用户名: 密码: 验证码:
聚苯乙烯基炭微球的制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1990年Sony公司实现锂离子电池商业化以来,锂离子二次电池以其优越的性能受到各国研究工作者和企业的普遍重视。尽管人们广泛研究与开发别的替代产品,但炭电极材料以其高度的结构稳定性和良好的循环性能仍成为目前唯一实现商业化应用的锂离子电池负极材料。球形炭材料(也称炭微球)具有规则的形貌、光滑的表面、可控制的晶体结构和高的堆积密度,是一类极具优势和潜力的锂离子电池负极材料,其研究开发日益受到重视。
     针对目前以煤或石油芳烃重油为原料制备球形炭存在工艺路线复杂、球形度难以控制、颗粒大小不匀、成本高等不足,本论文立足于聚合物基可石墨化炭球的制备、结构及电化学性能研究。选用容易由分散聚合法合成得到的聚苯乙烯微球作为原料,其经过交联和高温处理后,可获得高度石墨化的碳材料。聚苯乙烯基炭微球制备的关键是提高其热稳定性和保持其在高温热处理中的球形形态。这里采用两种方法将聚苯乙烯微球交联成热固性的树脂:一是三氯化铝催化交联;二是与二乙烯基苯共聚后氧化交联。交联后的聚苯乙烯树脂经炭化、石墨化处理获得适宜作为锂离子电池负极材料的炭球。此外,研究并提出两种交联方式的反应机理;并测试聚苯乙烯基炭微球的电化学性能,获得比容量和炭结构间的关系,为新型球形炭材料的制备和广泛应用奠定基础。
     通过分散聚合法合成得到聚苯乙烯微球;以三氯化铝为催化剂、四氯化碳为交联剂对微球进行交联处理,得到热固性聚苯乙烯树脂;经炭化处理后获得粒径在3μm左右的中空和实心的两种炭微球。同时,经过交联处理,聚苯乙烯微球的炭化收率大大提高,由大约1%提高到30%。用XRD和IR对样品在改性处理前后结构和官能团的变化进行研究,提出三氯化铝为催化剂、四氯化碳为交联剂对聚苯乙烯改性的反应机理。在三氯化铝存在下,四氯化碳和聚苯乙烯间存在溶解和交联固化平衡,适量四氯化碳促进聚苯乙烯表面及内部发生交联反应。在较高的交联程度下,四氯化碳难以渗入聚苯乙烯微球内部,从而形成外层高交联-内部低交联的核壳结构聚合物微球,经炭化得到中空炭微球。聚苯乙烯经改性处理、炭化及石墨化处理后,0.2mA/cm~2下30循环后其锂离子电池的比容量稳定在360mA·h/g,0.8mA/cm~2下20循环后稳定在280mA·h/g,显示出高的比容量和良好的大电流充放性能。
     以二乙烯基苯为共聚单体,通过分散聚合制备了苯乙烯/二乙烯苯共聚微球,研究了二乙烯苯添加量对样品形貌和热性能的影响。对二乙烯苯添加量为0%、30%、50%、70%、100%的样品进行氧化、炭化和石墨化处理,结果表明,聚二乙烯基苯微球直接炭化后不能保持球形,氧化处理使聚二乙烯基苯微球在700℃炭化后保持球形。提出了氧化交联的机理:在热空气中,氧气和交联聚合物中的不饱和双键发生加成-氧化反应,生成羧酸基团和羟基,活泼基团进一步发生酯化反应得到更高交联度的聚合物。以炭化的样品作为锂离子电池的负极材料,研究了二乙烯基苯添加量对样品石墨化前后电化学性能的影响,样品PD50在0.2mA/cm~2下30循环后其锂离子电池的比容量稳定在250mA·h/g,0.8mA/cm~2下20循环后稳定在220mA·h/g。
     此外,研究了PVC基炭微球石墨化后的形貌变化和电化学性能,小电流(0.2mA/cm~2)30循环后其锂离子电池的比容量稳定在235mA·h/g,大电流(0.8mA/cm~2)下20循环后其锂离子电池的比容量稳定在215mA·h/g,显示很好的大电流充放电性能。并初步制备出聚二乙烯基苯包覆纳米硅粉和二氧化钛复合微球及聚苯乙烯包覆二氧化锡复合纳米球。
Since Sony Company commercialized lithium ion batteries in 1990, lithium ion battery has been paid much attention by researchers and companies due to their advantages in electrochemical properties. Despite the considerable efforts to find other substituents, carbon materials still remain the only commercial anode for lithium ion batteries because of their steady structure and good circular properties. Among carbon materials, sphere-shaped carbon particles (or called carbon microbeads) are a kind of promising anode materials for Li-ion batteries owing to their regular morphologies, controllable crystal structure, smooth surface and high packing density.
     Mesocarbon microbead prepared from coal tar pitch or petroleum heavy oil is an attractive and competitive anode material for Li-ion batteries. However, there are some disadvantages, e.g., complicated process, wide size distribution and high cost. This thesis focused on the preparation, structure and electrochemical properties of carbon microbeads from polystyrene (PS) microspheres. Choosing polystyrene microspheres as the starting materials is based on their facile synthesis via the dispersion polymerization and the highly graphitizable ability when they are cross-linked and carbonized at high temperature. The key factor for the preparation of polystyrene-based carbon microbeads is how to realize the stabilization when PS microspheres are heat treated in inert gas atmosphere. Two kinds of techniques were tried to crosslink PS into thermosetting PS resin, i.e., AlCl3 and DVB modification. Carbon microbeads were obtained as anode materials for Li-ion batteries by carbonization and graphitization of the cross-linked polystyrene microspheres. In addition, the reaction mechanism for cross-linking of two-types was elucidated. The electrochemical properties of carbon microbeads were analyzed to find the relation between the structure of microbeads and the specific capacities. The above research provided a guide for preparation and wide applications of new kinds of spherical carbon materials.
     PS microbeads were prepared by dispersion polymerization. The thermosetting PS resin were obtained via the cross linking by CCl_4 under the catalysis of AlCl_3, and two kinds of carbon microbeads (solid or hollow spheres) with the diameter of 3μm were obtained by carbonization. Meanwhile, the carbonization yield of cross-linked PS microbeads was greatly improved from 1% to 30%. The changes of structure and functional groups of samples before and after modification were characterized by XRD and IR, and it was indicated that PS microbeads were modified by the cross-linked agent of CCl_4 under the catalysis of A1C1_3. With the aid of A1C1_3, there was a balance between the dissolution and solidification of cross-linking for PS microbeads and CCl_4, and the cross-linking reaction on the surface of and inner of PS was promoted by proper amount of CC1_4. It is difficult for CC1_4 to penetrate into the center of PS microbeads with high cross-linking degree, under which polymer microbeads with core-shell structure were obtained, and therefore hollow carbon microbeads were prepared by further carbonization. As anode materials for Li-ion batteries, the specific capacity of PS-based carbon sample after graphitization kept a stable value of 360 mA·h/g after 30 circles under the current density of 0.2 mA/cm~2 and of 280 mA·h/g after 20 circles under the current density of 0.8 mA/cm~2, suggesting the material possesses the high specific capacity and a high-rate charge-discharge capabilitis.
     Microbeads from the styrene--divinylbenzene copolymer were prepared by dispersion copolymerization, and the effect of DVB content on the morphology and thermostability of product were investigated. The results of oxidation, carbonization and graphitization of product with DVB content of 0%, 30%, 50%, 70% and 100% show that the spherical shape of copolymer microbeads could not be maintained after direct carbonization, while could be kept after oxidation and then carbonization at 700℃. The mechanism of cross-linking reaction induced by oxidation was proposed, i.e., during heat-treatment the oxidation crosslinking reaction took place between oxygen and pendant double-bonds in copolymers in air to form carboxyl and hydroxyl groups; and polymer with high degree of cross-linking were obtained by the esterification of active groups. The effect of DVB content on the electrochemical properties of carbonized and graphitized products were studied and the results show that the PD50 kept a stable specific capacity of 250 mA·h/g after 30 circles under the current density of 0.2 mA/cm~2 and of 220 mA·h/g after 20 circles under the current density of 0.8 mA/cm~2.
     In addition, the morphology and electrochemical properties of PVC-based carbon microbeads after graphitization were studied and the results show, that the specific capacity of the product kept a stable specific of 235 mA·h/g after 30 circles under small current density and of 215 mA·h/g after 20 circles under large current density.
引文
[1] 大谷杉郎,真田雄三.炭素化工学基础[M].日本:株氏会社社,1985,4~29
    [2] Endo M, Kim C, Nishimura K, Fujino T, Miyashita K. Recent development of carbon materials for Li ion batteries [J]. Carbon, 2000, 38 (2): 183~197
    [3] 窦红兵,粟莲芳.煤沥青炭化活化工艺对球形活性炭性能的影响[J].煤气与热力,2005,11(25):31~34
    [4] 沈曾民,张文辉等.活性碳材料的制备与应用[M].北京,化学工业出版社,2006
    [5] 王景坤,宋怀河,超微/纳米球形炭材料的制备、表征和电化学性能研究[D],北京化工大学硕士研究生毕业论文,2005
    [6] 王克温,乔文明,刘植昌,等.沥青球空气氧化不熔化的研究.炭素技术,1996,(2):5~9
    [7] 宋燕,凌立成,乔文明,王克温,刘郎.活化条件对沥青基球状活性炭结构与吸附性能的影响[C].第三届全国新型炭材料会议,1997,239~241
    [8] 苏发兵,郭坤敏.沥青基球形活性炭赋活性研究[C].第二届全国新型炭材料会议.1995,157~161
    [9] Kim M, Yoon S B, Sohn K., Kim J Y, Shin C H, Hyeon T, Yu J S. Synthesis and characterization of spherical carbon and polymer capsules with hollow macroporous core and mesoporous shell structures [J]. Microporous and Mesoporous Materials, 2003, 63: 1~9
    [10] Qing Wang, Hong Li, Liquan Chen. Novel spherical microporous carbon as anode material for Li-ion batteries [J]. Solid state ionics, 2002, 152-153: 43~50
    [11] Chang Y C, Sohn H J, Ku C H, et al. Anodic performance of mesocarbon microbeads (MCMB) prepared from synthetic naphthalene istropic pitch [J]. Carbon, 1999, 37(8): 1285~1297
    [12] 吴振军,陈宗璋,汤宏伟,等.钠离子电池研究进展[J].电池,2002,32(2):45-47
    [13] 吴宇平,万春荣,姜长印.锂离子二次电池,第一版[M].北京,化工工业出版社,2002:5~7
    [14] 黄学杰.锂离子电池及其关键技术,创新者的报告[R].中科院综合计划局编,科学出版社,2000:1~9
    [15] Kocirik M, Brych J, Hradil J. Carbonization of bead-shaped polymers for application in adsorption and in composite membranes [J]. Carbon, 2001, 39(8): 1919~28
    [16] 何炳林,王补泰,于燕生,宗建超,郭贤权,史作清,斐光文,钱庭宝,李春荣,宋福云。新型吸附剂—球形碳化树脂的研究[J].高分子通讯,1982,4:271~277
    [17] Yang Ruizhi, Xingping Oiu, Huairno Zhang, etal. Mono-dispersed hard carbon spherules as a catalyst support for the electrooxidation of methanol [J]. Carbon, 2005; 43(1): 11~16
    [18] Auer E, Freund A, Pietsch J, Tacke T. Carbons as supports for industrial precious metal catalysts [J]. Appl Catal, 1998, 173: 259~271
    [19] 吴宇平.方世璧.可逆高储锂的锂离子电池炭负极材料的研究进展[J].化学通报.1997,(9):15~18
    [20] Endo M, Kim C, Nishimura K, Fujino T, Miyashita K. Recent development of carbon materials for Li ion batteries [J]. Carbon, 2000, 38 (2): 183~197
    [21] 日本炭素材料协会编,新炭材料入门,中国金属学会炭素材料专业委员会译[M],沈阳,1~10
    [22] Mabuchi A. Charge-discharge characteristics of the mesocarbon micrbaeds heat-treated at different temperatures [J]. J Electrochemist Soc, 1995, 142(4): 1401~1406
    [23] 伊藤修二,长谷川正树,村井右之.日特开平:62325764,1994-11-25 [P]
    [25] Fong R, Saken U V, Dahn J R. Studies of lithium intercalation into carbons using monaqueous electrochemical cells [J]. J Electrochem Soc, 1990, 137 (7): 2009~2013
    [26] Zheng T, Zhong Q, Dahn J R. High-capacity carbon prepared from phenolic resin for anode of lithium-ion batteries [J]. J Electrochem Soc, 1995, 142: L211~L214
    [27] 西美绪.用作锂离子二次电池负极的活性物质炭[J].新型碳材科,1993,3(3):46~51
    [28] Yata S. Structure and properties of deeply Li-doped polyacenic semi-conductor materials beyond LiC6 stage [J]. Synth. Met, 1994, 62: 153~158
    [29] 杨汉西,艾新平.锂离子电池炭负极研究[J].电源技术,1992,5:2~5
    [30] 冯熙康.锂离子在石墨中的嵌入特性研究[J].电源技术,1997,21(40):139~142
    [31] Shi H, Barke J. Structure and lithium ion intercalation properties of synthetic and natural graphite, J Electrochem Soc [J]. 1996, 143 (11): 3466~3472
    [32] Tokumitsu K, Mabuchi A, Fujimoto H, Kasuh T. Electrochemical insertion of lithium into carbon synthesized from condensed aromatics [J]. J Electrochem Soc, 1996, 143(7): 2235~2239
    [33] Yata S, Kanoshita H, Komori M, Ando N, Kashiwamura T, Harada T, Tanaka K, Yamahe T. Structure and properties of deeply Li-doped polyacenic semiconductor materials beyond C6Li stage [J]. Synth Met, 1994, 62 (2): 153-158
    [34] Matsumura Y, Wang S, Kasuh T. The dependence of reversible capacity of lithium ion rechargeable batteries on the crystal structure of carbon electrodes [J]. Synth Met, 1995, 71: 1755~1756
    [35] Zheng T, Liu Y, Fuller E W, Dalm J R. Lithium insertion in high capacity carbonsceous materials [J]. J Electrochem Soc, 1995, 142: 2581~2590
    [36] Zheng T, Mckinnon W R, Dahn J R. Hysteresis during Lithium insertion in hydrogen-containing carbons [J]. J Electrochem Soc, 1996, 143: 2137~2145
    [37] Gnanaraj J S, Levi M D, Levi E, Salitra G, Aurbath D, Fischer J E. Comparision between the electrochemical behavior of disordered carbons and graphite electrodes in connection with their structure [J]. J Eicctrochem Soc, 2001, 148 (6): A525~A536
    [38] Kim Y, park S M. Intercalation mechanism of ions into graphite layers studied by nuclear magnetic resonance and impedance experiments [J]. J Electrochem Soc, 2001, 148 (3): A194~A199
    [39] Gerardine G B, Ralph EW. Modeling lithium intercalation in a porous carbon electrode [J]. J Electrochem Soc, 2001, 148 (1): A54~A66
    [40] Cao F, Barsukov I V, Bang H J, Zaleski P, Prakash J. Evaluation of graphite materials as anode for lithium-ion batteries [J]. J Electrochem Soc, 2000, 147 (10): 3579~3583
    [41] Wang S, Yata S, Nagano J, Okano Y, Kinoshita H, Kikuta H, Yamabe T. A new carbonaceous material with large capacity and high efficiency for rechargeable Li-ion batteries [J]. J Electrochem Soc, 2000, 147 (7): 2498~2502
    [42] Zaghib K, Nadeau G, Kinoshita K, Effect of graphite particle size on irreversible capacity loss [J], J Electrochem Soc, 2000, 147 (6): 2110~2115
    [43] Yoshio M, Wang H, Fukuda K, Hara Y, Adachi Y. Effect of carbon coating on electrochemical performance of treated natural graphite as lithium-ion battery anode material [J]. J Electrochem Soc, 2000, 147 (4): 1245~1250
    [44] Chung G C, Jun S H, Lee K Y, Kim M H. Effect of surface structure on the Irreversible capacity of various graphitic carbon electrodes [J]. J Electrochem Soc, 1999, 146 (5): 1664~1671
    [45] Bindra C, Nalimova V A, Sklovsky D E, Bencs, Fischer J E. Super dense LiC_2 as a high capacity Li intercalation anode [J]. J Electrochem Soc, 1998, 145 (7): 1277~2380
    [46] Tokumitsu K, Mabuchi A, Fujimoto H, Kasuh T. Electrochemical insertion of lithium into carbon synthesized from condensed aromatics [J]. J Electrochem Soc, 1996, 143 (7): 2235~2239
    [47] Tatsumi K, Akai T, Imamura T, Zaghib K, Iwashita N, Higuchi S, Sawada Y. ~7Li-NMR observation of lithium insertion into mesocarbon microbeads [J]. J Electrochem Soc, 1996, 143 (6): 1923~1929
    [48] Kim J S, Yoon W Y, Yoo K S, Park G S, Lee C W. Charge-discharge properties of surface-modified carbon by resin coating in Li-ion battery [J]. J Power Sources, 2002, 104: 175~180
    [49] Lee H Y, Baek J K, Jang S W, Lee S M, Hong S T, Lee K Y, Kim M H. Characteristics of carbon-coated graphite prepared from mixture of graphite and polyvinylchloride as anode materials for lithium ion batteries [J]. J Power Sources, 2001, 101: 206~212
    [50] Sato Y, Nakano T, Kobayakawa K, Kawa T I, Yokoyama A. Partical-size effect of carbon powers on the discharge capacity of lithium ion batteries [J]. J Power Sources, 1998, 57: 271~277
    [51] Buiel E, Dahn J R. Li-insertion in hard carbon anode materials for Li-ion batteries [J]. Electrochemical Acta., 1999, 45: 121~130
    [52] Dahn J R, Sleigh A K, Shi H, Reimers J N, Zhong Q, Way B M. Dependence of the electrochemical intercalation of lithium in carbons on the crystal structure of the carbon [J]. Electrochemical Acta, 1993, 38 (9): 1179~1191
    [53] Lee J K, An K W, Ju J B, Cho B W, Cho W I. Electrochemical properties of PAN-based carbon for rechargeable lithium ion batteries [J]. Carbon, 2001, 39(9): 1299~1305
    [54] Fujimoto H, Mabuchi A, Tokumitsu K, Kasuh T. Relationship between the charge capacity of a turbostratic carbon anode for a Li secondary battery and its structure [J|. Carbon, 2000, 38(6): 871~875
    [55] Matsumura Y, Wang S, Mondori J. Interactions between disordered carbon and lithium in lithium ion rechargeable batteries [J]. Carbon, 1995, 33(10): 1457~1462
    [56] Wu Y P, Jiang C, C Wan, Holze R. Mild preparation of anode materials by a salt-free green method [J]. Electrochcm Comm 2002, 4: 483~487
    [57] Fey G T, Chen K L, Chang Y C. Effect of surface modification on the electrochemical performance of pyrolyzed sugar carbons as anode materials for Lithium-ion batteries [J]. Mater Chem. Phys, 2002, 76: 1~6
    [58] Pan Q, GAO K, Wang L, Fang S. Novel modified graphite as anode material for lithium ion batteries [J]. J Mater Chem. 2002, 12: 1833~1838
    [59] Sato K, Noguchi M, Demachi A, Oki N, Endo M. A mechanism of lithium storage in disordered carbons [J]. Science, 1994, 264: 556~558
    [60] Fey G T K, Kao Y C. Synthesis and characterization of pyrolyzed sugar carbon under nitrogen or argon atmospheres as anode materials for lithium-ion batteries. Mater Chem. Phys [J], 2002, 73: 37~46
    [61] Ehrlich G M, Durand C, Chen X, Hugener T A, Spicss F, Suib S L. Metallic negative electrode materials for rechargeable nonaqueous batteries [J]. J Electrochem Soc, 2000, 147 (3): 886~891
    [62] Li H, Shi L H, Lu W, Huang X J, Chen L Q. Studies on capacity loss and capacity fading of nanosized Sn/Sb alloy anode for Li-ion batteries [J]. J Electrochem Soc, 2001, 148 (8): A915~A922
    [63] Fernandez F J, Vicente C P, Tirado J L. On the structure and electrochemical reactions with lithium of tin (Ⅱ) phosphate chloride [J]. J Electrochem Soc, 2000, 147 (5): 1663~1667
    [64] Kim H, Choi J, Sohn H J, Kang T, The insertion mechanism of lithium into Mg_2Si anode material for Li-Ion batteries [J], J Electrochem Soc, 1999, 146 (12): 4401~4405
    [65] Wang G X, Sun L, Bradhurst D U, Zhong S, Dou S X, Liu H K. Innovative nanosized lithium storage alloy with silica as active centre [J]. J Power Sources, 2000, 88: 278~281
    [66] Larcher D, Beaulien L Y, Mao O, George A E, Dahn J R. Study of the reaction of lithium with isostructurai Al_2B and various AlxB alloys [J]. J Electrochem Soc 2000, 147 (5): 1703~1708
    [67] Hamon Y, Brousse T, Jousse F, Topart P, Buvat P, Schleich D M. Aluminum negative electrode in lithium ion batteries [J]. J Power Sources, 2001, 97&98: 185~187
    [68] Wang G X, Sun L, Bradhurst D H, Zhong S, Dou S X, Liu H K. Nanocrystalline NiSi alloy as anode material for lithium-ion batteries [J]. J Alloys Comp, 2000, 306: 249~252
    [69] Morimoto H, Nakai M, Tatsumisago M, Minami T. Mechanochemical synthesis and anode properties of SnO-based amorphous materials [J]. J Electrochem Soc, 1999, 146 (11): 3970~3973
    [70] Wachtler M, BesenHard J O, Winter M. Tin and tin-based intermetallics as new anode materials for lithium-ion cells [J]. J Power Sources, 2001, 94: 189~192
    [71] Li H, Huang X, Chen L. Structure and electrochemical properties of anodes consisting of modified SnO [J]. J Power Sources, 1999, 81&82: 335~339
    [72] Morimoto H, Tatsumisago M, Minami T. Anode properties of amorphous SiO_2-SnO_2 powers synthesized by mechanical milling [J]. Electrochemical and Solid-State Letters, 2001, 4 (2): A16~A18
    [73] Li N, Martin C R, Scrosati B. A high-rate, high-capacity, nanostructured tin oxide electrode [J]. Solid-state letters, 2000, 3 (7): 316~318
    [74] Idota Y, Kubota T, Matsufuji A, Mackawa Y, Miyasaka T. Tin-based amorphous oxide: a high-capacity lithium-ion-storage material [J]. Science, 1997, 276: 1395~1397
    [75] Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries [J]. Natuge, 2000, 407: 496~499
    [76] Yu A, Frech R. Mesoporous tin oxides as lithium intercalation anode materials [J]. J Power Sources, 2002, 104: 97~100
    [77] Wu Y P, Rahm E, Holze R. Carbon anode materials for lithium ion batteries [J]. J Power Sources, 2003, 114: 228~236
    [78] Liu W, Huang X, Wang Z, Li H, Chen L. Studies of stannic oxide as an anode material for lithium-ion batteries [J]. J Electrochem Soc, 1998, 145 (1): 59~62
    [79] Coutney I, Dahn J. Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites [J]. J Electrochem Soc, 1997, 144 (6): 2045~2052
    [80] Mao O, Dunlap R A, Dahn J R. Mechanically alloyed Sn-Fe(-C) powers as anode materials for Li-ion batteries Ⅰ, The Sn_2Fe-C system [J]. J Electrochem Soc, 1999, 146 (2): 405~413
    [81] Mao O, Dahn J R. Mechanically alloyed Sn-Fe(-C) powers as anode materials for Li-ion batteries Ⅱ, The Sn-Fe system [J]. J Electrochem Soc 1999, 146 (2): 414~422
    [82] Mao O, Dahn J R. Mechanically alloyed Sn-Fe(-C) powers as anode materials for Li-ion batteries Ⅲ, Sn_2Fe: SnFe_3C active/inactive composites [J]. J Electrochem Soc, 1999, 146 (2): 423~427
    [83] Santos P J, Brousse T, Schleich D M. Serch for suitable matrix for the use of tin-based anodes in lithium ion batteries [J]. Solid State Ionics, 2000, 135: 87~93
    [84] Ahn S, Kim Y, Kim K J, Kim T H, Lee H, Kim M H. Development of high capacity, high rate lithium ion batteries utilizing metal fiber conductive additives [J]. J Power Sources, 1999, 81&82: 896~901
    [85] Ehrlich G E, Durand, Chen C X, Hugener T A. Spiess F, Suib S L, Metallic negstive electrode materials for rechargeable nonaqneous batteries [J]. J Electrochem Soc, 2000, 147 (3): 886~891
    [86] We Y P, Ritter J A, White R E, Popov B N. N-composite microencapsulated graphite as the negative electrode in lithium-ion batteries, Ⅰ Initial irreversible capacity study [J]. J Electrochem Soc 2000, 147 (4): 1280~1285
    [87] Shi L H, Li H, Wang Z, Huang X J, Chen L Q. Naao-SnSb alloy deposited on MCMB as a anode material for lithium ion batteries [J]. J Mater Chem. 2001, 11: 1502~1505
    [88] Li H, Wang O, Shi L, Chen L Q, Huang X J. Nanosized SnSb alloy pinning on hard non-graphitic carbon spherules as anode materials for a Li ion battery [J]. Chem. Mater, 2002, 14: 103~108
    [89] Lee J Y, Zhang R, Liu Z. Lithium intercalation and deintercalation reaction in synthetic graphite containing a high dispersion of SnO [J]. Solid-state letters, 2000, 3 (4): 167~170
    [90] Chen W, Lee J, Liu Z. Electrochemical lithiation and de-lithiation of carbon nanotube-Sn_2Sb nanocomposite [J]. Electrochem Comm., 2002, 4: 260-265
    [91] Bokhonov B, Korchagin M. The formation of graphite encapsulated metal nanoparticles during mechanical activation and annealing of soot with iron and nickel [J]. J Alloys Comp, 2002, 333: 308~320
    [92] Egashira M, Takatsuji H, Okada S, Yamaki J I. Properties of containing Sn nanoparticles activated carbon fiber for a negative electrode in lithium batteries [J]. J Power Sources, 2002, 107: 56~60
    [93] Shi L H, Wang O, Li H, Wang Z, Huang X J, Chen L Q. Electrochemical performance of Ni-deposited graphite anodes for lithium secondary batteries [J]. J Power Sources, 2001, 102: 60~67
    [94] Wang G X, Ahn J H, Lindsay M J, Sun L, Bradhurst D H, Dou X, Liu H K. Graphite-tin composites as anode materials for lithium-ion batteries [J]. J Power Sources, 2001, 97&98: 211~215
    [95] Read J, Foster D, Wolfenstine J, Behl W. SnO_2-carbon composites for lithium ion battery anodes [J]. J Power Sources, 2001, 96: 117~281
    [96] Tamai H, Matsuoka S, Ishihara M, Yasuda H. New carbon materials from pitch containing organotin compounds for anode of lithium ion batteries [J]. Carbon, 2001, 39(10): 1515~1523
    [97] 王爱平.非金属矿模板法制备多孔炭的研究[D].博士学位论文,2006,33~34
    [98] Unsal E., Elmas B., Camli ST., Tuncel M., Senel S., Tuncel A.. Monodisperse-porous poly(Styrene-co-Divinylhenzene) heads providing high column efficiency in reversed phase HPLC [J]. Journal of Applied Polymer Science 2005, 95, 1430~1438.
    [99] Huang F., Ke C., Kao C., LEE W.. Preparation and application of partially porous poly(styrenc-divinylhenzene) particles for lipase immobilization [J]. Journal of Applied Polymer Science, 2001, 80: 39~46
    [100] M.Kocirik, J.Brych, J.Hradil. Carbonization of bead-shaped polymer for application in adsorption and in composite membranes [J]. Carbon, 2001, 39(12): 1919~1928.
    [101] Hidemi O, Hirotaka A, Rikunori Y. Production of modified phenolic resin microspheres [P].日本专利,JP 6166733,06/14/1994
    [102] Kyu T. Lee, Yoon S. Jung, and Seung M. Oh. Synthesis of Tin-Encapsulated Spherical Hollow Carbon for Anode Material in Lithium Secongdary Batteries [J]. J. AM. CHEM. SOC. 2003, 125, 5652-5653
    [103] Yamamoto, A. Endo, T, Ohmori, etc.. Porous properties of carbon gel microspheres as adsorbents for gas separation [J]. Carbon 2004, 42(8~9): 1671~1676
    [104] Kim M, Yoon S B, Sohn K, Kim J Y, Shin C H, Hyeon T, Yu J S. Synthesis and characterization of spherical carbon and polymer capsules with hollow macroporous core and mesoporous shell structures [J]. Microporous and Mesoporous Materials, 2003, 63: 1~9
    [105] 王芙蓉,李开喜,吕春祥等.酚醛树脂基活性炭微球的电化学性能研究,Ⅰ.酚醛树脂基活性炭微球制备过程的研究[J].新型炭材科,2005,20(1):58~62
    [106] 杨骏兵,康飞宇,黄正宏等.添加钙对酚醛树脂基球形炭活化特性及孔结构的影响[J].清华大学学报:自然科学版2002,42(10):1297~1299
    [107] 刘秀军,王成扬,李同起,袁克峰.酚醛树脂对均相成核的中间相炭微球生成的作用,炭家技术,2003,124:1~4
    [108] 石振海,李克智,李贺军等,闭孔碳微球泡沫材料制备工艺与性能研究[J],功能材料,2005,(36)12:1944-1946,1950
    [109] Jianfeng Yao, Huanting Wang, Jin Lin, etc., Preparation of collidal microporous carbon spheres from furfuryl alcohol [J], Carbon, 2005, 43(8): 1709-1715
    [110] 张睿,梁晓怿,詹亮等,酚醛—糠醛基炭气凝胶的合成和表征[J].新型炭材料,2002,(17)4:23~28
    [111] 李媛,尹华强,裴伟征等.糠醛渣球形炭的制备及脱硫性能[J],资源开发与市场,2005,(21)6:487~490.
    [112] L.J. Fu, H. Liu, H.P. Zhang, Synthesis and electrochemical performance of novel core/shell structured nanocomposites [J], Electrochemistry communications 2006, 8: 1~4
    [113] Tamai H, Sumi T, Yasuda H, Preparation and Characteristics of Fine Hollow Carbon Particles [J], Journal of Colloid and Interface Science, 1996, 177: 325~328
    [114] Jong-Sung Yu, Suk Bon Yoon, Geun Seok Chai. Ordered uniform porous carbon by carbonization of sugars [J], Carbon, 2001, 39(9): 1421~1446
    [115] Minsuk Kim, Suk Bon Yoon, Kwonnam Sohn, Jeon Kim, etc. [J] Micorporous and mesoporous materials, 2003, 63: 1~9
    [116] 沈曾民主编.新型炭材料[M],北京化学工业出版社,2003
    [117] Wang Z L, Kang Z C. Pairing of pentagonal and heptagonal carbon rings in the growth of nanosize carbon spheres synthesized by a mixed-valent oxide-catalytic carbonization process [J]. J Phys. Chem., 1996, 100(45): 17725-17731
    [118] Sharon M, Mukhopadhyay K, Yase K, et al. Spongy carbon nanoheads a new material [J]. Carbon, 1998, 36(5-6): 507~511
    [119] Kamegawa K, Yoshida H. Preparation and characterization of swelling porous carbon heads [J]. Carbon, 1997, 35(5): 631~639
    [120] Wang Y G, Chang Y C, Ishida S, et al. Stabilization and carbonization properties of mesocarbon microheads (MCMB) prepared from a synthetic naphthalene isotropic pitch [J]. Carbon, 1999, 37(6): 969~976
    [121] Ph Serp, R Feurer, Ph Knick. et al. A chemical vapor deposition process for the production of carbon nanospheres [J]. Carbon, 2001, 39(4): 621~626
    [122] Miao J Y, Dennis W Hwang, Che-Chen Chang, et al. Uniform carbon spheres of high purity prepared on kaolin by CCVD [J]. Diamond and Related Materials, 2003, 12(8): 1368~1372.
    [123] Jieshan Qiu, Yongfeng Li, Yunping Wang, et al. A novel form of carbon micro-balls from coal [J]. Carbon, 2003, 41(4): 767~772
    [124] Pocsik I, Veres M, Fule M, et al. Carbon nano-particles pre-pared by ion-clustering in plasma [J]. Vacuum, 2003, 71(1-2): 171~176
    [125] Vilas Ganpat Pol, Menachem Motiei, Aharon Gedanken, Jose Calderon-Moreno, Masahiro Yoshimura, Carbon spberules: synthesis, properties and mechanistic elucidation [J], Carbon 2004, 42(1): 111~116
    [126] Jianwei Liu, Mingwang Shao, Oun Tang, etc., A medial-reduction route to hollow carbon spheres [J], Carbon 2002, 41(8): 1645~1687
    [127] Liqiang Xu, Wanqun Zhang, Qing Yang, et al. Three dimensionally braided carbon fabric-reinforced nylon composites prepared by in situ polymerization [J] Carbon, 2005, 43(5): 1084~1114
    [128] Kodama M, Fujirua T, Esumi K, Meguro K and Florida H. Preparation of meso-carbon microbeads with a narrow size distribution. Carbon. 1988. 26(4): 595~598
    [129] 李新贵,黄美荣.高性能中介相沥青基炭微球及炭片[J].材料科学与工艺,1997,5(3):92~96
    [130] Yoon Song-Ho, Park Yang-Duk, Maochida Iso. Preparation of carbonaceous spheres from suspensions of pitch materials [J]. Carbon, 1992, 30(5): 781~786
    [131] Lu Yong-gen, Ling Li-cheng, Oh Sehmin, etc., Preparation of carbon microbeads from pitch and resin by suspension [J], New carbon materials 2001, 16(3): 1~5
    [132] Esumi K, Nishina S, Sakurada S, Meguro K, Honda H. Plasma treatment of heat-treated meso-carbon microbeads. Carbon, 1987, 25(6): 821~825
    [133] 王红强,李新军,郭华军,等.中间相炭微球结构对其电化学性能的影响,中南工业大学学报,2003,34(2):140~143
    [134] 罗道成,易平贵,陈安国,等.用煤焦油制备优质活性炭的研究,湘潭矿业学院学报,2003,18(1):87~90
    [135] 郑洪河,张虎成,高书燕。中间相炭微球与液体非水电解质的配伍性,河南师范大学学报,2003,31(1):127~128
    [136] K.Esumi, H. Honda, H. Oda, Preparation of carbonaceous gel beads [J], Carbon 1992, 30: 942~944
    [137] Kunio Esumi, Susumu Eshima, Yuuji Murakami, Hidemasa Honda, Hirokazu Oda, [J] Colloids and sudaces A: Physicochemical and engineering aspects 1996, 108: 113~116
    [138] 李永峰,邱介山,王云鹏等.一种新颖煤基球形炭及其形成机理,大连理工大学学报,2002,42(6):663~668
    [139] Lie Jianwei, Shao Mingwang, Tang Oun, et al. A medical reduction route to hollow carbon spheres [J]. Carbon, 2003, 41(8): 1682~1685
    [140] Wang Zhenxia, Yu Liping, Zhang Wei, Zhu Zhiyuan, He Guowei, Chen Yi and Hu Gang. Carbon spheres synthesized by ultrasonic treatment. Physics Letters A, 2003, 307(4): 249~252
    [141] Sang-lck Lee, Seong-Ho Yoon, Chul Wan Park, et al. Preparation of microporous carbon nanospheres [J]. Carbon, 2002, 41 (8): 1652~1654
    [142] Yang Jun bing, Ling Li cheng, Liu Lang, et al. Preparation and properties of phenolic resin-based activated carbon spheres with controlled pore size distribution [J]. Carbon, 2002, 40(6): 911~916
    [143] Wang Qing, Li Hong, Chen Liquan, et al. Monodispersed hard carbon spherules with uniform nanopores [J]. Carbon, 2001, 39 (14): 2211~2214
    [144] Masaki Yoshio, Flongyu Huang, Yun Sung Lee, et al. Naphthalene carbon beads suffocate formaldehyde (NSF)-resin derived carbon beads as anode material for Li-ion batteries [J]. Electrochemical Acta, 2003, 48(7): 791~797
    [145] Goutfer-Wurmser F, Konno H, Kaburagi Y, Oshida K. and Inagaki M.. Formation of nickel dispersed carbon spheres from chelate resin and their magnetic properties. Synthetic Metals, 2001, 118(1-3): 33~38
    [146] Konno H, Matsuura R, Yamasaki M and H. Habazaki. Microstructure of cobalt dispesed carbon sphere prepared from chelate resin. Synthetic Metals, 2002, 125 (2): 167~170
    [147] 潘才元主编,高分子化学[M].合肥:中国科学技术大学出版社,2003年
    [148] 康继超,魏树礼.单分散、大粒径聚苯乙烯微球的研制[J].北京医科大学学报,1997, (3):238~240
    [149] Cristina Martin, Liliana Ramirez and Jorge Cuellar. Stainless steel microbeads coated with sulfonated polystyrene-co-divinylbenzene. Surface and Coatings Technology, 2003, 165(1): 58~64
    [150] Baharpava G. S., Khan H. U., Bhattacharyya K. K., SAN copolymer by suspension polymerization. Ⅱ Bead size distribution and molecular weight. J. Appl. Polym. Sci., 1979, 23, 1181~1187
    [151] F. P. Regas and G. N. Valkanas, Physical characterization of suspeasion-crosslinked polystyrene particles and their sulphonated products: 1. Nonionic networks, Polymer, 1984, 245~248
    [152] Taylor T. W., Reichert K. H., The influence of reactor type and operating conditions of the molecular weight distribution in vinyle acetate polymerization. J. Appl. Polym. Sci., 1985, 30, 227~250
    [153] 曹同玉,戴兵,戴俊燕.单分散大粒径聚合物微球的合成及应用[J].高分子通讯,1995,(3):174~180
    [154] 罗正平,张秋禹,谢钢,等.分散聚合研究[J],高分子通报,2002,5:35~40
    [155] 叶强,张志成,葛学武.分散聚合的研究进展——分散聚合的机理和应用研究[J].高分子材料科学与工程,2004,20(3):9~12
    [156] 张凯,雷毅,贾利军.江璐霞.分散聚合及单分散聚合物微球制备技术[J].化学世界.2002,7:378~381
    [157] 曹同玉,戴兵,戴俊燕.大粒径单分散聚合物微球的合成及应用[J].聚合物乳液通讯,1994,(2)1~7
    [158] 王为,郭鹤桐,高建平,于九皋,单分散聚苯乙烯微球的制备[J].材料研究学报,1998,(12)6:638~631
    [159] 张洪涛,江兵兵,黄锦霞.非水分散聚合制备交联聚苯乙烯微球—单体浓度对聚合速率和粒子大小的影响[J],高分子材料科学与工程,2002,18(4):57~61
    [160] 曹同玉,戴兵,戴俊燕,等.单分散、大粒径聚苯乙烯微球的制备[J],高分子学报,1997(2):158~165
    [161] 江兵兵,张洪涛.分散聚合法制备微米级聚苯乙烯微球[J],胶体与聚合物,2000,18(4):31~34
    [162] 李艺,李效玉.单分散聚苯乙烯微球的制备及其影响因素的研究[J],北京化工大学学报 2004,(31)5:53~56
    [163] 张凯,雷毅,王宇光,江璐霞.单分散聚苯乙烯微球的制备及影响因素研究[J].功能高分子学报 2002,(15)2:189~193
    [164] 张凯,黄渝鸿,周德惠,傅强,江璐霞.反应原料组成对单分散苯乙烯微球粒径及其分布的影响[J].离子交换与吸附,2003,19(3):200~207
    [165] 茹宗玲,杜慧.苯乙烯分散聚合反应制备均一粒径PS微球[J],安阳师范学院学报,2002,5:18~20
    [166] 胡建华,吕绪良,杨武利等.单分散聚合物微球的制备及影响因素[J],复旦学报 1997,(36)4:464~468
    [167] 赵玲琳,徐自力.分散聚合法制备单分散聚苯乙烯微球的研究[J].安徽师范大学学报(自然科学版),2002,25(1):38~41
    [168] 刘国诠,余兆楼.色谱柱技术[M].北京:化学工业出版社,2001
    [169] Linda L Lloyd. Rigid macroporous copolymers as stationary phase in high-performance liquid chromatography. Journal of Chromatography, 1991, 544: 201~217
    [170] Thomoson B, Rudin A, Lajioe G.. Dispersion copolymerization of styrene and divinylbenzene. Ⅱ. Effect of crosslinker on particle morphology. J. of Applied Polym. Sci., 1996, 59: 2009~2028
    [171] 张洪涛,黄锦霞,江兵兵,李小琴.制备单分散交联聚苯乙烯微球共聚合动力学和粒径的研究[J].应用化学,2001,(18)9:726~730
    [172] Hattor, Sudol E D, El-Aasser M S. Highly crosslinked polymer particles by dispersion polymerization [J]. Journal of Applied Polym. Sci., 1993, 50: 2027~2034
    [173] 丁先锋,段海宝,李秋萍,彭奇均.单分散交联聚苯乙烯的合成[J].化工进展,2003,(22)11:1207~1209
    [174] 彭洪修,朱以华,古宏晨等.无皂乳液聚合法合成均一性聚苯乙烯微球[J].华东理工大学学报,2002,28(3):260~262
    [175] 尤丽莎,张文敏.微波辐照合成单分散、大粒径的聚苯乙烯微球[J].安徽师范大学学报,2000,23(1):100~102
    [176] 隋希华,黄天宝.单分散交联聚苯乙烯微球HPLC固定相的合成[J].合成化学,(6)3:302~306
    [177] 黄金满,杨梅林,沈家骢,刘延苓.沉淀聚合制备聚二乙烯基苯微粒[J].功能高分子学报,1996,9(3):377~382
    [178] Tamai H, Sumi T, Yasuda H. Preparation and Characteristics of Fine Hollow Carbon Particles [J]. Journal of Colloid and Interface Science, 1996, 177(2): 325~328
    [179] Jang J, Ha H, Fabrication of Carbon Nanocapsules Using PMMA/PDVB Core/Shell Nanoparticles [J]. Chemistry of Materials. 2003, 15(11): 2109~2111
    [180] Kocirik M, Brych J, Hradil J. Carbonization of bead-shaped polymers for application in adsorption and in composite membranes [J], Carbon, 2001, 39(8): 1919~28
    [181] 章晓中.电子显微分析.清华大学材料系讲义[C],2002,128~132
    [182] 徐如人,庞文琴.分子筛与多孔材料化学[M]。科学出版社。2004,127~130,173,443
    [183] 翁诗甫编著.傅里叶变换红外光谱仪[M].北京:化学工业出版社,2005年,250~258
    [184] Li K, Stover H D J. Highly crosslinked micron-range polymer microspheres by dispersion polymerization of divinylbenzene [J]. J Polym Sci: Part A: Polymer Chem, 1993, 31: 2473~2479
    [185] Frank R S, Downey J S, Stover H D H. Synthesis of divinylbenzene-maleic anhydride microspheres using precipitation polymerization [J]. J Polym Sci: Part A: Polymer Chem, 1993, 36: 2223~2227
    [186] 赵玉增,白锋,黄文强.聚二乙烯基苯微球的合成及其表征研究[J].高分子学报,2004,3:410~414
    [187] 赵天宝主编.分析试剂·化学药品手册[M],北京:化学工业出版社,2006年,57~58
    [188] 汪昆华,罗传秋,周啸.聚合物近代仪器分析[M].北京:清华大学出版社,1991,20~45
    [189] 翁诗甫编著.傅里叶变换红外光谱仪[M].北京:化学工业出版社,2005年,250~258
    [190] 王茂章,贺福编.碳纤维的制造、性质及其应用[M].北京:科学出版社,1984,36~37
    [191] 程能林编著,溶剂手册(第二版)[M].北京:化学工业出版社,2004年,201~205
    [192] 胡宏纹主编,有机化学[M].北京:高等教育出版社,1997年,200~202
    [193] B. Thomson, A. Rudin and G. Lajoie, Dispersion copolymerization of styrene and divinyibenzene. Effect of crosslinker on particle morpholygy [J]. J. Appl Polym Sci, 1996, 59: 2009~2008
    [194] 马光辉,苏志国,高分子微球材料[M].北京:化学工业出版社,2005.6,184
    [195] 赵彦保,周静芳,张治军,周铁羽.苯乙烯纳米微球的合成及摩擦学行为的研究[J].化学研究,1998,4(9):16~19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700