE复合膜电极。通过XRD、SEM、EDS、稳态极化曲线、循环伏安曲线等研究,表明改性的β-PbO_2—SPE复合膜电极表面沉积的β-PbO_2更加均匀、致密,增强了膜电极的活性和稳定性,更适合作为电化学降解过程中的阳极材料。初步探讨添加剂在β-PbO_2沉积过程中机理的结果显示,添加F~-只改变催化层的形貌,添加Fe~(2+)和CO~(2+)形成了α-Fe_2O_3和β-PbO_2共沉积以及CO_3O_4和β-PbO_2共沉积的电催化层,提高膜电极的电催化活性。
     β-PbO_2—SPE及3种改性复合膜电极降解浓度为100mg·L~(-1)的苯酚溶液的结果证明:在1.0mol·L~(-1)H_2SO_4介质中4种膜电极显示出较强的苯酚降解能力,其降解能力大小顺序可归结为:β-PbO_2/Co—SPE>β-PbO_2/Fe—SPE>β-PbO_2—SPE≈β-PbO_2/F—SPE,且在电解过程中,槽电压均低于相近测试条件下其它β-PbO_2电极,有利于降低能耗、提高电能效率,体现了膜电极的优点。实验结果从另一方面也证明加入添加物制备出了性能更加优良的β-PbO_2—SPE复合膜电极。
SPE composite membrane electrode has been becoming the frontier of electrochemical material field due to its simple media condition, higher current efficiency, the lower energy consumption, the less side-reaction, the wider operation range and the outstanding electrocatalytic active. All now manners of making PbO_2—SPE composite membrane electrode can be calssified into two categories, One is the mechanical method, and another is electrochemical method. These two methods have their advantages and, simultaneously, have their shortness. So, a completely new plan, impregnation-oxidation method, was put forward to and was used to prepare PbO_2—SPE composite membrane electrode, the concept is to directly depositβ-PbO_2 in the basal membrane by the electroless method. As a new researching item, supported by He'nan Outstanding talent innovation fund (No: 521001400), this work has been done a lot, it included: to choose the types of basal membrane material, to research the activating method of basal membrane, to optimize the preparing technical and the technology conditions, to characterizes electrode performance, to modify and evaluate electrode performance and research the effect in degradation phenol. All the research will be valuable in the academic filed and is very useful in the industrial project.
     The basal membrane is the basement to prepare good composite membrane electrode material. According to the special structure of Nation basal membrane, based on the clearing and swelling processes, and by means of the analyses of SEM and EDS, the experimental results declared that Nafion324 positive ionic membrane was the ideal basal membrane material in preparingβ-PbO_2—SPE composite membrane electrodes. The methods and steps to active basal membrane were decided and the conditions to swell cleared Nation324 well were obtained too. Based on the conclusions of the five impregnation-oxidation programs, the technical sheet to prepareβ-PbO_2—SPE composite membrane electrodes was determined. Through the detailed processes analyses to depositingβ-PbO_2 in basal membrane and entirely single factor experiments, the author firstly optimizes the conditions in preparingβ-PbO_2—SPE composite membrane electrodes. The impregnating conditions are: stirring is proceeded in ultrasonic wave, the impregnating temperature is kept at 50℃, the better impregnating solution component is 0.05 mol·L~(-1) Pb(NO_3)_2+1.0 mol·L~(-1) NH_4Ac, and the impregnating time is 2.0 h; the oxidation conditions are: the stirring strength of ultrasonic wave is 40W, the oxidation temperature is 40℃and the oxidation time is 2.0 h. Under all the conditions, a completeβ-PbO_2—SPE composite membrane electrode can be prepared out by repeating the impregnating-oxidation processes for 8-11 times, the characterization results ofβ-PbO_2—SPE composite membrane electrode are as follows: The X-ray diffraction result shows that the main composition of plating layer isβ-PbO_2. Theβ-PbO_2 crystal particle is fine and tightly deposited in Nation324 basal membrane. The SEM diagram and the EDS analysis declare that the plating layer ofβ-PbO_2 is compact and uniform in basic membrane. The polarization curve demonstrated, in 1.0 mol·L~(-1) H2SO_4 solution, thatβ-PbO_2—SPE composite membrane electrode oxygen evolution voltage is 100mv (vs. SCE), and the exchange current density i~0=7.182×10~(-3)A·cm~(-2), and theβ-PbO_2 layer has good stability and anti-corrosion. The cyclic voltammogram (CV)curves of phenol solution onβ-PbO_2—SPE composite membrane electrode demonstrated that the electrode has capability in degradation phenol, and the degradation processes of phenol on membrane electrodes were quasi-reversibility and were controlled by diffuse processes.
     According to the roles of additive agents in electroless plating technical, the inorganic additives F~-、Fe~(2+) and Co~(2+) were introduced in impregnation process and to obtained three kinds of modificationβ-PbO_2—SPE composite membrane electrodes. Though the tests by XRD、SEM、EDS、the polarization curves and CV curves, the results showed thatβ-PbO_2 layers in modifiedβ-PbO_2—SPE composite membrane electrodes are more uniform and compact than normalβ-PbO_2—SPE composite membrane electrodes, and the active and stable of composite membrane electrodes are improved so that the modifiedβ-PbO_2—SPE composite membrane electrodes are more suitable for anodic materials. The roles of the three additive agents in depositing processes ofβ-PbO_2 were preliminary discussed, the conclusions are: the F~- is only to change the depositing form of plating layer, Fe~(2+) and Co~(2+) can be oxide intoα-Fe_2O_3 and Co_3O_4 and commonly deposited withβ-PbO_2 in Nation324 membrane, so that, the modifiedβ-PbO_2—SPE composite membrane electrodes have better the electrocatalytic active than normal electrode.
     The experimental results showed that, in 1.0 mol·L~(-1) H_2SO_4 solution, and the content of phenol is 100mg·L~(-1), normal and modifiedβ-PbO_2—SPE composite membrane electrodes have stronger degradation power. The order of degradation power is:β-PbO_2/ Co—SPE>β-PbO_2/Fe—SPE>β-PbO_2—SPE≈β-PbO_2/F—SPE. The tank voltages, at above processes, are lower than other PbO_2 electrodes in nearly same operating conditions. This result is benefitial in decreasing electricity consumption and increasing current efficiency, and it is the reason to prepareβ-PbO_2—SPE composite membrane electrode. The order also demonstrates that the goodβ-PbO_2—SPE composite membrane electrodes can be obtained when the additive agents were introduced in impregnation-oxidation processes.
引文
[1] Heyl, A. Jorissen, J. Electrochemical detoxification of waste water without additive using solid polymer electrolty(SPE) technology[J]. Journal of Applied Electrochemistry, 2006, 36(11):. 1281-1290
    [2] Morales S.; Arriago, L. G.; Cano, U. C.; Acosta, R. [J]. Nafion quantity variation on electrodes used in SPE electrolyzer, ECS Transactions(Proton Exchanfe membrane Fule cell), 2006, 3(1): 371-377
    [3] Haollin Tang; Shenlong Wang; Mu Pan; San Ping Jiang and Yunzhang Ruan. Performance of direct methanol fuel cells prepared by hot-pressed MEA and catalyst-coated membrane(CCM) [J]. Electrochim Acta, 2007, 52(11): 3714-3718
    [4] Z.Q.Ma, P.Cheng, T.S.Zhao. Apalladium-alloy deposited Nation membrane for direct method methanol fuel cells[J], journal of membrane science, 2003, 215: 327-336
    [5] 马淳安,张文魁,黄辉等.SPE复合电极的制备及其在有机电化学合成中的应用[J].浙江工业大学学报,1999,27(4):265-271
    [6] D.G.Bessarabov, W.C.Michaels. Solid polyelectrolyte (SPE) membranes containing a textured platinum catalyst [J]. journal of membrane science, 2001, 194(1), 135-140
    [7] Ogumi Z, Nishio K, Yoshizawa S. Application of the SPE method to organic electrochemistry. (Ⅰ) Electrochemical hydrogenation of olefinic double bonds [J]. Electochim Acta, 1981, 26: 1779-1782
    [8] Jorissen J. Ion exchange membranes as solid polymer electrolytes(SPE) in electro-organic syntheses without supporting electrolytes [J]. Electrochim Acta, 1996, 41: 553-562
    [9] Ogumi Z, Yamashita H, Nishio K. Application of the SPE method to organic electrochemistry.(Ⅲ) Kolbe type reaction on Pt-SPE [J]. Electochim Acta, 1983, 28: 1687-1693
    [10] Ogumi Z, Ohashi S, Takehara Z. Application of the SPE method to organic electrochemistry. (Ⅵ) Oxidation of cyclohexanol to cyclohexanone on Pt-SPE in the presence of iodine and iodide [J]. Electochim Acta, 1985, 30: 1231-124
    [11] Ogumi Z, Inatomi K, James T et al. Application of the SPE method to organic electrochemistry. (Ⅷ) Oxidation of geraniol on Mn, Pt-Nafion [J]. Electochim Acta, 1992, 37: 1295-1299
    [12] Yasuzawa M,Kan K,Kunugi A, et al. Electrooxidation of benzyl alcohol on Pt-Nafion composite electrode [J]. Electochim Acta, 1995, 40: 1785-1787
    [13] Ogumi Z, Inaba M, Ohashi S, et al. Application of the SPE method to organic electrochemistry.(Ⅶ) The reducation of nitrobenzene on a modified Pt-Nafion [J]. Electochim Acta, 1988, 33: 365-369
    [14] Inaba M, Ogumi Z, Takehara Z. et al. Application of the solid polymer electrolyte method to organic electrochemistry.(Ⅷ)Effects of solvents on the electroreducation on Cu, Pt-Nafion [J]. Journal of the Electrochemical Society, 1993, 993, 140: 19-22
    [15] Inaba M, Hinatsu J, Ogumi Z, et al. Application of the solid polymer electrolyte method to organic electrochemistry. (ⅩⅤ) Influence of substituphase structure of Nation on the electroreducation of substituted aromatic nitrocompounds on Cu, Pt-Nafion [J]. Journal of the Electrochemical Society, 1993, 993, 140: 706-711
    [16] Inaba M, Ogumi Z, Takehara Z. et al. Application of the solid polymer electrolyte method to organic electrochemistry. (ⅩⅦ) Indirect electrochemical debromination using viologens as microscopic phase-transfer mediators[J]. Journal of the Electrochemical Society, 1994, 141: 2579-2586
    [17] Jiang J H, Wu B L, Cha C S. SPE microdisk electrodes used in organic electrosynthesis[J]. Journal of Electranalytical Chemistry, 1996, 417: 89-93
    [18] Jiang J H, Wu B L, Cha C S, et al. M-SPE composite powder microelectrodes used in organic electrosynthesis[J]. Journal of Electranalytical Chemistry, 1997, 420: 31-34
    [19] 马淳安.有机电化学合成导论[M].北京:科学出版社,2002.
    [20] 张东方.质子交换膜燃料电池用催化剂及其电极的研究进展[J].化学工业与工程技术,2003,24(6):33-35
    [21] 原鲜霞,乔永进,庞志成.化学镀铂法制备质子交换膜燃料电池膜电极[J].稀有金属,2000,24(4):277-281
    [22] 段天平,夏代宽,刘期崇等。SPE复合膜及其制备技术。化工进展,1998,1:33-35
    [23] A.B. Velichenko, D.V. Girenko, S.V. Kovalyov et al. Lead dioxide lectrodeposition and its application: influence of fluoride and iron ions [J]. Journal of Electroanalytical Chemistry, 1998, 454:203-208
    [24] Patrick Jacquinot, Alexia W.E.Hodgson and Peter C. Hauser. Amperometric detection of NO and NO_2 in the ppb range with solid -polymer electrolyte membrane supported noble metal electrodes[J]. Analytica Chemical Acta. 2001, 443: 53-61
    [25] 陈日耀.固体聚合物电解质在牛尤牛儿醇电化学氧化中的应用[J].福建师范 大学学报(自然科学版),2000,6(3):53-55
    [26] SEIJI KOMATSU, MICHIE TANAKA, AKIRA OKUMURA and AKIRA KUNGI[J]. Preparation of Cu-solid polymer electrolyte composite electrode and application to gas-phase electrochemical reduction of CO_2[J]. Journal of electrochemical catalysis, 1995, 40(6), 745-753
    [27] Sally-Ann Sheppard, Sheelagh A. Campbell, James R. smith, Grongar W. Lloyd, Thomas R. Ralph and Frank C. Walsh[J]. Electrochemical and microscopic charactrrisation of platinum-coated perfluorosulfonic acid (Nation 117) material[J]. The Analyst, 1998, 123: 1923-1929
    [28] 崔梅生,陈霭,罗瑞贤.浸渍-还原原位形成膜电极及乙烯催化传感技术研究[J].北京化工大学学报,1999,26(2):73-76
    [29] 孙鲲鹏,陈霭璠,顾思民等.SPE复合膜电极上氧化还原反应研究[J].北京化工大学学报,2001,28(4):60-66
    [30] Akita, Ichikawa, Iguchi, et al. Composite polymer membrane method for producting the same and solid polymer electrolyte membrane[P]. EP 085590A1
    [31] 大连理工大学无机化学教研室编.无机化学(下册)[M].高等教育出版社,1990,574-582
    [32] 王慧君.二氧化铅电极的制备及其应用[J].浙江海洋学院学报(自然科学版),1999,18(2):165-167
    [33] 王峰,俞斌.Pt/PbO_2电极在COD测定中初探[J].南京工业大学学报,2002,24(2):93-96
    [34] Ingela Petersson, Elisabet Ahlberg,, Bo Berghult. Parameters influencing the ratio between electrochemically formed α- and β-PbO2 [J]. Journal of Power Sources, 1998, 76(1): 98-105
    [35] 郑一雄.β-氧化铅电极在制备电解锰中的应用[J].无机盐工业,1999,31(2):13-15
    [36] 王留成,徐海生,赵建宏.阳极在硫酸铬电解氧化制备重铬酸时的电极行为[J].应用化学,2003,20(5):483-486
    [37] 李伟平,韦汉道,李业琛.二氧化铅膜电极用于电解合成苯醌的研究[J].广州化学,1999,1:26-29
    [38] 万亚珍,张文辉.高析氧过电位PbO_2电极处理废水技术的机理及应用[J].环 境科学与技术,2006,29(5):109-111
    [39] Iniesta J, Gonzia J, Exiposito E, et al. Influence of chloride ion on electrochemical degradation of phenol in alkaline medium using bismuth doped and pure PbO_2 anode[J]. Water Research, 2001, 35(4): 3291-3300
    [40] Schumann U, Grundler P. Electrochemical degradation of organic substances at PbO_2 anodes: Monitoring by continuous CO_2 measurements [J]. Water Research, 1998, 32(9): 2835-2842
    [41] Amadelli.R et al. Electrochemical oxidation of trans-3-4dihydroxycinnamic acid at PbO_2 electrodes: direct electrolysis and ozone mediated reactions compared. [J]. electrochemical Acta, 2001, 46: 341-347
    [42] Panizza.M, Cerisola.G. Influence of anode material on the electrochemical oxidation of 2-naphthol: part 1. cyclic voltammetry and potential step experiments [J]. electrochemical Acta, 2003, 48(23): 3491-3497
    [43] 周明华,戴启洲,雷乐成等.新型二氧化铅阳极电催化降解有机污染物的特性研究[J].物理化学,2004,20(8):871-876
    [44] 姜力强,郑精武,刘昊等.电解法处理含氰含铜废水工艺研究[J].水处理技术,2004,30(3):153-156
    [45] Bessarabov, D.G. Electrochemically-aided membrane separation and catalytic processes [J]. mernbrane technology, 1998, 1998(93): 8-11
    [46] 张玉敏,张恒彬,徐玉玲等.3-甲基吡啶在PbO2-SPE组合电极上的电氧化研究[J].高等学校化学学报,2005,26(10):1858-1860
    [1] 王标兵,顾利霞.高分子固体聚合物电解质(SPE)的研究进展[J].材料导报,2000,14(7):45-49
    [2] 徐又一,徐志康等编[M],高分子膜材料,化学工业出版社,2005.4:416-442,
    [3] A.J.Seen. Nafion: an excellent support for metal-complex catalysts [J]. Journal of molecular catalysis A: chemical, 2001, 177: 105-112
    [4] 李邦民.根据膜的结构机作用机理论工艺控制的重要性[J].中国氯碱,2001 (12):10~12
    [5] 刘存玉,邢兆伍,胥敏一.氯碱离子膜的结构和作用原理[J].氯碱工业,1998(5):12~14
    [6] Patrick Jacquinot, Alexia W.E.Hodgson and Peter C. Hauser. Amperometric detection of NO and NO_2 in the ppb range with solid -polymer electrolyte membrane supported noble metal electrodes[J]. Analytica Chemical Acta. 2001, 443: 53-61
    [7] Chiou-Yen Chiou, Tse-Chuan Chou. Amperometric SO_2 gas sensors based on solid polymer electrolytes [J]. Sensors and Actuators B, 2002, 87: 1-7
    [8] Z.Q.Ma, ECheng, T.S.Zhao. Apalladium-alloy deposited Nation membrane for direct method methanol fuel cells[J], journal of membrane science, 2003, 215: 327-336
    [9] Sally-Ann Sheppard, Sheelagh A. Campbell, James R. smith, Grongar W. Lloyd, Thomas R. Ralph and Frank C. Walsh[J]. Electrochemical and microscopic charactrrisation of platinum-coated perfluorosulfonic acid (Nafion 117) material [J]. The Analyst, 1998, 123: 1923-1929
    [10] Seiji Komatsu, Michie Tanaka, Akira Okumura and Akira Kungi[J]. Preparation of Cu-solid polymer electrolyte composite electrode and application to gas-phase electrochemical reduction of CO_2[J]. Journal of electrochemical catalysis, 1995, 40(6), 745-753
    [11] Akita, Hiroshi, Composite Polymer membrane method for producing the same and solid polymer electrolyte membrane, EP: 1085 590A1(2001)
    [12] A.B. Velichenko, D.V. Girenko, S.V. Kovalyov et al. Lead dioxide electrodeposition and its application: influence of fluoride and iron ions [J]. Journal of Electroanalytical Chemistry, 1998, 454: 203—208
    [13] Mikael Ludvigsson, Jan Lindgern and Jorgen Tegenfeldt, Incorporation and characterisation of manganese, cobalt and lithium into Nafion 117 membrane[J]. Journal of material chemistry, 2001, 11: 1269-1276
    [1] 大连理工大学无机化学教研室编.无机化学(下册)[M].北京,高等教育出版社,1990,574-582
    [2] A.J.Seen. Nafion: an excellent support for metal-complex catalysts [J]. Journal of molecular catalysis A: chemical, 2001, 177: 105-112
    [3] 分析化学手册(第一分册)[M].北京,化学工业出版社,1997.1 153-185
    [4] 钱庭宝编著.离子交换剂应用技术[M].天津,天津科学出版社,1984,77-88
    [5] 段天平,夏代宽,刘明崇等.Pt/Nafion复合膜的研制[J].高校化学工程学报,1997,11:425-429
    [6] Sally-Ann Sheppard, Sheelagh A. Campbell, James R. smith, Grongar W. Lloyd, Thomas R. Ralph and Frank C. Walsh[J]. Electrochemical and microscopic charactrrisation of platinum-coated perfluorosulfonic acid (Nafion 117) material [J]. The Analyst, 1998, 123: 1923-1929
    [1] 赵国华,李明利,祁源,胡惠康.苯酚在金刚石膜电极上的电化学氧化降解过程[J].中国环境科学 2005,25(3):370-374
    [2] 刘永辉.电化学测试技术[M].北京:北京航空学院出版社,1987,1-32
    [3] 杨辉,卢文庆.应用电化学[M].北京:科学出版社,2001,34~35
    [4] 沈慕昭等.电化学基本原理及其应用[M].北京:北京师范大学出版社,1987.
    [5] 赵国华,李明利,武薇薇等.金刚石膜电极对有机污染物的电催化特性[J].环境科学,2004,25(5):163-167
    [6] 徐文英,樊金红,高廷耀.硝基苯类化合物在铜电极上的电还原特性和还原机理[J].环境化学,2005,24(1):17-21
    [7] 赵国华,李明利,李琳等.纳米铂微粒电极催化氧化有机污染物的研究[J].环境科学,2003,24(6):90-95
    [8] Panizza. M, Cerisola. G. Influence of anode material on the electrochemical oxidation of 2-naphthol: part 1. cyclic voltammetry and potential step experiments [J]. electrochemical Acta, 2003, 48(23): 3491~3497
    [9] 赵国华,陈蕊,高廷耀.有机污染物苯胺在催化电极上氧化降解途经[J].环境科学研究,2003,16(3)51-54
    [10] 吉林大学化学系.催化作用基础[M].北京科学出版社,1980,3:309—333
    [11] 武汉大学化学系.仪器分析[M].高等教育出版社.2001.6:267-299
    [12] 冯玉杰.电化学技术在环境工程中的应用[M].北京:化学工业出版社,2002
    [13] 于德龙,覃奇贤.低析氧过电位PbO_2电极的研究[J].材料研究学报,1995,9(3):250~254
    [14] Amadelli R, Armelao L, Velichenko A.B, et al. Oxygen and ozone evolution at fluoride modified lead dioxide electrodes[J]. Electrochimica Acta, 1999, 45(4~5): 713
    [15] Velichenko A B, Girenko D V, Kovalyov S V, et al. Lead dioxide electrodeposition and its application: influence of fluoride and iron ions[J]. Journal of Electroanalytical Chemistry, 1998, 454(1~2): 203~208
    [16] 韦国林,张利,顾海军等.电沉积PbO_2电极的析氧行为[J].电池,1998,28(4):160~163
    [17] 韦国林,张利.PbO_2电极制备及其析氧能力考察[J].上海大学学报(自然科学版).1997,3(增刊):302~305
    [1] 冯玉杰.电化学技术在环境工程中的应用[M].北京:化学工业出版社,2002
    [2] 于德龙,覃奇贤.低析氧过电位PbO_2电极的研究[J].材料研究学报,1995,9(3):250~254
    [3] Amadelli R, Armelao L, Velichenko A.B, et al. Oxygen and ozone evolution at fluoride modified lead dioxide electrodes[J]. Electrochimica Acta, 1999, 45(4~5): 713
    [4] Velichenko A B, Girenko D V, Kovalyov S V, et al. Lead dioxide electrodeposition andits application: influence of fluoride and iron ions[J]. Journal of Electroanalytical Chemistry, 1998, 454(1~2): 203~208
    [5] 韦国林,张利,顾海军等.电沉积PbO_2电极的析氧行为[J].电池,1998,28(4):160~163
    [6] 韦国林,张利.PbO_2电极制备及其析氧能力考察[J].上海大学学报(自然科学版).1997,3(增刊):302~305
    [7] Staia M H, Castillo E J, Puchi E S. Wear Performance and Mechanism of Electroless Ni-P Costing [J]. Surface and Coating Technology, 1996, 86~87(2): 598~602
    [8] 崔国峰,李宁,黎德育.化学镀镍液的缓冲容量与沉积速度的关系[J].电镀与环保,1993,18(1):10 12
    [9] 吴宜勇,李桂枝,姚枚等.多元化学镀镍[J].电镀与环保,1993,18(1):10~12
    [10] Delaunois F, Petitjean J P, Lienard P, et al. Autocatalytic Electroless Nickel-Boron Plating on Light Alloy [J]. Suface and Coating Technology, 2000, 124(2~3): 201~209
    [11] Pei Kang Shen, Xiao Lan Wei. Morphologic study of electrochemically formed lead dioxide[J]. ElectrochemicalActa. 2003 48: 1743—1747
    [12] A. B. Velichenko, D.V. Girenko, S.V. Kovalyov et al. Lead dioxide electrodeposition and its application: influence of fluoride and iron ions [J]. Journal of Electroanalytical Chemistry, 1998, 454: 203—208
    [13] A. B. Velichenko, R. Amadelli, G. L. Zucchini et al. Electrosynthesis and physicochemical properties of Fe-doped lead dioxide electrocatalysts[J]. Electrochimica Acta. 2000, 45: 4341-4350
    [14] 李建玲,史鹏飞,周定.复合添加剂对PbO_2电极性能影响及机理探讨[J].哈尔滨工业大学学报,2002,32(3):62-66
    [15] 吴宜勇,彭枚,王殿龙等.化学镀中的无机添加剂[J].电镀与环保,1994,14(2):9~11
    [16] 张国宇,王鹏,石岩等.微波诱导Fe_2O_3/Al_2O_3催化剂催化氧化处理水中苯酚[J].催化学报,2005,26(7):597-601
    [17] 张孔远,刘爱华,燕京等.不同方法制备的CoMo/Al_2O_3加氢脱硫催化剂的表征[J].催化学报,2005,26(8):639-644
    [18] 熊海,石峰,邓友全.负载钴催化剂的合成及其催化环己烷和甲苯选择氧化的研究[J].催化学报,2004,25(11):887-891
    [19] 边平凤,钟依均,周碧等.Co_3O_4/CeO_2催化剂的TPR研究[J].科技通报,1998,14(2):94-97
    [20] A B Velichenko, R Amadelli, E A Baranova. Electrodeposition of Co-doped lead dioxide and its physicochemical properties[J]. Electroanalytical Chemistry, 2002, 527: 56~64
    [21] 武刚,李宁,戴长松等.阳极电沉积Co-Ni混合氧化物在碱性介质中的电催 化析氧性能[J].催化学报,2004,25(4):319~325
    [22] Noninski V C. Magnetic field effect on copper electrodeposition in the Tafel potential region[J]. Electrochimica Acta, 1997, 42(2): 251~254
    [23] John C. Smeltzer, Peter S. Fedkie.Reduction of nitrobenzene in a parallel-plate reactor Ⅰ. Differential conversion using periodic cell-voltage control [J]. J. Electro Chem Soc. 1992, 139(5): 1358~1366
    [24] John C, Smeltzer, Peter S, et al. Reduction of nitrobenzene in a parallel-plate reactor Ⅱ. Integral conversion using periodic cell-voltage control [J] J. Electrochem Soc. 1992, 139(5): 1366~1372
    [25] 许文林等.硝基苯电解还原制备对氨基苯酚的研究[J].化学反应工程与工艺,1993,9(4):497
    [26] 曹忠良.无机化学反应手册[M].湖南:湖南科学技术出版社,1982.353
    [27] 文德龙.草酸钴和氧化钴[J].江西冶金,1997,17(5):55-57
    [1] Iniesta J, Gonzia J, Exiposito E, et al. Influence of chloride ion on electrochemical degradation of phenol in alkaline medium using bismuth doped and pure PbO_2 anode[J]. Water Research, 2001, 35(4): 3291~3300
    [2] 王东田,魏杰,王秀娟.电催化氧化法降解水中苯酚[J].中国给水排水,2003,19(4):37-38
    [3] 万亚珍,张文辉.高析氧过电位PbO_2电极处理废水技术的机理及应用[J].环境科学与技术,2006,29(5):109-111
    [4] 李建玲,史鹏飞,周定.复合添加剂对PbO_2电极性能影响及机理探讨[J].哈尔滨工业大学学报,2002,32(3):62-66
    [5] 张孔远,刘爱华,燕京等.不同方法制备的CoMo/Al_2O_3加氢脱硫催化剂的表征[J].催化学报,2005,26(8):639-644
    [6] 熊海,石峰,邓友全.负载钴催化剂的合成及其催化环己烷和甲苯选择氧化的研究[J].催化学报,2004,25(11):887-891
    [7] 边平凤,钟依均,周碧等.Co_3O_4/CeO_2催化剂的TPR研究[J].科技通报,1998,14(2):94-97
    [8] A B Velichenko, R Amadelli, E A Baranova. Electrodeposition of Co-doped lead dioxide and its physicochemical properties[J]. Electroanalytical Chemistry, 2002, 527: 56~64
    [9] 武刚,李宁,戴长松等.阳极电沉积Co-Ni混合氧化物在碱性介质中的电催化析氧性能[J].催化学报,2004,25(4):319~325
    [1] Iniesta J, Gonzia J, Exiposito E, et al. Influence of chloride ion on electrochemical degradation of phenol in alkaline medium using bismuth doped and pure PbO_2 anode[J]. Water Research, 2001, 35(4): 3291~3300
    [2] Schumann U, Grundler P. Electrochemical degradation of organic substances at PbO_2 anodes: Monitoring by continuous CO_2 measurements [J]. Water Research, 1998, 32(9): 2835~2842
    [3] Amadelli.R et al. Electrochemical oxidation of trans-3-4dihydroxycinnamic acid at PbO_2 electrodes: direct electrolysis and ozone mediated reactions compared [J]. electrochemical Acta, 2001, 46: 341~347
    [4] 刘丽丽,温青,李旭辉等 掺杂钛基二氧化铅电极的制备及催化性能的研究[J].应用科技,2006,33(3)53-55
    [5] 冯玉杰,崔玉虹,孙丽欣等.电化学处理废水技术及高效电催化电极的研究与进展[J].哈尔滨工业大学学报,2004,36(4)450-455
    [6] 周明华,戴启洲,雷乐成等.新型二氧化铅阳极电催化降解有机污染物的特性研究[J].物理化学学报,2004,20(8):871-876
    [7] 万亚珍,张文辉.高析氧过电位PbO_2电极处理废水技术的机理及应用[J].环境科学与技术,2006,29(5):109-111
    [8] A.M.Polearo,et al. On the performance of Ti/SnO2 and Ti/PbO_2 anodes in electrochemical degradation of 2-chlorophenol for waste water treatment.Appl.Electrochem, 1999, 29:147-151
    [9] R.Amadelli, A. De Battisti, D.V.Girenko et al. Electrochemical oxidation of trans-3,4-dihydroxycinnamic acid at PbO_2 Electrodes: direct electrolysis and ozone mediated reactions compared. Electrochimica Acta, 2000, 46: 341-347
    [10] Leonardo M., Da Silva, Luiz A. et al. Electrochemical ozone production: influence of the supporting lectrolyte on kinetics and current efficiency. Electrochimica Acta, 2003, 48: 699-709
    [11] Panizza.M, Cerisola.G.. Influence of anode material on the electrochemical oxidation of 2-naphthol[J]. Electrochimica Acta, 2003, 48: 3491-3497
    [12] 王辉,于秀娟,孙德智.一种新型电化学体降解苯酚的机理研究[J].环境科学学报,2005,25(7):901-907
    [13] 赵国华,李明利,祁源,胡惠康.苯酚在金刚石膜电极上的电化学氧化降解过程[J].中国环境科学 2005,25(3):370-374
    [14] 王辉,于秀娟,孙德智,宋来文,王强.两种电解体系对苯酚降解效果的对比[J].中国环境科学,2005,25(1):80-83
    [15] 周明华,吴祖成,汪大犟.不同电催化工艺下苯酚的降解特性[J].高等学校化学学报,2003,24(9):1637-1641
    [16] Simond. O, Schaller. V, Comninellis. Ch. Electrochimica Acta[J], 1997, 42(13-14): 2009—20124
    [17] 林海波,刘小波孙智权等.Ti/PbO_2和Ti/Ru·Ti·Sn氧化物涂层电极上苯酚的电化学氧化和降解.高等学校化学学报[J],2005,26(9):1709—1711
    [18] 张玉敏,张恒彬,徐玉玲等.3-甲基吡啶在PbO2-SPE组合电极上的电氧化研究[J].高等学校化学学报,2005,26(10):1858-1860
    [19] 王东田,魏杰,王秀娟.电催化氧化法降解水中苯酚[J].中国给水排水,2003,19(4):37-38
    [20] 李建玲,史鹏飞,周定.复合添加剂对PbO_2电极性能影响及机理探讨[J].哈尔滨工业大学学报,2002,32(3):62-66
    [21] 张国宇,王鹏,石岩等.微波诱导Fe_2O_3/Al_2O_3催化剂催化氧化处理水中苯酚[J].催化学报,2005,26(7):597-601

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700