用户名: 密码: 验证码:
澜沧老厂铅锌多金属矿床综合成矿信息与定位定量预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本博士论文“澜沧老厂铅锌多金属矿床综合成矿信息与靶区定量预测“是结合本人所负责的云南省省院省校合作项目《云南澜沧老厂银铅锌多金属矿床立体定位预测与增储研究》(编号:2003ADBEA34A025)科研项目而选题。
     云南澜沧铅矿经数十年来对资源的开发和利用,导致目前资源逐渐萎缩,地表高品位炉碴和砂泥铅生产殆尽而转入深部开采,矿山保有地质储量不足,后备资源基地眉目不清,资源问题已成为严重制约矿山企业发展,甚至威胁企业生存的根本问题。矿山虽经数十年的发展,积累了较丰富的实践经验,但研究深度不够,严重地影响地质找探矿研究。矿产资源需求量的急剧增长与矿产资源寻找难度大、成功率低、成本高的矛盾日趋突出,仅仅依靠常规地质方法和手段是难以解决当前的资源危机,当务之急将利用现代科学技术手段和方法和新的地质理论,实施多学科、多兵种联合攻关,以期扩大资源储量,维持矿山正常生产,延长矿山服务年限,促进社会经济的可持续发展。
     本论文的研究旨于前人工作的基础上,系统地评价澜沧铅锌成矿带成矿地质条件,研究其成矿规律,对成矿区带找矿前景进行评估;应用现代数字信息与计算机技术、矿床遥感、古构造岩相学、地球化学、地球物理、数学地质等多学科的新技术、新方法和新理论,借助二次开发地理信息系统软件平台,集地质、物探、化探、遥感等空间信息为一体,研究各变量变化性和规律,建立定量预测模型(模式),进行立体定位预测和靶区优选,实施工程验证,其方法和理论推动区带资源的寻找、评价和理论创新。通过上述研究主要获取了以下成果和认识:
     1.成矿大地构造环境:从火山岩岩石化学、岩石地球化学的角度对澜沧老厂银铅锌多金属矿床形成的大地构造环境进行分析与判别,认为澜沧老厂银铅锌多金属矿区火山岩主要为碱性玄武岩、粗面玄武岩,个别系玄武质粗面安山岩,属玄武质—安山质类岩石;岩石TiO_2含量较高,稀土元素配分曲线为轻稀土富集的右倾型,微量元素原始地幔标准化曲线向右倾斜、Nb与Zr等元素的含量普遍较高、Th高度富集,具大陆型特点;玄武岩类岩石Th/Hf-Ta/Hf大地构造环境判别图解显示其主要为形成于大陆裂谷环境。
     2.火成岩岩相与矿体的关系:火山岩的岩相可分为爆发相、喷溢相、喷发沉积相和侵出相共四类,其中喷发沉积相与矿体的关系最为密切。例如,C_1~8中喷发沉积相与矿体的产出具有直接关系,矿体一般产在具有一定厚度(通常5m以上喷发沉积相)和断裂构造通过的凝灰岩中;C_1~7中矿体与喷发沉积相关系密切,主要产于喷发沉积相的顶层,多与灰黑色、黑色凝灰岩或有断裂通过的灰白色安山凝灰岩有关;C_1~(5+6)中矿体基本,与喷发沉积相的灰黑色凝灰岩、灰白或灰黑色安山凝灰岩有关。
     3.矿床地球化学:矿石铅和岩石(碳酸盐岩、火山岩、花岗斑岩)铅的同位素组成平均值近似,铅来源具内在联系。从铅构造模式图中看出矿石铅来源比较复杂,为壳幔混合铅。火山岩和碳酸盐岩岩石铅与部分矿石铅可能来自围岩(矿源层);花岗斑岩岩石铅源于上地壳,可能与矿床有一定的成因联系。硫同位素组成在零附近,具陨石硫特征,推测硫主要来源自玄武岩浆。矿床的方解石中δ~(13)C_(PDD)值介于(-7.2—+2.8)ω‰,平均值为-2.06ω‰;δ~(18)0值为(-0.18—+10.5)ω‰,平均值为+5.72ω‰。与碳酸岩方解石的δ~(13)C值(+5—8)ω‰,δ~(18)0值(+6—+8.5)ω‰比较,差异明显,推断矿体中方解石的碳是岩浆碳与地层(碳酸岩盐、火山岩)碳或岩浆与地层及海水碳的混合碳。石英流体包裹体的δD值为(-69.86—-93)ω‰,平均值为-86.8ω‰;δ~(18)O_(H2O)值为(—1.53—+9.21)ω‰,平均值为+3.62ω‰。与岩浆水的δD值(—50——80)ω‰和δ~(18)O值(+6—+9)ω‰比较有明显差异,推测成矿流体为岩浆水与海水或大气降水的混合水。
     4.地球物理信息:采用瞬变电磁法(TEM)、激发极化法(IP)和高精度磁法等有效的物理探矿方法获得了5个TEM低阻异常带、2个激电异常、2个磁法异常。综合全区激电、电阻率测深的反演计算结果,并结合地表出露和钻孔揭露情况,获得到了澜沧老厂铅矿区C_1地层界面等高线图。通过系统的地球物理勘查,获取了有用的地球物理找矿信息。
     5.元素地球化学:运用数理统计的方法理论对岩矿样品分析结果计算分析认为:主要成矿元素组合(铜、铅、锌、砷、锑、锡、银、金)高值异常区集中在断裂交汇部位,沿火山口机构边缘断续分布,成矿时处于偏高温火山环境,北象山北部高值异常区(7-12号勘探线)、南象山西南部高值异常区(147-149勘探线)为找矿有利部位;方差极大正交旋转矩阵表中:
     F1因子轴中可将Cu-Pb-Zn-As-Sb-Hg-Ag-Au等元素可视为块状黄铁矿型热水沉积成矿期;F2因子轴中可将Cu-Pb-Zn-As-Sb-Hg-Be-Sn-Mo-Y-Cr-Se-Yb-V-Nb-Ni-Ga等元素视为深部隐伏基性岩和酸性岩类的侵入对原热水沉积成矿矿床的改造作用。
     该区成矿作用主要为沉积、改造叠加两期成矿作用。
     6.遥感技术:对区域1/20万LandsatTM7个波段卫片、矿区1/2000快鸟数据进行了遥感信息解译;定性解释了线环形构造,并对线性构造进行等密度、平均方位、优益度、条数等定量化分析,定量解译了遥感地质综合数值化信息;利用数据融合技术,对研究区的遥感、物探、地球化学数据进行PCA融合处理,建立矿床遥感综合信息模型,进行了遥感成矿信息预测。研究表明:矿化信息与线性构造关系密切,矿区内大部分已知矿化点位于线环构造交汇交切部位。
     7.定量预测:根据多源地学信息数据库划分提取的各找矿标志及控矿要素10个(NW向断裂、有利赋矿层位、线性构造等),运用网格化单元(0.1Km×0.1Km),建立“找矿信息量模型”,计算出单变量(12个)信息量值、复合变量信息量值(2个)、综合信息量值和找矿信息量值,厘定找矿信息量值临界值(2.5),以此圈定4个成矿有利靶区,并对部分靶区进行验证。
The doctoral dessertation title of Research on the Synthetic Metallogenic Information and the positioning location and quantitative Prediction of Resources Targets for Lancang-Laochang Lead Zinc-polymetallic Deposit is selected based on the cooperative item of Yunnan province and China academy/university of research on the reserves increase and the stereo prediction of deposits of Lancang-Laochang Silver Lead Zinc-polymetallic Deposit (serial number: 2003ADBEA34A025) which I preside in.
     The research goal is to evaluate the metallogenic geological settings and study the metallogenic laws systematically with the purpose of mineral exploration prospect for Lancang-Laochang Lead Zinc-polymetallic Deposit. Based on the application of new technologies, new theories or disciplines such as Digital information and computer technology, Remote sensing for deposits, Paleotectonics and paleolithofaces, Geochemistry, Geophysics, Mathematical Geology, Geographic information system (GIS) etc., the author has analyzed the spatial information of geological information, geophysical information, geochemical information and remote sensing information wholly with the help of the second developing software desktop of GIS, studied the changeable law of variables, established the quantitative and stereo mineral prospecting modes, specified and optimized the quantitative Prediction of Resources Targets. From these research items, the following conclusions have been drawn:
     No.1 Metallogenic geotectonic environments: Through the analysis or differentiation of the tectonic geological structure environment which formed the deposit with the characteristics of the petrochemistry and petrogeochemistry of the volcanic rocks, the author concludes that the volcanic rocks in the Lancang-Laochang Lead Zinc-polymetallic Deposit district belong to the rock types of basalt-andesite series such as alkalescence basalt, coarse face basalt and so on. According to the geochemical characteristics such as high contents of TiO_2, right inclination type of rich LREE ration curve, right inclination type of primary mantle standardized curve of microelement, high content of Nb, Zr, Th, we can think the vocanic rocks have the continental features. And the illustration of the Th/Hf-Ta/Hf for tectonics environment judgement indicates that the basalts are formed in the condition of continental ridge.
     No.2 The relationship between vocanic rocks's lithofacies and orebodies: The lithofacies of the vocanic rocks can be divided into four types: eruption, overflow, eruption sediment and extrude, meanwhile eruption sediment is very closed to orebodies. There is a direct relationship between the eruption sediment face and the orebodies in C_1~8. The orebodies are often found in the definite thickness ,usually over 5m, tuff which has formed in the condition of faults. The orebody of C_1~7, with the only relationship to the eruption sediment face, lies on the top part of the eruption sediment face. It mostly relates to the light black, black tuff or hoar andesite-like tuff. The orebodies in C_1~(5+6) almost lie on the eruption sediment face. They mostly relate to the grey-black tuff, the hoar or grey-black andesite-like tuff and marble. So, there is a definite relationship between the orebodies and the eruption sediment face.
     No.3 Geochemistry deposit: The approximate mean content of Pb isotope in the ore and wallrocks (carbonate rocks, volcanic rocks and granite porphyry) indicates the sources of Pb from these types of rocks are inherently related. From the construct Pb mode map, we can see that the source of Pb in the ore is very complex and the Pb belong to crust-mantle admixture Pb. The Pb in the volcanic rocks, carbonate rocks and part ore may all be from wallrocks (strata bearing original minerals).The Pb in the granite porphyry comes from the crust and there may be definite genetic relationship between it and deposit. The fact that the content of S isotope is near zero, with the characteristic of the S in the meteorolite, indicates the contents of S are mainly from basalts and partly from biology. According to the analysis of the calcites, the apparent differences between the comtent of d~(13)C_(PDB), varying from -7.2ω‰to +2.8ω‰with the mean value of -2.06ω‰, the comtent of d~(18)O, varying from -0.18ω‰to +10.5ω‰with the mean value of +5.72ω‰and the comtent of d~(13)C, varying from -5ω‰to -8ω‰, the comtent of d~(18)O, varying from +6ω‰to +8.5ω‰indicate the C from the calcites in the orebody originates from magma or strata or the admixture of magma, strata and seawater, and the apparent differences between the comtent of dD,varying from -69.86ω‰to -93ω‰with the mean value of -86.8ω‰as well as the comtent of d~(18)O_(H2O),varying from -1.53ω‰to +9.21ω‰with the mean value of +3.62ω‰in the liquid inclusion of Quartz and the comtent of dD,varying from -50ω‰to -80ω‰as wellas the comtent of d_(18)O, varying from +6ω‰to +9ω‰indicate that the metallogenic liquid may be water from magma and seawater or atmospheric precipitation.
     No.4 Geophysical information: Five abnormal TEM low resistance areas, two abnormal electricity areas and two abnormal magnetic areas have been gotten through adopting the effective geophysical prospecting techniques such as TEM, IP and high precision of magnetism and so on. Based on the comprehensively calculated output of electricity and resistance sound, which are combined with geological characteristics from earth surface and drills, the stratum C_1 interface contour map has been acquired. So, by means of systematically geophysical prospecting, a large quantity of useful geophysical prospecting information has been obtained.
     No.5 Geochemistry of elements: It can be found after analyzing the sample analysis results from wallrocks and ores that the high value abnormity of the main metallogenic elements composition concentrates on the crossing points of the different faults, appearing around the crater structure occasionally. This indicates the metallogenic temperature is a little high because of the volcano environment. So, there are two available prospecting areas which lie in the high value abnormity of the north part of Beixiang mountain and the southwest part of the Nanxiang mountain. From the matrix table of the variance maximum vertical rotation, we can deduce two research outcomes: F1 factor bearing the weight of Cu-Pb-Zn-As-Sb-Hg-Ag-Au stands for the massive pyrite exhaiative hydrothermal sedimentary mineralization epoch and F2 factor bearing the weight of Cu-Pb-Zn-As-Sb-Hg-Be-Sn-Mo-Y-Cr-Se-Yb-V-Nb-Ni-Ga implies the superimposed mineralization on the hydrothermal sedimentary deposit by the intrusion of deeply concealed basic igneous rocks and acidity igneous rocks. Therefore, there are two main metallogenic epoch of sedimentation, reconstruction and overlapping.
     No.6 Remote-sensing technology: After RS information interpretation on the seven wave bands of the regional 1;200000 LandsatTM and the Quickbird data, the author gives an explain to the line-ring structure qualitatively , analyzes the density ,number, quantative of optimize and benefits and the mean orientation of line structure and interprets the RS geological comprehensive digital information quantatively. Adopting the data amalgamation, the author manipulates the RS data, geophysical data, geochemical data by means of PCA and establishes a deposit RS comprehensive information prospecting modes for the purpose of RS metallogenic information prediction. The research results make it clear that there is a close relationship between the mineralization information and the linear geological structure, and most deposits lie in the crossing parts of line and ring geological structure.
     No.7 Quantitative prediction: With the help of prospecting signs, mine control factors, the grid cell (0.1Km×0.1Km) calculating methods, the author has established the prospecting information value modes and calculated the simple variable information value, the compound variable information value, the comprehensive information value and predicting information value. At last, the critical prospecting information value (2.5). Based on the critical value, four favourable prospecting prediction targets have been pointed out. Some of them are validated effectively.
引文
[1] 陈述彭,童庆禧,郭华东主编.遥感信息机理研究[M].北京:科学出版社,1998
    [2] 郑威,陈述彭.资源遥感纲要[M].北京:中国科学技术出版社,1995
    [3]] 张玉君,杨建民,陈薇.ETM+(TM)蚀变遥感异常提取方法研究与应用——地质依据和波谱前提[J].国土资源遥感,2002,54(4):30-36
    [4] Lee. k, Integrative Digital Image Analysis of Landsat for Mappering Hydrothermal limonite, Proceedings of the Fourth Thematic Conference on Remote sensing for Exploring Geology, 1985: 293-307
    [5] 王晓鹏,谢志清,伍跃中.ETM图像数据中矿化蚀变信息的提取——以西昆仑塔什库尔干地区为例[J].地质与资源,2002年6期:119-120
    [6] 刘星,胡光道.多源数据融合技术在成矿预测中的应用[J].地球学报,2003年10月第五期:463-468
    [8] Schcetsclaar. E. M. Fusion by the HIS transform; should we use cylindrical or spherical coordinates [J]. INT J Remote Sensing, 1998. 19(4): 759~765
    [9] Ehlers M. Multi-sensor image fusion techniques in remote sensing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1991, 46: 19~30
    [10] Chavez P S, Sides S C, Anderson J A, Comparison of three different methods to merge multi-resolution and multi-spectral data: Landsat Tm and Spot Panchromatic[J]. Photogrammetric Engineering and Remote Sensing, 1991, 57(3): 295~303
    [11] Jia Yonghong, Li Deren, Sun Jiabing. An Approach of Fusing Remotely Sensed Multi-spectral Images. with Aerial Photos, Proceedings of'Geoinformatlcs'96 Wuhan—International Symposium on the Occasion of the 40, 1996
    [12] Jr Chavez PS. Comparison of Three Different Methods to Merge Multi-resolution and Multi-spectral Data: Landsat TM and SPOT Panchromatic[J]. PEkRS. 1991, 57(3): 1637~1646.
    [13] 朱振海,黄晓霞,等.中国遥感的回顾与展望[J].地球物理学进展.2003.6:(310-316)
    [14] 曲家惠,张义彬.世界遥感技术发展现状及其地质应用[J].国处地质勘探技术.1994.4:4-12
    [15] 杨世瑜,王瑞雪.矿床遥感地质问题[M].云南:云南大学出版社,2003
    [16] 梅安新,彭望碌,秦其明,等.遥感导论[M].北京:高等教育出版社,2001版社,2003
    [17] 曹彤,胡卫民.TM图像的大地校正及其镶嵌方法研究[J].国土资源遥感,2001,49(3):36-40
    [18] 术洪磊,承继成.一种TM图像的快速几何精校正方法[J].遥感信息,1996:31-34
    [19] 赵帮元,荆小峰.TM卫星影像几何纠正技术方法浅探[J].中国水土保持,2000.6:30-32
    [20] 赖震刚,王继.利用ERDAS IMAGINE进行影像的几何精校正[J].现代测绘 2003 26(2):38-40
    [21] 杨槐,游思琼.TM波段组合的选择[J].遥感信息.1992,2:22-24
    [22] 王日冬,邢立新.矿床蚀变信息的遥感提取方法[J].世界地质.2000,19(4):397-400
    [23] 陈华慧.遥感地质学[M].北京:地质出版社,1984
    [24] 欧阳成甫,郎耀秀.云南老厂银铅矿床环形影象特征及成因[J].桂林冶金地质学院学报,1990,10(4):435-440
    [25] 李雷,赵斌,李元兴,马远.云南澜沧老厂多金属矿区遥感影像特征及其找矿意义[J],云南地 质,1990:50-56
    [26] 康耀红.数据融合理论与应用[M].西安:西安电子科技大学出版,1997
    [27] 刘燕君,金丽芳.矿产信息的遥感地面模式[M].北京:地质出版社,1993
    [28] 党安荣,王晓栋.陈晓峰,等.ERDAS IMAGINE遥感图像处理方法[M].北京:清华大学出版社,2003
    [29] 赵玉灵.遥感找矿模型的研究进展与评述[J].国土资源遥感,2003,57(3):1-4
    [30] 吴光庆.1:5万广西隆林安然背斜遥感地质解译成果与问题的分析.广西遥感中心
    [31] 李铁芳.遥感图像的数字处理原理及应用[M].昆明:云南科技出版社,1987
    [32] 常庆瑞,蒋平安,周勇,等.遥感技术导论[M].科学出版社,2004.2
    [33] 汤国安,张友顺,刘咏梅,等.遥感数字图像处理[M].科学出版社,2004.3
    [34] 王晓鹏,谢志清,伍跃中.ETM图像数据中矿化蚀变信息的提取—以西昆仑塔什库尔干地区为例.遥感技术应用,2002.4.
    [35] 兀伟.如何解译卫星遥感数据.测绘专栏,2004.1
    [36] 田庆久.遥感(RS)信息定量化理论、方法与应用.遥感技术应用,2005.1
    [37] 张守林.遥感在地质找矿中应用.北京矿产地质研究所2003年科研成果交流会,
    [38] 王增润,吴延之,段嘉瑞,等.滇西澜沧裂谷成矿作用兼论老厂大型铜铅银矿床成因[J],有色金属矿产与勘查,1992.1(4):278-282
    [39] 陈松岭.澜沧老厂银铅矿矿田构造[J].中国有色金属学报,1997.7(3).23-26
    [40] 欧阳成甫,徐楚明.云南省澜沧老厂地洼型银铅矿床的地球化学特征及成因[J].大地构造与成矿学,1991.15(4):317-326
    [41] 彭寿增.试论澜沧含银铅锌矿带的成矿地质条件 云南地质 1984.Vol.3,No.2
    [42] 范秉钧.澜沧老厂银铅锌矿成因及区域地质背景的探讨 云南地质 1985.Vol.4,No.1
    [43] 欧阳成甫,徐楚明,胡承绮,郎妖秀.云南澜沧老厂银铅锌矿区隐伏花岗岩体预测及其意义 大地构造与成矿学 1993.Vol.17,No.2
    [44] 李雷,段嘉瑞,李峰,马远,黄敦义.澜沧老厂铜多金属矿床地质特征及多期同位成矿 云南地质 1996.Vol.15,No.3
    [45] 陈元琰.云南老厂火山块状硫化物矿床的物质组成 桂林冶金地质学院学报 1994.Vol.14,No.2
    [46] 胡承绮,王宗学.云南老厂银铅锌矿区围岩蚀变特征 桂林冶金地质学院学报 1991.Vol.11,No.4
    [47] 周凤禄.澜沧老厂铅锌银矿床成矿条件浅识 西南矿产地质 1991.Vol.5,No.2
    [48] 曹显光,梁秉强.澜沧老厂大型多金属矿床的物化探标志和效果研究 西南矿产地质 1994.第三、第四期
    [49] 丁矢勇.滇西铅矿几个地球化学特征的研究 云南地质1994.Vol.13,No.4
    [50] 云南澜沧铅矿、云南有色地质局、昆明理工大学、中国科学院贵阳地球化学研究所 《云南澜沧银铅锌多金属矿床立体定位预测与增储研究》(内部资料)
    [51] 欧阳成甫,徐楚明.云南澜沧老厂地洼型银铅矿床的地球化学特征及成因 大地构造与成矿学 1991 15(4) 313-326
    [52] 李宏坤,杨世坤,等.澜沧老厂外围银铅锌铜多金属异常资源潜力评价 云南地质 2006 No.1
    [53] 欧阳成甫,徐楚明.云南澜沧老厂银铅锌矿床成因 桂林冶金地质学院学报 1991.Vol.11,No.3,P.245-252
    [54] 陈百友等.滇西澜沧老厂银多金属矿及外围矿体快速定位预测的综合示范研究,2000.11
    [55] 陈松岭,彭省临,王增润.澜沧老厂银铅矿矿田构造.中国有色金属学报,1997,7(3):1~5.
    [56] 王增润,黄震,彭省临,陈松岭,胡祥昭.澜沧“老厂型”银多金属块状硫化物矿床成因和成矿模式.中国有色金属学报,1997,7(4),1~6.
    [57] 张贤平.云南澜沧老厂铜铅多金属矿床地质特征与成因.江西有色金属,1999,13(1):15~18、21.
    [58] 陈百友,王增润,彭省临,张映旭,陈伟.澜沧老厂银铅锌铜多金属矿床成因探讨.云南地质,2000,21(2):134~144.
    [59] 刘友梅,杨蔚华.澜沧老厂银多金属矿床火山岩地球化学特征及环境识别.矿物学报,2001,21(4):699~704.
    [60] 西南有色地质勘查局309队.云南省澜沧老厂银、铅矿床一(1991)、二(1996)期地质勘查报告(内部资料)
    [61] 李虎杰,田询.澜沧铅锌银铜矿床矿物包裹体及成矿物化条件的研究 矿产与地质1995.Vol.9:No.2
    [62] 澜沧拉祜族自治县地方志编撰委员会 澜沧县情1991—2000[M] 昆明:云南科技出版社2002P.1-2
    [63] 高子英 云南主要铅锌矿床的铅同位素特征 云南地质1997 Vol.16,No.4,P.359-367
    [64] 西南有色地质勘探公司物探队.云南省澜沧县老厂铅矿区物化探工作报告.19955.12
    [65] 方宗杰,王玉净,郭振宇,周志澄,廖卓庭,潘华璋.滇西南澜沧县老厂浅水相“老厂组”时代之订正.地层学杂志,1999,23(4):248~256.
    [66] 池顺都,赵鹏大,刘粤湘.应用GIS研究矿产资源潜力[J].地球科学-中国地质大学学报,1999,24(5):493-497
    [67] 王全明,方一平.矿产资源评价中的GIS[J].中国地质,2001,28(4):3844
    [68] 鲍光淑,刘斌.基于空间分析的矿产资源评价方法[J].中南工业大学学报,2001,32(1):1~4
    [69] 杨学善,秦德先,陈耀光,等.地理信息系统(GIS)支撑下的综合信息成矿预测[J].地质与勘探,2004,40(2):71~76
    [70] 朱思才,吴加齐,刘和发.GIS技术在区域矿产资源勘查评价中的应用[J].有色金属矿产与勘查,1999,8(6):615~619
    [71] 朱大明,秦德先,方源敏.基于GIS的数字矿区与矿产资源预测方法研究[J].地矿测绘,2003,19(4):5~7
    [72] Wilford J. Thematic mapping and three-dimensional modeling of the regolith for mineral and environmental assessment[M/CD]. 31th International Geologic Congress. Brazil: [s.n], 2000
    [73] 李裕伟.空间信息技术的发展及其在地球科学中的应用[J].地学前缘,1998,5(1、2):335~341
    [74] Japues L A, Wyborn L A I, Gallagbe R. The role of geographic information system, empirical modeling and expert systems in metallogenic research [A]. 12th Australian Geological Convention, Geological Society of Australia Abstract (No. 37) [s.1.]: Perth, 1994, 196~197
    [75] C. M. Knox-Robinson, L. A. I. Wybom. Towards a holistic exploration strategy: Using geographic information systems as a tool to enhance exploration[J]. Australian journal of earth sciences, 1997, 44: 453~463
    [76] 曹瑜,胡光道.圈定“5P”找矿地段的GIS成矿预测空间模型及其应用[J].地球科学—中国地 质大学学报,1999,24(4):409~412
    [77] 陈永良,裴效渤,许亚光.资源危机矿山综合信息成矿预测[J].地质论评,1997,43(3):328~334
    [78] 矫东风,吕新彪.基于GIS空间分析的成矿预测[J].地质找矿论丛,2003,18(4):269~274
    [79] 张建龙,游丽君,秦举礼,等.利用GIS空间分析功能进行矿产资源评价的方法研究[J].物探化探计算技术,1997,19(3):283~286
    [80] 陈石羡.地理信息系统在金属矿产预测中的应用[J].地质找矿论丛,1998,13(1):74~83
    [81] 刘治国,池顺都,周顺平.成矿预测中应用GIS的主要步骤[J].地质找矿论丛,2002,17(2):140~144
    [82] C. P. Watson, A. N. Rencz and G. F. Bonham-Carte. Geographic information system are being applied to mineral resource assessment in Northem New Brunswiek[J], GEOS, 1989, 18(1)
    [83] Lyle A. Burgess. Recent applications and research into minenal prospective mapping using GIS[J]. Proceeding of third national forum on GIS in the geosciences, AGSO, 1997, 121~129
    [84] Houlding S M. 3D Geoscience Modeling Computer Technique for Geological Characterization[J]. Berlin: Springer-verlag, 1994
    [85] 蔡煜东,姚林声.人工神经网络在多金属成矿预侧中的应用[J],地质实验室.1994,10(4~5):315~318
    [86] Turner K. A, three-dimensional visualization of geo-science data: problems and potentials [J]. ITC Journal, 1995, (2), 151-152
    [87] Raper. J. F, Three -dimensional GIS for the 1990s[J]. ITC Journal, 1994, (2), 64-65.
    [88] 江斌,黄波,陆锋.GIS环境下的空间分析和地学视觉化[M],高等教育出版社2002.5
    [89] 池都顺,周顺平,吴新林.GIS支持下的地质异常分析及金属矿产经验预测[J].地球科学 1997,22(1):99-103
    [90] 徐青.地形三维可视化技术[M].北京:测绘出版社,2001
    [91] 张克歧,杨国东,杨化超.三维地面模型的可视化研究[J].东北测绘,2002,25(2):9—10
    [92] 尹汉辉等 云南兰坪—思茅地洼盆地演化的深部因素及壳慢复合成矿作用 大地构造成矿学1990.Vol.14,No.2,P.113-124
    [93] 李兴林 昌宁—孟连地区火山岩系基本特征及构造环境的认识 云南地质1997.Vol.16,No.2,165-183
    [94] 陈惜华,胡祥昭.滇西澜沧—孟连火山岩带火山岩特征与成因[J].中南矿冶学院学报1992,(1):1-7
    [95] 中国地质科学院矿产地质研究所.“三江中南段矿产资源地质-环境-技术经济综合评价示范”研究项目取得重要进展,2003.8
    [96] 杨应选,管士平,等.康滇地轴东缘铅锌矿床成因及成矿规律[M].成都,四川大学出版社,199
    [97] 王增润,吴延之,段嘉瑞,陈惜华,彭省临,刘石年,胡祥昭.滇西澜沧裂谷成矿作用兼论老厂大型铜铅银矿床成因.有色金属矿产与勘查,1992,1(4):207-215.
    [98] 杨开辉,侯增谦,莫宣学.“三江”地区火山成因块状硫化物矿床的基本特征与主要类型.矿床地质,1992,11(1):35~44.
    [99] 杨开辉,莫宣学.滇西南晚古生代火山岩与裂谷作用及区域构造演化.岩石矿物学杂志,1993,12(4):297-311.
    [100] 任治禨,朱智华,赵重顺.云南地体构造与成矿作用[M].北京:冶金工业出版社,1996,1~19.
    [101] 刘本培,冯庆来,方念乔,贾进华,何馥香.滇西南昌宁—孟连带和澜沧江带古特提斯多岛洋构造演化.地球科学,1993,18(5):529~539.
    [102] 沈上越,冯庆来,刘本培,莫宣学.昌宁—孟连带洋脊、洋岛型火山岩研究.地质科技情报,2002,21(3):13~17.
    [103] 陈炳蔚,王铠元,刘万熹,等.怒江-澜沧江-金沙江地区大地构造[M].第一版.北京:地质出版社,1987
    [104] 张峰根,黄路桥,张玉珺,等.怒江-澜沧江-金沙江构造体系及其演化程式[M].第一版.北京:地质出版社,1987
    [105] 陈炳蔚,李永森,曲景川,等.三江地区主要大地构造问题及其与成矿的关系[M].第一版.北京:地质出版社,1991.12
    [106] 刘增乾,李兴振,叶庆同等.三江地区构造岩浆带的划分与矿产分布规律[M].第一版.北京:地质出版社,1993.8
    [107] 吕伯西,王增,张能德,等.三江地区花岗岩及其成矿专属性[M].第一版.北京:地质出版社,1993.7
    [108] 莫宣学,路凤香,沈上越,等.三江特提斯火山作用与成矿[M].第一版.北京:地质出版社,1993.6
    [109] 阚荣举,林忠祥.云南地壳上地幔构造的初步研究[J].中国地震,1986,(4)
    [110] 李裕伟.空间信息技术的发展及其在地球科学中的应用[J].地学前缘,1998,5(1、2):335~341
    [111] 叶庆同,胡云中,杨岳清.三江地区区域地球化学背景和金银铅锌成矿作用[M].第一版.北京:地质出版社,1992.10
    [112] 罗建宁,张正贵,陈明,等.中华人民共和国地质矿产部地质专报 三江特提斯沉积地质与成矿[M].第一版.北京:地质出版社,1992.10
    [113] 陈元坤,吴上龙.云南地壳深部构造初析[J].云南地质,1982,1(3)
    [114] 罗君烈.云南矿床的成矿系列[J].云南地质,1995,14(4):251~262
    [115] 赵准.怒江-澜沧江-金沙江区域矿床成矿系列[J].云南地质,1993,12(3):247~265
    [116] 薛顺荣,胡光道,丁俊.成矿预测研究现状及发展趋势.云南地质.2001.20(4):411-416
    [117] 李新中,赵鹏大,胡光道.基于规则知识表示的模型单元选择专家系统的实现.地球科学一中国地质大学学报,1995.20(2):173-178.
    [118] 王世称,叶水盛.综台信息成矿系列预测专家系统[M].长春出版社,1999
    [119] 朱裕生,肖克炎,等.成矿预测方法.北京:地质出版社,1997
    [120] 孙志伟.会泽麒麟厂铅锌矿床隐伏矿体的发现及其预测的基础与方法.云南地质,1998
    [121] 金属矿产资源快速评价预测系统研究课题组.金属矿产资源评价分析系统MORPAS2.0使用手册[M].2003.12
    [122] 王世称,陈永良,夏立显.综合信息矿产预测理论与方法[M].第一版.北京:科学出版社,2000.3
    [123] 陈永清,王世称.综合信息成矿系列预测的基本原理和方法[J].山东地质,1995,11(1):55~62
    [124] 王世称、陈永清.成矿系列预测的基本原则及特点[J].地质找矿论丛,1994,9(4):79~85
    [125] 王世称,陈永清.金矿综合信息成矿系列预测理论体系[J].黄金地质,1995,1(1):1~7
    [126] Richard BM, Joseph MB, Rlchard SL, Roger WB. Characteristic Analysis-1981: Final program and a possible discobery. Math. Geol, 1983, 15(1): 59~83
    [127] 杨永华,赵善付.区域金矿成矿系列综合信息预测原理和方法[J].有色金属矿产与勘查, 1995,4(6):361~364
    [128] 薛顺荣,胡光道,丁俊.成矿预测研究现状及发展趋势[J].云南地质,2001,20(4):411~416
    [129] C. M. Knox-Robinson, L. A. I. Wybom. Towards a holistic exploration strategy: Using geographic information systems as a tool to enhance exploration[J]. Australian journal of earth sciences, 1997, 44: 453~463
    [130] 马淑珍.综合信息矿产预测回顾与展望[J].世界地质,1995,14(4):75~78
    [131] Woodall R. Empiricism and concept in successful mineral exploration[7]. Australian Journal of Earth Sciences, 1994, 41(1): 1~10
    [132] 曹新志,孙华山,徐伯骏.关于成矿预测研究的若干进展[J].黄金,2003,24(4):11~14
    [133] 肖克炎.应用综合信息法研究成矿规律及成矿预测的新进展[J].地球科学进展,1994,9(2):18~23
    [134] Donald A.Singer.资源定量评价发展方向展望[J].地球科学—中国地质大学学报,2001,26(2):152~156
    [135] 肖克炎.大比例尺综合信息成矿预测的研究问题及途径[J].黄金地质科技,1993,38(4):34~39
    [136] 曾健年,范永香,谭铁龙.现代成矿预测若干理论述评[J].矿产与地质,1996,10(6):361~367
    [137] 李景朝,刘少华,严光生.大型超大型金属矿床综合信息成矿预测方法研究[J].地球物理学进展,2002,17(4):736~744
    [138] 陈石羡.地理信息系统在金属矿产预测中的应用[J].地质找矿论丛,1998,13(1):74~83
    [139] 姚敬金,张素兰,曹洛华,等.中国主要大型有色、贵金属矿床综合信息找矿模型[M].第一版.北京:地质出版社,2002.11
    [140] 翟裕生,彭润民,王建平,等.成矿系列的结构模型研究[J].高校地质学报,2003,9(4):510~519
    [141] 徐兴旺,蔡新平.隐伏矿床预测理论与方法的研究进展[J].地球科学进展,2000,15(1):76~83
    [142] 张玲召.综合技术找矿预测应用的原理和方法[J].昆明理工大学学报,1997,22(2):7~11
    [143] 翟裕生,邓军,崔彬,等.成矿系统及综合地质异常[J].现代地质,1999,13(1):99~104
    [144] 伍宗华,古平等.隐伏矿床的地球化学勘查[M].第一版.北京:地质出版社,2000.6
    [145] 赵鹏大,陈永清,刘吉平,等.地质异常成矿预测理论与实践[M].第一版.北京:中国地质大学出版社,1999.9
    [146] 朱裕生,肖克炎,王全明,等.阿舍勒铜锌矿床及三维定位预测[M].第一版.北京:地质出版社,2002.4
    [147] A.H.Kohbhor著,池顺都译,桑隆康校.成矿分析和预测理论的方法及对象:现状和展望[J].地质科学译丛,1996,13(4):24~26
    [148] 赵鹏大.“三联式”资源定量预测与评价[J].地球科学—中国地质大学学报,2002,27(5):482~489
    [149] 沈远超,曾庆栋,刘铁兵,等.隐伏金矿定位预测[J].地质与勘探,2001,37(1):1~6
    [150] Cox D P, Singer D A. Mineral deposit models[J]. U. S. Geological Survey Bulletin, 1986, 1693: 379.
    [151] Bliss J D. Developments in mineral deposit modeling[J]. U. S. Geological Survey Bulletin, 1992, 2004: 168
    [152] 杨言辰,李绪俊,马志红.生产矿山隐伏矿体定位预测[J].大地构造与成矿学,2003,27(1):83~90
    [153] 肖克炎.试论综合找矿模型[J].地质与勘探,1994,30(1):41~45
    [154] Morgan P. The thermal structure and thermal evolution of the continental lithosphere[J]. Phys. Chem. Earth, 1984, (15): 107~193
    [155] 长春地质学院磁法教研室.磁法勘探[M].第一版.北京:地质出版室,1979.2
    [156] 武汉地质学院金属物探教研室.电法勘探教程[M].第一版.北京:地质出版社,1980.4
    [157] W.M.特尔福德,L.P.吉尔达特,R.E.谢里夫,D.A.基斯(著),吴荣祥(译).应用地球物理学[M].第一版.北京:地质出版社,1982.4
    [158] 地质科学研究院地球物理探矿研究所.地面电磁法实例[M].第一版.北京:地质出版社,1975.10
    [159] 顾功叙.地球物理勘探基础[M].北京:地质出版社.1990.7
    [160] 李昌年.火成岩微量元素岩石学[M].武汉:中国地质大学出版社,1992,74~125.
    [161] 张旗.如何正确使用玄武岩判别图.岩石学报,1993,15(增刊),87~94.
    [162] 秦德先.滇中铅锌矿床地球化学与成因研究 地质科学1994 Vol.29.No.1
    [163] 张乾,等.内蒙古恩陶勒盖银铅锌铟矿床的铅同位素组成及矿石铅的来源探讨 地球化学2002.Vol.31.No.3.253-258
    [164] Joanna M. Parr Granam R. Carr Rodeny W. Page Subseafloor origin for Broken Hill Pb-Zn-Ag mineralization New South Wales Australia Geology 2004. Vol. 32, No. 7, P. 589-592
    [165] Brovart. O.. Metallogenic Provinces and remobilization process studied by lead isotopes: lead-zinc ore deposits from the southern massif central Economic geology Vol. 77. P564-575
    [166] 中国科学院矿床地球化学开放实验室 矿床地球化学[M] 北京:地质出版社 1997.79-101, 475-491
    [167] 于津生,等.中国同位素地球化学研究[M] 北京:科学出版社 1997.P.410-425
    [168] 陈骏 王鹤年 地球化学[M] 北京:科学出版社 2004.P.104-171
    [169] 孙岩,等.断裂构造地球化学导论[M] 北京:科学出版社 1998.P.147-156
    [170] 牟保磊.元素地球化学[M] 北京:北京大学出版社 1994.P.216-23061-66,P.134-149,P.202-215
    [171] 朱炳泉,等.地球科学中同位素体系理论与应用—兼论中国大陆壳幔演化[M] 北京:科学出版社 1998.P.216-230
    [172] 杨祝良.Pearce型构造岩浆地球化学判别图评述—以玄武岩为例.火山岩地质与矿产,1992,13(3):80~86.
    [173] 颜耀阳.玄武岩的构造环境判别及其多解性分析.国外前寒武纪地质,1994,(4):71~75.
    [174] 汪云亮,张成江,修淑芝.玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别.岩石学报,2001,17(3):413~421.
    [175] 孙鼎,彭亚鸣.火成岩石学[M].北京:地质出版社,1985,72~88.
    [176] Pearce J.A.,1984,玄武岩判别图“使用指南”,国外地质,11,1-12.
    [177] Le Maitre R W, Bateman P, Dudek A, Keller J, Lameyre J, Le Bas M J, Sabine P A, Schmid R, Sorensen H, Streckeisen A, Wooley A R and Zanettin B. A classification of igneous rocks and glossary of terms. Oxford: Blackwell, 1989, 193.
    [178] Irvine T N and Baragar W R A. A guide to the chemical classification of the common volcanic rocks. Canad. J. Earth Sci., 1971, (8): 523~548.
    [179] Eldridge C. S., Williams N., Walshe J. L. Sulfur isptope variability in sediment-hosted massive sulphide deposits as determinedusing using the iron microprobe SHRIMP: Ⅱ. A study of the H. Y. C. deposit at McArt-hur river, Northem Territory, Australia[J]. Econ. Grol. 1993, 88(1): 1~26
    [180] Pearce T. H., Gorman B. E. and Birkett T. C., 1975, The TiO_2-K_2O-P_2O_5 diagram: a method of discriminating between oceanic and non-oceanic basalts. Earth Planet. Sci. Lett., 24, 419-426.
    [181] Boynton W. V., 1984, Geochemistry of the rare earth elements: meteorite studies. In: Henderson P. (ed.), Rare earth element geochemistry. Elsevier, pp.63-114.
    [182] Pearce J. A., 1987, An expert system for the tectonic characterization of ancient volcanic rocks. J. Volcanol. Geotherm. Res., 32, 51-65.
    [183] Condie K. C., 1989, Geochemical change in basalts and andesites across the Archaean-Proterozoic boundary: identification and significance, Lithos, 23, 1-18.
    [184] 袁见齐 朱上庆等 矿床学[M] 北京:地质出版社 1985.P.131-159
    [185] 张启锐 实用回归分析[M] 北京:地质出版社 1978
    [186] 卢纹岱 SPSS for Windows 统计分析[M] 北京:电子工业出版社 2005
    [187] 朱裕生,李纯杰,等.成矿地质背景分析[M].北京:地质出版社,1997.4
    [188] 肖克炎,张晓华,王四龙,等.矿产资源GIS评价系统[M].北京:地质出版社,2000.3
    [189] 王文,王永生,钱丽苏,邹永生,郝芳,马芳,谭文兵,等.国外矿产资源勘查过程实例分析.国土资源经济调查与研究.2003年第7期
    [190] 中国地质大学(武汉)信息工程学院,武汉中地信息工程有限公司.MAPGIS地理信息系统使用手册[M].2000
    [191] 朱裕生,矿产资源评价方法学导论[M],地质出版社,1984
    [192] 吴冲龙.资源信息系统教程[M].中国地质大学出版社,2004.1
    [193] DEHRADUN, "BASIC COURSE CURRICULUM—POST GRADUATE COURSE ON RS & GIS OF CSSTEAP—FUNDAMENTAL OF REMOTE SENSING & GIS, INDIAN INSTITUTE OF REMOTE SENSING, 2000. 11
    [194] 徐振邦,娄元仁.数学地质基础[M].北京大学出版社,1994.11
    [195] 郝向阳.地图信息识别与提取技术[M] 测绘出版社2001.6
    [196] 赵鹏大.定量地学方法及应用[M].高等教育出版社,2004.1
    [197] 中国科学院长沙大地构造研究所.活化构造理论(地洼学说)的应用与发展—“地洼学说奖”历届获奖论文选集,地震出版社,1999.10
    [198] 方开泰,潘恩沛.聚类分析[M].北京:地质出版社.1982.4
    [199] 余建英,何旭宏.数据统计分析与SPSS应用[M].北京:人民邮电出版社.2003.4
    [200] 卢纹岱.SPSS FOR WINDOWS统计分析[M].北京:电子工业出版社.2005.5
    [201] 赵鹏大,胡旺亮,李紫金.矿床统计预测[M].北京:地质出版社.1983.3
    [202] 吴锡生.化探数据处理方法[M].北京:地质出版社.1983.10
    [203] 翟裕生.金属成矿学研究的若干进展[J].地质与勘探,1997,33(1)
    [204] 赵化琛.我国若干裂谷构造特征及其成矿作用[J].矿产与地质,1995,9(1)
    [205] 陈国达.裂谷构造研究现状一斑[J].国外地质,1985,(4)
    [206] 涂光炽.关于超大型矿床的寻找和理论研究[J].地球科学进展,1989,(6)
    [207] 芮宗瑶.海底喷气沉积矿床研究的新进展[J].国外矿床地质,1989,(2)
    [208] 王安建,金巍,孙月丰,银剑钊.流体研究与找矿预测[J].矿床地质,1997,16(3):278-288
    [209] 陈毓川.矿床的成矿系列研究现状与趋势[J].地质与勘探,1997,33(1)
    [210] 赵鹏大,孟宪国.地质异常与矿产预测[J].地球科学,1993,18(1):39-47.
    [211] 范永香.成矿预测中成矿规律研究的几个问题[J].地质与勘探.1982,18(5):12-17
    [212] 邱小平.四维成矿模式及其研究意义[J].矿产与地质.1992,6(6):417-419
    [213] 杨荆舟,罗君烈,赵准.云南矿床的区域成矿模式[J].云南地质,1995,17(增刊):56-59,64-68,101-103
    [214] 孟祥化.发育于被动边缘和裂陷海槽盆地的沉积建造[J].岩相古地理,1991(4)36-45
    [215] 李芳著.海底喷气成因热水沉积成矿理论研究综述[J].地质科技情报[J],1993,12(2):83-86
    [216] 姜齐节.火山岩区块状硫化物矿床的类型、评价标志和成因[J].有色金属矿产与勘查,1994,3(1):4-9
    [217] 王登红,陈毓川.与海相火山作用有关的铁-铜-铅-锌矿床成矿系列类型及成因初探[J].矿床地质,2001,20(2):112~118
    [218] 赵鹏大,池顺都,李志德,等.矿产勘查理论与方法[M].第一版.北京:中国地质大学出版社,2001.7
    [219] 侯德义,刘鹏鄂,李守义,等.矿产勘查学[M].第二版.北京:地质出版社,1997.11
    [220] 肖克炎,朱裕生,张晓华等.矿产资源评价中的成矿信息提取与综合技术[J].矿床地质,1999,18(4):379~384
    [221] 王登红,陈毓川.与海相火山作用有关的铁-铜-铅-锌矿床成矿系列类型及成因初探[J].矿床地质,2001,20(2):112~118
    [222] 陈永良,裴效渤,许亚光.资源危机矿山综合信息成矿预测[J].地质论评,1997,43(3):328~334
    [223] 毕思文.地球系统科学与可持续发展[M].第一版.北京:地质出版社,1998.4
    [224] 陈毓川,赵逊,张之一,等.世纪之交的地球科学—重大地学领域进展[M].第一版.北京:地质出版社,2000.6
    [225] 赵鹏大,池顺都,李志德,等.矿产勘查理论与方法[M].第一版.北京:中国地质大学出版社,2001.7
    [226] Gong Yuanming, Xiao Deyun et al 2001. Application of multi-sensor data fusion techniques in automatic vertical drilling detecting system[J]. Earth Science, 26(5): 524~527
    [227] Fang Hongbin, Li Zhizhong. 1998. The application of integration of remote sensing and chemical exploration information analysis to studying geological mineral deposit predication[J]. Remote Sensing for Land & Resources, 4(38): 33~36.
    [228] 戴塔根,邱冬生,鲍光淑,等.地学数据模型及数据融合技术[J].中南工业大学学报,2001,6,32(3):221-223
    [229] 李军,周成虎.地学数据特征分析[J].地理科学,1999.19(2):158-161
    [230] 马洪超,胡光道.地学数据融合技术综述[J].地质科技情报,1999,18(1):97-101
    [231] 高建国.个旧矿区龙树脚矿段综合信息成矿预测与资源合理开发利用[M].云南:云南科技出版社,2004
    [232] 高建国,郭君.矿产资源信息系统构建与应用[M].云南:云南科技出版社,2006
    [233] 秦德先,高建国,等.矿床数学经济模型[M].昆明:云南科技出版社2001.P.276-309
    [234] 秦德先,高建国 等.滇中铅锌矿地质研究[M].昆明:云南科技出版社 1998
    [235] 高建国.滇中铅锌矿床控矿因素及成矿预测.云南地质1996 No.1
    [236] 高建国.滇中碳酸盐岩铅锌多金属矿元素地球化学特征及矿源分析.云南地质1995 No.2
    [237] 高建国.宜良大兑冲铅锌地质特征及成矿作用探讨.云南地质1997 No.4
    [238] 高建国,秦德先.滇中铅锌矿床成矿控制因素及成矿预测.云南地质,1996,3,Vol.15,No.1:68-79

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700