用户名: 密码: 验证码:
重庆石灰岩地区石漠化过程中水分与氮素对土壤—构树系统氮、磷元素营养的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了有效合理地治理喀斯特石漠化问题,找出适合本地石漠化恢复的树种,以及探讨石漠化恢复树种的生理适应机制,本文进行了野外调查实验,并结合野外实验结果,设计了主要土壤因子(水分和氮素)的胁迫模拟实验,水分处理分为四个水平:W_1(田间持水量的90%)、W_2(田问持水量的70%)、W_3(田间持水量的50%)和W_4(田间持水量的30%);氮素分为N_1(0mgN/kg土)、N_2(75mgN/kg土)、N_3(150mgN/kg土)和N_4(300mgN/kg土)四个氮素水平,对适生树种(构树)的生物量、氮磷吸收、氮磷积累量和氮磷利用效率、土壤氮磷含量及其氮磷组分间的转化进行了研究,主要结论如下:
     1通过野外植被调查发现,构树为该地区演替系列中出现最早的木本植物,从草本阶段到草灌丛阶段均有出现,且构树为喀斯特地区的先锋树种,经济价值高,因此,构树可以作为该地区植被恢复的树种。
     2随着演替的进行,群落物种生长型趋于多样化,草本植物逐渐减少,灌木和乔木种类不断增加。群落结构趋于稳定,生态功能增强。不同演替阶段群落内各层次物种多样性表现为灌木层>草本层>乔木层。群落物种多样性指数与土壤有机质、土壤氮含量以及土壤含水量显著相关,说明这几个因素能明显影响该地区的植被恢复。
     3以构树作为实验材料的室内模拟实验结果表明,水分与氮素对构树生物量有显著影响,且二者交互对整株生物量的作用明显,但对相对生长速率的作用不明显。构树生物量在土壤含水量为田间持水量的70%时最高,并显著高于其它水分处理;根冠比随水分的变化规律则相反,相对生长速率随着土壤水分的减少而下降。构树生物量和相对生长速率随着施氮量的增加先增加后下降,当施氮150mg/kg时构树生物量最大,氮肥用量超过该值时,生物量反而下降。
     4水分与氮素对构树的养分吸收利用具有明显的交互作用。在水分胁迫和不同的氮素供应水平下,氮磷在叶片的含量最高,其次为根系,茎中氮磷含量较低。氮磷含量及积累量随着土壤含水量的增加而增加,而当土壤含水量为田间持水量的90%时,氮磷含量及氮磷积累量反而下降;氮磷含量及氮积累量随施氮量的增加呈现先增加后下降的趋势,临界值为施氮150mg/kg。磷积累量随施氮量的增加而增加,以施氮300mg/kg时最高,和施氮150mg/kg时没有差异。构树的净氮磷吸收速率随着土壤水分含量的升高先上升后下降,随着施氮量的增加而增加。构树氮磷利用效率基本表现为随土壤供水水平的增加而增加;氮利用效率随供氮水平的升高而下降,磷利用效率随氮素施用量的增加而增加。
     5水分与氮素对土壤全氮、无机氮和有机氮各组分的影响极显著,二者间的交互作用对土壤全氮、无机氮和有机氮各组分的影响也达到极显著水平。土壤中全氮和有机氮各组分的含量随着土壤含水量的降低而降低,无机氮含量随着含水量的升高先下降后升高。施肥后,土壤中氮的含量显著增加。酸解性氮各组分在土壤中的含量顺序为氨基酸态氮>酸解未知氮>酸解氨态氮>氨基糖态氮。各有机氮组分的变异程度为非酸解氮>酸解性氮;氨基糖态氮>酸解未知氮>非酸解氮>酸解氨态氮>氨基酸态氮。
     6水分对土壤全磷、有效磷和有机磷的影响显著,氮素对土壤全磷、有效磷影响显著,对有机磷的影响不显著,同时水分与氮素的交互作用对土壤全磷、有效磷和有机磷的影响也不显著。土壤中的全磷随着土壤含水量的增加而增加,有机磷随着含水量的增加而下降,有效磷随含水量的增加先下降后增加。土壤中的全磷、有效磷和有机磷含量随着施氮量的增加而增加。随着施氮量的增加,土壤全磷和有效磷含量显著增加,有机磷增加不显著。
     水分对土壤Ca_2-P、Ca_8-P、Al-P、缓效磷源和潜在磷源的影响显著,氮素对Ca_2-P、Ca_8-P、Al-P、Fe-P和缓效磷源的影响显著,水分与氮素的交互作用对无机磷组分影响不显著。土壤中的Ca_2-P和缓效磷源含量随着土壤含水量的增加而增加,潜在磷源则减少。土壤无机磷含量随着施氮量的增加而增加,但无机磷中潜在磷源的相对含量下降。土壤中各形态无机磷的分布规律均为Ca_(10)-P>O-P>Fe-P>Ca_8-P>Al-P>Ca_2-P,O-P和Ca_(10)-P两种形态的无机磷占土壤无机磷总量的80%以上,土壤磷的有效性非常低。
     7综合以上研究,构树可以作为该地区石漠化治理的恢复树种,且构树的生物量和吸收积累量;以及土壤氮磷养分供应状况随着土壤水分和氮素状况的改善而增加,在土壤含水量为田间持水量的70%和施氮150mg/kg时达到最大。南方喀斯特地区气候适宜,雨水充足,虽然土壤水分亏缺发生频率高,但持续时间短,这可能是在退化喀斯特土地上出现构树的原因所在。
Karst is one of the weakest kinds of ecological environments and one of the main factors that restrict economic development in south-west China. And restoring vegetation and improving soil quality become urgent affairs of the region. In this paper, species diversity of communities with different succession times and soil property were studied in restoration processes, and simulative laboratory was done under greenhouse, One year old seedlings of Broussonetia papyrifera (Linn.)Vent. were grown in pots under greenhouse conditions with vary water contents and nitrogen treatments to study the adaptive mechanisms of Broussonetia papyrifera (Linn.)Vent. in biomass, ration of root to shoot, nitrogen and phosphorus uptake, nitrogen and phosphorus use efficiency, soil nitrogen and phosphorus contents, changes of soil organic nitrogen fractions and inorganic phosphorus fractions. The water treatments were W_1 (90% of WHC), W_2 (70% of WHC), W_3 (50% of WHC), and W_4 (30% of WHC). The nitrogen treatments were N_1 (0mgN/kg soil), N_2 (75mgN/kg soil), N_3 (150mgN/kg soil) and N_4 (300mgN/kg soil). The treatment lasted 56 days, the results obtained were as follows:
     1. Broussonetia papyrifera (Linn.)Vent. was the pioneer, and soil organic matter, soil nitrogen and soil water content had remarkable effect on Shannon-winner index.
     2. Soil water and nitrogen had remarkable effect on the biomass, and the interaction of soil moisture and nitrogen was significant. When soil moisture was 70% of WHC, biomass was significantly increased. No difference of the biomass was found when soil moisture was at 30% and 50% of WHC. The ratio of root to shoot was decreased when soil moisture increased. The biomass increased with the increase of nitrogen application rates, but even more nitrogen could not increase the biomass, N_3 treatment had the highest biomass.
     3. Soil moisture, nitrogen and the interaction of them had significant effect on nitrogen and phosphorus contents, nitrogen and phosphorus accumulation, net nitrogen and phosphorus uptake and use efficiency. Leaves had the highest level of nitrogen and phosphorus, and the stems had the lowest level. The contents, accumulations and net uptakes of nitrogen and phosphorus of plant were decreased with decreasing of soil water contents, while when the soil moisture was 90% of WHC, the contents, accumulations and net uptakes of nitrogen and phosphorus were lower than those of the soil moisture was 70% of WHC. The contents, accumulations and net uptakes of nitrogen and phosphorus were increased with increasing of nitrogen supply, and decreasing when nitrogen supply was 300mgN/kg soil, and there was no difference at 150mgN/kg soil and 300mgN/kg soil. Nitrogen and phosphorus use efficiency of plant were limited when soil moisture was low, nitrogen use efficiency decreased while phosphorus use efficiency increased with increasing nitrogen applied.
     4. Soil total nitrogen and organic nitrogen fractions were significantly influenced by soil moisture, nitrogen and the interaction of them. Contents of total nitrogen and organic nitrogen fractions were increased when soil moisture was high, while the content of (NH_4~+ + NO_3~-) was decreased when soil moisture was high. And Contents of total nitrogen, organic nitrogen fractions and (NH_4~+ + NO_3~-) were increased with nitrogen fertilizer supplied, and significantly higher than those of plots without nitrogen addition. The order of soil nitrogen contents was: N_4> N_3> N_2> N_1. And acid hydrolysable nitrogen> nonhydrolysable nitrogen, of the forms of acid hydrolysable nitrogen, amino acid nitrogen> hydrolysable unidentified nitrogen> ammonium nitrogen> amino sugar nitrogen.
     5. Soil moisture had significant effect on total phosphorus, organic phosphorus and available phosphorus, and nitrogen had significant effect on total phosphorus and available phosphorus in soil but no organic phosphorus. And the interaction of them had no significant effect on total phosphorus, organic phosphorus and available phosphorus. Total phosphorus content had almost no change, contents of organic phosphorus and available phosphorus increased with the decreasing of soil moisture. When soil moisture was at 70% of WHC, content of soil available phosphorus was the lowest. And total phosphorus and available phosphorus content significantly increase with the increasing nitrogen application rates, but organic phosphorus content had no significantly increase.
     Soil water content and nitrogen had significant effect on Ca_2-P, Ca_8-P, Al-P, and (Ca_8-P+ Al-P+ Fe-P), but the interaction of them had no significant effect on the fraction of inorganic phosphorus. The contents of Ca_2-P and (Ca_8-P+ Al-P+ Fe-P) decreased with the decrease of soil moisture and nitrogen application rates. The percentages of different inorganic phosphorus forms in total phosphorus in the soil were as following order: Ca_(10)-P>O-P> Fe-P>Ca_8-P>Al-P>Ca_2-P, and the percentage of (Ca_(10)-P+O-P) was 80% higher, so the soil available phosphorus was very low.
     6. The results showed that Broussonetia papyrifera (Linn.)Vent. seedlings had the highest biomass, nitrogen and phosphorus uptake and accumulation when soil water content was at 70% of WHC and nitrogen supply was 150mgN/kg soil. And higher soil water content and nitrogen application were beneficial to soil nitrogen and phosphorus transformation. In karst area, the frequency of provisional drought was high, but the duration was short, and precipitation occurred frequently, and this may be the main reason why Broussonetia papyrifera (Linn.)Vent. appeared in karst desert area.
引文
1. Allen A L, Stevenson F J, Kurtz L T. Chemical distribution of residual fertilizer nitrogen in soil as revealed by nitrogen-15 studies. Journal Environmental Quality, 1973, 2:120-124
    2. Bates L M, Hall A E. Stomatal closure with soil depletion not associated with changes in bulk leaf water status. Oecologia, 1981, 50:62-65
    3. Batm M L, Chaudhryb M L. Transformation of native and applied phosphorous in soil as affected by moisture regimes under black gram. J. of Indian Soc. of Soil Sci., 1988, 36:714-718
    4. Bertrand I, Hinsinger P, Jaillard B, et al.. Dynamics of phosphorus in the rhizosphere of maize and rape grown on synthetic, phosphated calcite and goethite. Plant and soil, 1999, 211:111-119
    5. Bolland M D A, W eatherley A J, Gilkes R J. The long-term residual value of rock phosphate and super phosphate fertilizers for various species under field conditions. Fertilizer Research, 1989, 20 (2): 89-100
    6. Bowmen R A, Cole C V. An exploratory method for fractionation of organic phosphorous from grassland. Soil Sci., 1978, 125:95-101
    7. Bradbury M. The effect of water stress on growth and dry matter distribution in juvenile sesban and acacia wilotica. Journal of Arid Environments, 1990, 18:325-333
    8. Bremner J M. Organic forms of nitrogen. In: Black C A. ed. Methods of Soil Analysis, Agronomy 9, American Society of Agronomy Incorporation, Madison, Wisconsin, USA. 1965:1148-1178
    9. Cohen S, Cohen Y. Field studies of leaf conductance response to environmental variables in citrus. Journal of Applied Ecology, 1983, 20:561-570
    10. David L J, Andrew G O, John F F. Simple method to enable the high resolution determination of total free amino acids in soil solutions and soil extracts. Soil Biology & Biochemistry, 2002,34:1893-1902
    11. Davies W J, Jian H Z. Root signals and the regulation of growth and development of plants in drying soil. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1991, 42:55-76
    12. Di H J, Cameron K C, Moors S, et al.. Nitrate leaching and pasture yields following the application of dairy shed effluent or ammonium fertilizer under spray or flood irrigation result of lysimeter study. Soil Use & Manage. 1998, 14(4): 209-214
    13. During H. Osmotic adjustment in grapevines. Acta Horticulturae, 1985, 171:315-322
    14. Fan T L, Wang S Y, Tang X M, et al.. Grain yield and water use in a long-term fertilization trail in Northwest China. Agricultural Water Management, 2005, 76:36-52
    15. Forde B G, Lorenzo H. The nutritional control of root development. Plant Soil, 2001, 232: 51-68
    16. Goh K M, Edmeades D C. Distribution and partial characterization of acid hydrolysable organic nitrogen in six New Zealand soils. Soil Boil. Biochem., 1970, 11:127-132
    17. Graciano C, Guiamet J J, Goya J F. Impact of nitrogen and phosphorus fertilization on drought responses in Eucalyptus grandis seedlings. Forest Ecology and Management, 2005, 212:40-49
    18. Greenfield L G. The nature of the organic nitrogen of soils. Plant Soil, 1972, 11:191-198
    19. Griffiths S M, Sowden F J, Schnitzer M. The alkaline hydrolysis of acid-resistant soil and humic residues. Soil Biol. Biochem., 1976, 8:529-531
    20. Guo F, Yost R S, Hue N V, et al.. Changes in phosphorus fractions in soils under intensive plant growth. Soil Sci. Soc. of Am. J., 2000, 64:1681-1688
    21. Hansen Em, Djurhuus J. Nitrate leaching as affected by long-term N fertilization on a coarse sand. Soil Use & Manage, 1996, 12(4): 199-204
    22. Hasio T C. Plant responses to water stress. Annual Review of Plant Physiology and Plan Molecular Bioloby, 1973, 24:519-570
    23. Hassin K J, Bouwman L A, Zwart K B. Relationships between soil texture, physical protection of organic matter, soil biota, and C and N mineraliztion in grassland slils. Geoderma, 1993, 57: 105-128
    24. Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant and soil, 2001, 237:173-195
    25. Jawson M D, Franzluebbers A J, Galusha D K. Soil fumigation within monoculture and totation: response of corn and mycrorhizae. Agron. J., 1993, 85:1174-1180
    26. J.J. Green, J. A. Baddeley, J. Cortina, et al.. Root development in the Mediterranean shrub Pistacia lentiscus as affected by nursery treatments. Journal of Arid Environments, 2005, 61: 1-12
    27. Kenny D R. Nitrogen management for maximum efficiency and minimum pollution. Nitrogen in Agricultural Soil. Madison Wisconsin American Soc. Agron. Inc., 1982:605-649
    28. Kumar V, Gilkes R J, Bollang M D A. Phosphate fertilizer placement and tillage system on phosphorous distribution in soil. Commun. in Soil Sci. and Plant Analy., 1992, 23 (13-14): 1462-1477
    29. LavnoffD B, Reddy K R, Robinson S. Chemical fractionation of organic phosphorous in selected histosol. Soil Sci., 1998, 163 (1): 36-45
    30. Legrand H E. Hydrological and ecological problems ofkarst regions. Science, 1973,179: 859-864
    31. Lopez-Bellido R J, Lopez-Bellido L. Efficiency of nitrogen in wheat under Mediterranean conditions: effect of tillage, crop rotation and N fertilization. Field Crops Research, 2001, 71: 31-46
    32. Magid J. Vegetation effects on phosphorous fractions in set-aside soils. Plant and Soil, 1993, 149:111-119
    33. Mckenzie R H, Stewart J W B, Dommaar J F. Long-term crop rotation and fertilizer effects on phosphorous transformations in a chemozemic soil. Canadian J. of Soil Sci., 1992, 72:569-579
    34. Menzel C M, Simpson D R. Plant water relations in lychee: diurnal variations in leaf conductance and leaf water potential. Agricultural and Forest Meteorology, 1986, 37:267-277
    35. Mooney H, Vitousek P M, Matson P A. Exchange of materials between terrestrial ecosystems and the atmosphere. Science, 1987, 238:926-932
    36. Ni B R, Pallardy S G. Stomatal and nonstomatal limitations to net photosyn thesis in seedlings of woody angiosperms. Plant physiol., 1992, 99:1502-1508
    37. Oberson A, Fardeau J C. Soil phosphorus dynamics in cropping systems managed according to conventional and biological agricultural methods. Biol. Fertil. Soils, 1993, 16:111-121
    38. Pasternak D, Wilson G L. Differing effects of water deficit on net photosyn thesis, respiration and transpiration of apple leaves. Plant Physiol., 1974, 16:565-583
    39. Paul J W, Zebarth B J. Denitrification during the growing season following dairy cattle slurry and fertilizer application for silage. Can. J. Soil. Sci, 1997, 77 (2): 241-248
    40. Rarmey T G, Bassuk N L. Whitlow T H. Osmotic adjustment and solute const-iuents in leaves and roots of water-stressed cherry trees. J. Amer. Soc. Hort. Sci., 1991, 116:684-688
    41. Rao A N, Reddy K S, Takkar P N. Residual effects of phosphorous applied to soybean or wheat in a soybean-wheat cropping system on a typic halpustert. J. of Agric. Sci., 1996, 127:325-330
    42. Reddy D D, Rao A S, Rupa T R. Effects of continuous use of cattle manure and fertilizer phosphorus on crop yields and soil organic phophorus in a Vertisol. Bioresour. Technol., 2000, 75:113-118
    43. Reddy D D, Rao A S, Takkar P N. Effects of repeated manure and fertilizer phosphorus additions on soil phosphorus dynamics under a soybean-wheat rotation. Biol Fert. Soils, 1999, 28:150-155
    44. Robinson D. The responses of plants to non-uniform supplies of nutrients. New Phytol, 1994, 127:635-674
    45. Rodriguez D., Goudriaan J., Oyarzabal M., Phosphorus nutrition and water stress tolerance in wheat plants. Journal of Plant Nutrition, 1996, 19 (1): 29-39
    46. Rubaek G H, Sibbesen E. Soil phosphorous dynamics in a long-term field experiment at Askov. Biol. and Fert. of Soils, 1995, 20:86-92
    47. Smith F W. The phosphate uptake mechanism. Plant and Soil, 2002, 245:105-114
    48. Srivali B, Rune K C. Drought-induced enhancement of protease activity during monocarpic senescence in wheat. Current Sci., 1998, 75(11): 1174-1176
    49. Stanford G, Smith S J. Nitrogen mineralization potential of soils. Soil Sci. Soc. Am. Proc., 1972, 36:465-472
    50. Stevenson F J. Organic forms of soil nitrogen. Nitrogen in Agricultural Soil. Madison: Wisconsin, American Soc. Agron., 1982:67-122
    51. Tarafdar J C, Claassen N. Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphorus produced by roots and microorganism. Biol. and Fert. of Soils, 1988,5:308-312
    52. Tong Y A, Emteryd O, Lu D, et al.. Efect of organic manure and chemical fertilizer on nitrogen uptake and nitrate leaching in a Eum-orthic anthrosols profile. Nutrient-Cycling-in-Agroecosystems, 1997,48(3): 225-229
    53. Verma L P, Singh A P, Srivastva M K. Relationship between Olsen-P and inorganic P fraction in soil. J. of Indian Soc. of Soil Sci., 1991,39: 361-362
    54. Wang T S C, Yang T K, Cheng S Y. Amino acid in subtropical soil hydrolysates. Soil Sci., 1967, 103: 67-74
    55. Wang Z C, Stutte G W. The role of carbohydrates in active osmotic adjustment in apple under water stress. J.Amer. Soc. Hort. Sci., 1992,117: 816-823
    56. Wier D R, Black C A. Mineralization of roganic phosphorus in soils as affected by addition of inorganic phosphorus. Soil Sci. Soc. Am. Proc, 1968, 32: 51-55
    57. Zhang Y S, Ni W Z, Sun X. Influence of organic manure on organic phosphorus fraction in soils. Pedosphere, 1993, 3 (4): 361-369
    58. Zhu Y G, He Y Q, Smith S E, et al. Buckwheat (Fagopyrum esculentum Moench) has high capacity to take up phosphorus (P) from a calcium (Ca)-bound source. Plant and Soil, 2002, 239:1-8
    59.安丽红,曹帮华.光叶楮的组织培养和快速繁殖.植物生理学通讯,2004,40(5):584
    60.安卫红,张淑民.石灰性土壤无机磷的分级及其有效性的研究.土壤通报,1991,22(1):34-37
    61.安裕伦.遥感技术支持下的喀斯特地区生态环境状况初步研究—以花江峰丛峡谷和紫云峰丛洼地为例.贵州地质,2001,18(2):89-92
    62.安志装,介晓磊,李有田,等.不同水分和添加物料对石灰性土壤无机磷形态转化的影响.植物营养与肥料学报,2002,8(1):58-64
    63.鲍士旦.土壤农化分析(第三版).中国农业出版社,1999
    64.曹承富,孔令聪,汪建来,等.施氮量对强筋和中筋小麦产量和品质及养分吸收的影响.植物营养与肥料学报,2005,11(1):46-50
    65.曹宏鑫,王世敬,戴晓华.土壤基础肥力和肥水运筹对春小麦产量和品质及植株氮素状况的影响.麦类作物学报,2003,23(2):52-56
    66.曹一平,崔健宇.石灰性土壤中油菜根际磷的化学动态及生物有效性.植物营养与肥料学报,1994,1(试刊):49-54
    67.陈刚才.微地域土壤氮磷地球化学形态研究—以贵州岩溶地区不同利用方式土壤为例.中国科学院地球化学研究所博士论文.2000
    68.陈锦强,李明启.不同氮素营养对黄麻叶片的光合作用、光呼吸的影响及光呼吸与硝酸还 原酶的关系.植物生理学报,1983,9(3):251-259
    69.陈志辉,张良诚,吴光林等.水分胁迫对柑桔光合作用的影响.园艺学报,1992,19(2):60-66
    70.成瑞喜,贾平.中酸性土壤无机磷形态及生物有效性.热带亚热带土壤科学,1998,7(1):6-10
    71.成瑞喜,刘景福,徐芳森.磷肥对酸性土壤无机磷形态转化及其有效性的影响.土壤,1996,28(2):225-228
    72.程传敏,曹翠玉.水旱轮作中不同类型土壤无机磷形态转化及其有效性的比较.南京农业大学学报,1996,19(4):32-36
    73.程瑞平,束怀瑞,顾曼如.水分胁迫对苹果树生长和叶片中矿质元素含量的影响.植物生理学通讯,1992,28(1):32-34
    74.崔克明,李举怀.构树形成层活动周期中过氧化物酶和酯酶同工酶的变化.Acm Botanica Sinica(植物学报:英文版),1995,37(10):800-806
    75.崔克明,汪向彬.构树剥皮再生中内源IAA的变化及其组织定位.北京大学学报(自然科学版),2000,36(4):495-502
    76.杜道林,刘玉成,苏杰.茂兰喀斯特山地广东松种群结构和动态初步研究.植物生态学报,1996,20(2):159-166
    77.范志强,王政权,吴楚,等.不同供氮水平对水曲柳苗木生物量、氮分配及其季节变化的影响.应用生态学报,2004,15(9):1497-1501
    78.冯福生,陈文龙,李洁,等.不同供氮水平下冬小麦叶片中RuBP羧化酶和硝酸还原酶的活性变化.植物生理学通讯,1986,(6):20-22
    79.冯固,杨茂秋,白灯莎.用~(32)p示踪研究石灰性土壤踪磷素的形态及有效性的变化.土壤学报,1996,33(3):301-306
    80.葛体达,隋方功,白莉萍等.水分胁迫下夏玉米根叶保护酶活性变化及其对膜脂过氧化作用的影响.中国农业科学,2005,38(5):922-928
    81.龚子同等.华中亚热带土壤.长沙:湖南科技出版社,1983
    82.谷花云,安裕伦,杨柏林等.石漠化智能化解译系统的构建及其应用.中国岩溶,2003,22(2):156-160
    83.谷瑞升,郗荣庭,刘万生.水分胁迫对早实核桃生长和结果的影响.林业科学,1994,30:79-82
    84.顾益初,蒋柏藩.石灰性土壤无机磷分级的测定方法.土壤,1990,22(2):101-102,110
    85.顾益初,蒋柏藩,鲁如坤.风化对土壤粘粒中磷素形态转化及其有效性的影响.土壤学报,1984,21(2):134-143
    86.顾益初,钦绳文.草地土壤长期定位试验残留磷的转化与有效性.土壤,1997(1):13-17
    87.关义新,林葆,凌碧莹.光氮互作对玉米叶片光合色素及其荧光特性与能量转换的影响.植物营养与肥料学报,2000,6(2):152-158
    88.郭盛磊,阎秀峰,白冰,等.供氮水平对落叶松幼苗光合作用的影响.生态学报,2005,25(6):1291-1298
    89.郭盛磊,阎秀峰,白冰,等.落叶松幼苗碳素和氮素的获取与分配对供氮水平的响应.植物生态学报,2005,29(4):550-558
    90.郭卫华,李波,黄永梅等.不同程度的水分胁迫对中间锦鸡儿幼苗气体交换特征的影响.生态学报,2004,24(12):2716-2722
    91.郭小冬,杨玲,张雪琴.甘肃省主要耕地土壤磷形态及其有效性研究.土壤通报,1998,29(3):119-122
    92.郭智芬,徐书新.石灰性土壤不同形态无机磷对作物磷营养的贡献.中国农业科学,1997,30(10):26-32
    93.何才华,熊康宁,栗茜.贵州喀斯特生态环境脆弱性类型及其开发治理研究.贵州师范大学学报(自然科学版),1996,14(1):1-9
    94.何道泉.广东石灰岩地区的森林植物及其恢复问题.热带地理,1993,13(3):213-218
    95.何萍,金继运,林葆.氮肥用量对春玉米衰老的影响及其机理研究.中国农业科学,1998,31(3):1-4
    96.何萍,李玉影,金继运.氮钾营养对面包强筋小麦产量和品质的影响.植物营养与肥料学报,2002,8(4):395-398
    97.何师意,潘根兴,曹建华等.表层岩溶生态系统碳循环特征研究.第四纪研究,2000,20(4):383-390
    98.何圆球,沈其荣,孔宏敏,等.水稻旱作条件下土壤水分对红壤磷素的影响.水土保持学报,2003,17(2):5-8
    99.贺铁.土壤有机磷研究的新进展.土壤通报,1986,17(3):141-143
    100.胡宝清,廖赤眉,严志强等.基于RS和GIS的喀斯特石漠化驱动机制分析—以广西都安瑶族自治县为例.山地学报,2004,22(5):583-590
    101.胡宝清,廖赤眉,严志强等.喀斯特土地石漠化动态监测与可视化管理信息系统的设计与应用.地理与地理信息科学,2004,20(3):40-44
    102.胡泓,刘世全,陈庆恒,等.川西亚高山针叶林人工恢复过程的土壤性质变化[J].应用与环境生物学报,2001,7(4):308~314
    103.黄庆海,李茶苟,赖涛.长期施肥对红壤性水稻土磷素积累与形态分异的影响.土壤与环境,2000,9(4):290-293
    104.姜东,于振文,苏波,等.不同施氮时期对冬小麦根系衰老的影响.作物学报,1997,23(2):181-190
    105.蒋柏藩,顾益初,鲁如坤.风化对土壤粒级中磷素形态、转化及有效性的影响.土壤学报,1984,21(2):134-143
    106.蒋柏藩,顾益初.石灰性土壤无机磷分级体系的研究.中国农业科学,1989,22(3):58-66
    107.蒋忠诚.中国南方表层岩溶系统的碳循环及其生态效应.第四纪研究,2000,20(4):316-324
    108.介晓垒.土壤水分胁迫对冬小麦生长发育、干物质积累与分配的影响.河南农业大学学报,1991,25(3):339-350
    109.景茂,曹福亮,汪贵斌等.土壤水分含量对银杏生长及生物量分配的影响.南京林业大学学报(自然科学版),2005,29(3):5-8
    110.巨晓棠,边秀举,刘学军等.旱地土壤氮素矿化参数与氮素形态的关系.植物营养与肥料学报,2000,6(3):251-259
    111.巨晓棠,刘学军,张福锁.长期施肥对土壤有机氮组成的影响.中国农业科学,2004,37(1):87-91
    112.蓝安军,熊康宁.喀斯特石漠化的驱动因子分析—以贵州省为例.水土保持通报,2001,21(6):19-23
    113.李法云,高子勤.白浆土.植物系统营养物质转化机制及其有效性研究Ⅳ.环境条件对土壤磷素有效性的影响.应用生态学报,1999,10(5):579-582
    114.李伏生,康绍忠.CO_2浓度、氮和土壤水分对春小麦养分利用效率的影响.中国农业科学,2002,35(8):953-958
    115.李豪喆,廉贞德,路桂英,等.硝酸还原酶活力与作物耐肥性的研究Ⅶ.水稻叶片硝酸还原酶活力与施氮量的关系.植物生理学通讯,1985,(5):14-16
    116.李辉信.红壤氮素的矿化和硝化作用特征.土壤,2000,4:194-214
    117.李瑞玲,王世杰,熊康宁等.喀斯特石漠化评价指标体系探讨—以贵州省为例.热带地理,2004,24(2):145-149
    118.李瑞玲,王世杰,张殿发.贵州生态环境恶化中的人为因素分析.矿物岩石地球化学通报,2002,21(1):43-47
    119.李世清,李生秀,邵明安,等.半干旱农田生态系统长期施肥对土壤有机氮组分和微生物体氮的影响.中国农业科学,2004,37(6):859-864
    120.李世清,李生秀,杨正亮.不同生态系统土壤氨基酸氮的组成及含量.生态学报,2002,22(3):379-386
    121.李晓欣,胡春胜,程一松.不同施肥处理对作物产量及土壤中硝态氮累积的影响.干旱地区农业研究,2003,21(3):38-42
    122.李晓燕,李连国,刘志华,等.葡萄叶片组织结构与抗旱性关系的研究.内蒙农牧学院学报,1994,15(3):30-32
    123.李永清.云南野生龙眼的调查研究.园艺学报,1985,12:223-227
    124.李跃强,王学臣.根信号及其在植物水分利用最优化中的调节作用.植物学通讯,1994,11(2):37-43
    125.李祖荫.石灰性土壤中粘粒与碳酸钙的固磷作用.土壤肥料,1983(2):13-17
    126.梁士楚.贵阳喀斯特山地云贵鹅耳枥种群动态研究.生态学报,1992,12(1):53-60
    127.林继雄,林葆,艾卫.磷肥后效与利用率的定位试验.土壤肥料,1995,(6):1-5
    128.林文群,陈忠等.构树聚花果及其果实原汁营养成分的研究.天然产物研究与开发,2001,13(3):45-47,42
    129.刘崇怀.水分胁迫对葡萄几个生化指标的影响.葡萄栽培与酿酒,1991,(3):12-17
    130.刘方、王世杰、刘元生,等.喀斯特石漠化过程土壤质量变化及生态环境影响评价.生态学报,2005,25(3):639-644
    131.刘国华,舒洪岚,张金池.南京幕府山构树种群的空间分布格局.南京林业大学学报(自然科学版),2005,29(1):104-106
    132.刘国琴,何嵩涛,樊卫国,等,土壤干旱胁迫对刺梨叶片矿质营养元素含量的影响.果树学报,2003,20(2):96-98
    133.刘建铃,张福锁.小麦-玉米轮作长期肥料定位试验踪土壤磷库的变化.Ⅱ.土壤Olsen-P及各形态无机磷的动态变化.应用生态学报,2000,11(3):365-368
    134.刘小虎,皱德乙,刘新华,等.长期轮作施肥对棕壤有机磷组分及其动态变化的影响.土壤通报,1999,30(4):20-26
    135.刘玉,李林立,赵柯等.岩溶山地石漠化地区不同土地利用方式下的土壤物理性状分析.水土保持学报,2004,18(5):142-145
    136.刘再华,袁道先,何师意.不同岩溶动力系统的碳同位素和地球化学特征及意义.地质学报,1997,71(3):281-287
    137.龙健,邓启琼,江新荣等.西南喀斯特地区推更换林(草)模式对土壤肥力质量演变的影响.应用生态学报,2005,16(7):1279-1284
    138.龙健,江新荣,邓启琼,等.贵州喀斯特地区土壤石漠化的本质特征研究.土壤学报,2002,42(3):419-427
    139.龙健,李娟,黄昌勇.我国西南地区的喀斯特环境与土壤退化及其恢复.水土保持学报,2002,16(5):5-8
    140.龙健,李娟,江新荣,等.贵州茂兰喀斯特森林土壤微生物活性的研究.土壤学报,2004,41(4):597-602
    141.鲁如坤.水稻土磷素化学和有效施用磷肥.磷肥和复肥,1993(1):84-86
    142.鲁如坤.土壤磷素化学研究进展.土壤学进展,1990(6):1-5
    143.吕殿青,杨进荣,马林英.灌溉对土壤硝态氮淋洗效应影响的研究.植物营养与肥料学报,1999,5(4):307-315
    144.吕家珑,张一平,马爱生,等.石灰性土壤小麦根际pH及磷动态变化的研究.植物营养与肥料学报,1999,5(1):32-39
    145.吕家珑,李祖荫.石灰性土壤固磷机制的探讨.土壤通报,1991,22(5):204-206
    146.罗盛碧.石漠化石山造林发展构树大有可为.广西林业,2002,(2):34
    147.聂勋载.一种新型的速生丰产的优质造纸原料—构树.西南造纸,2003,32(4):51-52
    148.潘东明,潘良镇.水分胁迫对龙眼幼苗多胺等生理生化指标的影响.福建农业大学学报,1997,26(3):277-282
    149.潘少英,耿贵等.氮素形态对甜菜抗氮胁迫能力的效应研究.中国糖料,2001(1):6-10
    150.彭令发,郝明德,来璐.土壤有机氮组分及其矿化模型研究.水土保持研究,2003,10(1):46-49,70
    151.漆华.长期施用化肥和有机肥对土壤氮磷钾养分的影响.四川农业科技,2002,10:28
    152.钱晓晴,沈其荣,王娟娟等.模拟水分胁迫条件下水稻的氮素营养特征.南京农业大学学报,2003,26(4):9-12
    153.曲泽洲主编.植物栽培学总论(第二版).北京:农业出版社,1985,120-142
    154.渠贵荣,张倩,李彩丽.构树的药理与临床作用研究述略.中医药学刊,2003,21(11):1810-1811
    155.任海.喀斯特山地生态系统石漠化过程及其恢复研究综述.热带地理,2005,25(3):195-200
    156.任建宏.水分胁迫下不同抗旱性小麦品种根中蛋白质代谢的差异.麦类作物学报,2001,21(3):90-92
    157.沈其荣,史瑞和.不同土壤有机氮的化学组分及其有效性的研究.土壤通报,1990,21:54-57
    158.沈其荣,余玲,刘兆普.有机无机肥料配合使用对滨海盐涂土壤生物量态氮及土壤供氮特征的影响.土壤学报,1994,31(3):288-293
    159.沈仁芳,蒋柏藩.石灰性土壤无机磷的形态分级及其有效性.土壤学报,1992,29(1):80-86
    160.沈善敏.中国土壤肥力.北京:中国农业出版社,1997
    161.盛海彦,李军乔.土壤水分对蕨麻生物量的影响.青海农林科技,2004,3:60-62
    162.施书莲,周克瑜,杨文醒.土壤剖面不同粒级中氨基酸组成特征.土壤,1998,30:209-213
    163.石岩,于振文,位东斌,等.土壤水分胁迫对冬小麦氮素分配利用及产量的影响.核农学报,1999,13(1):27-33
    164.石英,冉炜,沈其荣,等.不同施氮水平下旱作水稻土壤无机氮的动态变化及其吸氮特征.南京农业大学学报,2001,24(2):61-65
    165.宋建国,林杉,吴文良等.土壤易矿化有机态氮和微生物态氮作为土壤氮素生物有效性指标的评价.生态学报,2001,21(2):290-294
    166.宋之杰,高晓红.一种多指标综合评价中确定指标权重的方法[J].燕山大学学报,2002,26(1):20~22,26
    167.苏维词.中国西南岩溶山区石漠化的现状成因及治理的优化模式.水土保持学报,2002,16(2):29-32
    168.苏宗明.广西石灰岩山地封山育林效果的分析.广西植物,1990,10(4):434-450
    169.孙年喜,宗学风,王三根.不同供氮水平对玉米光合特性的影响.西南农业大学学报(自然科学版),2005,27(2):389-392,396
    170.唐健生,夏日元.南方岩溶石山区资源环境特征与生态环境治理对策探讨.中国岩溶,2001,20(2):140-148
    171.唐树梅,漆智平.土壤水含量与氮矿化的关系.热带农业科学,1997,4:54-60
    172.唐玉霞,智建飞等.水分胁迫对冬小麦氮素营养效率的影响.中国生态农业学报,2002,10(4):21-23
    173.田茂洁.土壤氮素矿化影响因子研究进展.西华师范大学学报(自然科学版),2004,25(3):298-303
    174.屠玉麟.贵州喀斯特森林的初步研究.中国岩溶,1989,8(4):282-290
    175.万福绪,张金池.黔中喀斯特山区的生态环境特点及植被恢复技术.南京林业大学学报(自然科学版),2003,27(1):45-49
    176.汪贵斌,曹福亮.不同土壤水分含量下落羽杉根、茎、叶营养水平的差异.林业科学研究,2004,17(2):213-219
    177.汪贵斌,曹福亮.盐分和水分胁迫对落羽杉幼苗的生长量及营养元素含量的影响.林业科学,2004,40(6):56-62
    178.汪向彬,王振.构树去木质部后维管组织再生中内源IAA浓度的变化及其组织定位.Acta Botanica Sinica(植物学报:英文版),1999,41(12):1327-1331
    179.王百群,余存祖,戴鸣钧,等.小麦生长过程中土壤有机氮各组分动态及其有效性.土壤通报,1995,26(4):186-189
    180.王百群,张卫,余存祖.用~(15)N示踪法研究不同土壤水分条件下小麦对氮的吸收利用.核农学报,1999,13(6):362-367
    181.王朝辉,李生秀.不同生育期缺水和补充水对冬小麦氮磷钾吸收及分配影响.植物营养与肥料学报,2002,8(3):265-270
    182.王朝辉,刘学军,巨晓棠等.北方冬小麦/夏玉米轮作体系土壤氨挥发的原位测定.生态学报,2002,22(3):359-365
    183.王晨阳.土壤水分胁迫对小麦形态及生理影响的研究.河南农业大学学报,1992,26(1):89-98
    184.王德炉,朱守谦,黄宝龙.贵州喀斯特石漠化类型及程度评价.生态学报,2005,25(5):1057-1063
    185.王光火,朱祖祥.石灰性土壤与磷酸盐反应及吸附态磷的同位素交换.土壤学报,1993,30(4):374-379
    186.王建国,杨林章,单艳红.模糊数学在土壤质量评价中的应用研究[J].土壤学报,2001,38(2):176~183
    187.王满莲,冯玉龙.紫茎泽兰和飞机草的形态、生物量分配和光合特性对氮影响的相应.植物生态学报,2005,29(5):697-705
    188.王密.喀斯特区域生态承载力综合评价方法研究.贵州科学,2005,23(2):55-59
    189.王绍华,曹卫星,丁艳锋等.水氮互作对水稻吸收与利用的影响.中国农业科学,2004,37(4):491-501
    190.王世杰.喀斯特石漠化-中国西南最严重的生态地质环境问题.环境地球化学,2003,22(2):120-126
    191.王穗汉,陈嘉翔,余家鸾,等.构树皮碱木素过氧乙酸处理后结构变化的研究.中国造纸学报,1997,12(B12):1-5
    192.王喜庆,李生秀,高亚军.土壤水分在提高氮肥肥效中作用机制.西北农业大学学报,1997,25(1):15-19
    193.王言荣,刘洁.贵州典型喀斯特县域生态环境脆弱度等级划分.中国岩溶,2002,21(3):221-225,232
    194.王艳杰,邹国元,付桦,等.土壤氮素矿化研究进展.中国农学通报,2005,21(10):203-208
    195.王月福,于振文,潘庆民,等.水分胁迫对冬小麦不同抗旱性品种养分吸收分配和产量的影响.土壤肥料,1998,(6):3-6
    196.韦莉莉,张小全,候振宏,等.杉木光合作用及其产物分配对水分胁迫的相应.植物生态学报,2005,29(3):394-402
    197.韦小丽,徐锡增,朱守谦.水分胁迫下榆科3种幼苗生理生化指标的变化.南京林业大学学报(自然科学版),2005,29(2):47-50
    198.文启孝,张晓华,杜丽娟等.太湖地区主要土壤中的固定态铵及其有效性.土壤学报,1988,25(1):22-30
    199.吴楚,王政权,范志强.氮素形态处理下水曲柳幼苗养分吸收利用与生长及养分分配与生 物量分配的关系.生态学报,2005,25(6):1282-1290
    200.吴楚,王政权,范志强等.氮胁迫对水曲柳幼苗养分吸收、利用和生物量分配的影响.应用生态学报,2004,15(1):2034-2038
    201.吴春林.广西热带石灰岩季节雨林分类与排序.植物生态学与地植物学学报,1991,15(1):17-25
    202.吴际友,童方平,龙应忠.杂交构树嫩枝短穗扦插育苗技术.林业科技开发,2003,17(6):60;
    203.武冠云.土壤有机氮的形态、分布及其易分解性.土壤通报,1986,17(2):90-95
    204.向万胜,黄敏,李学垣.土壤磷素的化学组分及其植物有效性.植物营养与肥料学报,2004,10(6):663-670
    205.消凯,张荣铣,钱维朴.氮素营养对小麦群体光合碳同化作用的影响及其调控机制.植物营养与肥料学报,1999,5(3):235-243
    206.熊恒多,李仕俊,范业宽.酸性土壤有机磷分级的探讨.土壤学报,1992,30(4):390-399
    207.熊佑清.构树在绿化中的应用研究.中国园林,2004,20(8):72-74
    208.许振柱,王崇爱,李晖.土壤干旱对小麦叶片光合和氮素水平及其转运效率的影响.干旱地区农业研究,2004,22(4):75-79,91
    209.薛青武,陈培元.灌浆期土壤干旱条件下氮素营养对小麦旗叶光合作用的影响.干旱地区农业研究,1989,(3):86-93
    210.杨汉奎,程任泽.贵州茂兰喀斯特森林群落生物量研究.生态学报,1991,11(4):307-312
    211.杨肖娥,孙羲.生育后期追施NO_3~-和NH_4~+对水稻的生理效应.土壤通报,1990,(3):111-114
    212.杨雪莹,何瑞,曹玉广.构树叶总黄酮对表皮细胞防护作用研究.环境与健康杂志,2004,21(3):134-136
    213.杨雪莹,何瑞,王亭,等.构树叶总黄酮对人永生化表皮细胞的防护效果.中国公共卫生,2004,20(7):794-795
    214.杨泽兰.构树的培植和保护.资源开发与保护杂志,1990,6(1):60-61
    215.姚长宏,蒋忠诚,袁道先.西南岩溶地区植被喀斯特效应.地球学报,2001,22(2):159-164
    216.姚长宏,杨桂芳,蒋忠诚等.岩溶地区生态系统养分平衡研究.中国岩溶,2001,20(1):41-46
    217.尹金来,沈其荣,周春林,等.猪粪和磷肥对石灰性土壤无机磷组分及有效性的影响.中国农业科学,1989,34(3):296-300
    218.喻理飞,朱守谦,魏鲁明.贵州喀斯特台原亮叶水青冈种多度结构研究.山地农业生物学报,1998,17(1):9-15
    219.喻理飞,朱守谦,叶镜中.退化喀斯特森林自然恢复评价研究.林业科学,2000,36(6): 12-19
    220.喻理飞,朱守谦,叶镜中,等.退化喀斯特森林自然恢复中群落动态研究研究.林业科学,2002,38(1):1-7
    221.喻理飞.退化喀斯特森林适应等级种组划分研究,喀斯特森林生态研究(Ⅲ)(M).贵阳.贵州科技出版社.2003
    222.袁道先,蒋忠诚.IGCP379“岩溶作用与碳循环”在中国的研究进展.水文地质工程地质,2000,(1):49-51
    223.袁道先.我国西南岩溶石山的环境地质问题.世界科技研究与发展,1997,5:93-97
    224.袁可能.植物营养元素的土壤化学.北京:科学出版社,1983:110-163
    225.曾希柏,谢德体,青长乐,等.氮肥施用量对莴苣光合特性影响的研究.植物营养与肥料学报,1997,3(4):323-327
    226.翟丙年,李生秀,齐亚婷.不同水分状况下追施氮肥对冬小麦产量及其构成因素的影响.西北植物学报,2001,21(3):462-467
    227.张殿发,欧阳自远,王世杰冲国西南喀斯特地区人口、资源、环境与可持续发展.中国人口.资源与环境,2001,11(1):77-81
    228.张夫道.氮素营养研究中几个热点问题.植物营养与肥料学报,1998,4(4):331-338
    229.张富仓,康绍忠,李志军.施氮对小麦根-土界面磷迁移及根际磷素组分变化特征的影响.土壤学报,2003,40(4):635-639
    230.张金屯.植被数量生态学方法[M].北京:中国科学技术出版社,1995:62
    231.张漱茗,于淑芳.石灰性土壤中磷形态和有效性的研究.土壤肥料,1992,(3):1-4
    232.张伟,吕新,曹连莆.不同氮肥用量对棉花冠层结构光合作用和产量形成的影响.干旱地区农业研究,2005,23(2):80-87
    233.张兴昌,邵明安.黄绵土不同形态有机氮径流流失规律.农业工程学报,2000,16(6):47-51
    234.张玉屏,朱德峰,林贤青等.不同时期水分胁迫对水稻生长特性和产量形成的影响.干旱地区农业研究,2005,23(2):48-53
    235.赵炳梓,许富安.水肥条件对小麦、玉米N、P、K吸收的影响.植物营养与肥料学报,2000,6(3):260-266
    236.赵平,孙谷畴,彭少麟.植物氮素营养的生理生态学研究.生态科学,1998,17(2):37-42
    237.赵少华,宇万太,张璐,等.土壤有机磷研究进展.应用生态学报,2004,15(11):2189-2194
    238.赵天宏,沈秀瑛,杨德光,等.水分胁迫对不同抗旱性玉米幼苗叶片蛋白质的影响.沈阳农业大学学报,2002,33(6):408-410
    239.赵云云,闫毓秀.雌雄构树过氧化物同工酶的比较研究.首都师范大学学报(自然科学版),1996.17(2):84-87
    240.郑华,欧阳志云,王效科,等.不同森林恢复类型对南方红壤侵蚀区土壤质量的影响[J].生态学报,2004,24(9):1994~2002
    241.中国科学院南京土壤研究所土壤物理研究室编.土壤物理性质测定法.北京:科学出版社,1978
    242.中国土壤学会农业化学专业委员会编.土壤农业化学分析方法.北京:科学出版社,1983:166
    243.周德全,王世杰,张殿发.关于喀斯特石漠化研究问题的探讨.矿物岩石地球化学通报,2003,22(2):127-132
    244.周克瑜,施书莲.石灰性土壤的氨基酸组成特征.土壤,1994,26(4):213-215
    245.周克瑜,施书莲.我国几种主要土壤重氮素形态分布及其氨基酸组成.土壤,1992,24(6):213-215
    246.周政贤,毛志忠,喻理飞等.贵州石漠化退化土地及植被恢复模式.贵州科学,2002,20(1):1-6
    247.周志华、肖化云、刘丛强.土壤氮素生物地球化学循环的研究现状与进展.地球与环境.2004,32(3-4):21-26
    248.周忠发.遥感何GIS技术在贵州喀斯特地区土地石漠化研究忠的应用.水土保持通报,2001,21(3):52-54
    249.朱守谦,魏鲁明,陈正仁.茂兰喀斯特森林生物量构成初步研究.植物生态学报,1995,4:354-367
    250.朱新开,郭文善,周正权,等.氮肥对中筋小麦扬麦10号氮素吸收、产量和品质的调节效应.中国农业科学,2004,37(12):1981-1837
    251.朱荫湄,鲁如坤,顾益初,时正元.磷肥在土壤中的形态转化.土壤,1981,13(4):130-133
    252.朱兆良.中国土壤氮素肥力与农业中的氮素管理.见:沈善敏主编.中国土壤肥力.北京:科学出版社,1999
    253.朱祖祥.土壤学.北京:农业出版社,1983
    254.卓苏能,文启孝.土壤未知氮.土壤学进展,1992,20(2):11-19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700