用户名: 密码: 验证码:
九寨沟水生植物物种多样性及其环境关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的发展,生物多样性研究也越来越受到全球的关注,物种多样性作为生物多样性组成内容之一,是研究和保护生物多样性的基础和核心,深入探讨物种多样性的科学本质和变化规律,研究物种多样性及其生存环境的关系对于生物多样性保护具有重要价值。近年来,陆生植物物种多样性的研究较多,对于水生植物物种多样性研究还不够深入,随着湿地生态学的发展,湿地的保护、恢复和合理利用已逐渐成为科学研究的热点,由于水生植物是湿地生态系统的重要组成部分,更是生态系统中物质与能量流的主要传递者,其种群数量变动对湖泊生态及水域环境有着重大影响,因此对于水生植物物种多洋性及其与环境的相互关系研究,可以为我国湿地生态系统的保护、水资源的合理开发提供参考。
     本文以九寨沟自然保护区及其周边不同湖泊水域中水生植物群落为研究对象,采用样方法进行野外群落学调查,同时测定样地中的水质、土壤等环境因子,运用统计学、数学生态学等方法进行数据处理和分析,从而探讨九寨沟水生植物物种多样性特征、变化规律及其与水质、土壤环境的相关性。主要研究内容包括九寨沟水生植物组成及其区系特征分析、植物群落数量分类和排序、群落α、β多样性、群落物种多样性与水质、土壤环境相互关系以及旅游开发对物种多样性的影响及其保护对策等。
     通过对九寨沟水生植物物种多样性及其环境关系研究,主要得出以下几点结论:
     (1)九寨沟水生植物种类丰富,初步调查统计约有30科56属147余种(包括变种和变型),可划分为挺水植物、浮叶植物和沉水植物三种生活型。区系分析表明,水生植物地理成分比较复杂,种类分布地域性特征明显,中国特有种类丰富,水生植物区系的温带性质主要体现在属种水平上;九寨沟水生植物群落可划分成15个群丛,以挺水水生植被为主,DCA排序结果与TWINSPAN分类结果基本吻合,水生植物群落空间分布特征与生态环境梯度一致,第一排序轴基本上反映出海拔梯度变化,第二排序轴则与水环境以及建群种水生植物生活型关系密切,物种空间分布特征与其群落分布特征相似。
     (2)群落内α多样性研究表明,随海拔升高,物种多样呈现下降趋势,而人为干扰结果可以导致物种多样性升高;α多样性测度指数中,Shannon-Wiener信息指数测度物种多样性更加灵敏,而Simpson多样性指数因受到物种均匀度的制约而相对稳定,在物种总数较低的样地中,使用Pielou指数要强于Alatalo指数,以重要值为基础的物种多样性指数引入了相对高度和相对盖度参数,在测度群落的物种多样性中表现更为全面;物种多样性DCA排序结果可以充分反映群落与物种多样性各指数的相关性,第一排序轴主要反映了物种丰富的变化趋势,而第二排序轴则主要反映了物种均匀度的变化。
     (3)群落间β多样性研究表明,样地间种类组成随海拔梯度及其他因子的变化差异比较明显,以重要值为基础的数量数据具有较强的综合性和稳定性。海拔梯度和空间聚类分析表明,海拔梯度是影响水生植物群落β多样性变化的主要因子,随着海拔升高和落差的增大,β多样性变化明显,种类组成变化愈显著。同时,β多样性数量数据可以划分成四种类型,Ⅲ型的非海拔梯度因子作用结果说明流域特征和群落类型会对多样性的变化产生一定影响。
     (4)九寨沟各样地中水质环境特征,主要表现为水温随着海拔升高呈现下降趋势,水质pH值均为碱性,总氮、溶解氧含量差异明显,总磷的含量相对较低,相关分析表明,海拔因子与水温、pH值、溶解氧呈现正相关;群落物种多样性与水质环境pH值基本呈现负相关,与总氮含量正相关,与总磷含量关系不明显,溶解氧则与物种丰富度、物种多样性指数存在一定的负相关;偏相关分析结果显示,海拔因子限制了pH值与群落物种多样性之间的相关性,而促进了水温与群落物种多样性之间相关性;逐步回归分析表明,群落物种多样性指数受到水质综合环境因子显著影响,其中,总氮含量是影响物种多样性的关键因子;DCCA排序的第一排序轴反映了水温的变化,总氮、pH值与该轴也有一定的相关性,第二排序轴则基本反映了群落样地水质环境中溶解氧的变化。
     (5)水生植物群落各样地土壤化学性质特征主要表现为土壤pH值均在7.5以上,全氮、全钾的含量较高,样地间差异明显,而全磷、速效氮、有效磷和速效钾的含量均则相对较低,相关分析表明,海拔因子与土壤环境呈现正相关,全氮与速效氮、全磷与全钾含量存在显著正相关;水质环境和土壤环境在pH值上显著正相关,水质总氮含量与土壤pH值、全氮含量均显著正相关,总磷含量则与土壤全磷含量显著正相关,水质溶解氧大小与土壤中速效氮、磷、钾含量关系密切,而水温主要影响土壤全氮、速效氮、全磷和速效钾的含量;群落物种多样性与土壤pH值、土壤全氮和速效氮的含量关系密切,偏相关分析显示,海拔环境因子较强地干扰了群落物种丰富度与土壤环境的相关性;逐步回归分析表明,群落物种多样性指数多数受到土壤综合环境因子的极显著影响,其中,土壤pH值是影响物种多样性的关键因子;DCCA排序的第一排序轴主要反映土壤pH值、全氮和速效钾含量的变化,第二轴则主要反映土壤pH值和全氮含量的变化。
     (6)旅游开发干扰较大的甘海子样地中水质pH值、溶解氧含量最低,受到还原性物质、有机物以及亚硝酸盐、亚铁盐、硫化物类还原性物质污染程度相对较高,同时,水体较为浑浊,并且在氨氮、总磷含量上已受到一定的污染,而九寨沟内除犀牛海有机物含量相对较高外,各样地污染相对较轻;水质环境污染指标之间有较强的相关性,样地间污染物类型和组成成分相似;甘海子区域与九寨沟内各海子样地相比,物种组成十分丰富,群落物种丰富度指数均高于其它样地,但均匀度较低,海拔因子与水质污染指标相关性不明显,各污染指标中,水质pH值、溶解氧含量与物种多样性均呈现负相关,水质COD、BOD_5、浊度和氨氮含量与物种多样性各指数间相关性基本一致,其中,与丰富度指数正相关。
     另外,通过对九寨沟自然保护区旅游资源开发调查研究,本文还从旅游者行为、居民行为、旅游设施、旅游管理和生态安全等总结了如何在旅游开发中采取相应的生态对策,以降低旅游开发对区域内物种多样性及其环境的影响。
With the development of society, biodiversity causes more and more global attention. As part of biodiversity, species diversity is the basis and core of biodiversity protection and research. Insight into the scientific nature and change law of species diversity as well as the relationship between species diversity and the habitat is of great value for the biodiversity protection. In recent years, much work has been carried out about terrestrial plant species diversity but little about aquatic species diversity. As the development of wetland ecolgoy, the protection, restoration and reasonable utilization of marsh has become the hotspot gradually. Because aquatic plant is an important part of wetland ecosystem, even more the main transfer of the material and energy in ecosystem, the population change of the aquatic plants must affect the lake ecosystem and the water environment. Therefore the study on the interactive relationship between aquatic plant species diversity and the environment will be used for the wetland ecosystem protection and water resource exploration.
     The experimental plant community is the aquatic plant community in different lake water environments in the Jiuzhaigou nature reserve. Based on the sample and field investigation, the species diversity traits, change law of the aquatic plants and its relationship with the water and soil environment were examined using statistics, quantitative ecology. The main study includes: the species composition and flora characteristics, quantitative classification and ordination,α-diversity andβ-diversity, the relationship between species diversity and water, soil environment and the effect of tourism on species diversity and protection strategy.
     Via the study on the relationship between the aquatic plant species diversity and the environment in Jiuzhaigou, the main results are as follows:
     The species diversity is high. The primary investigation showed there were 147 species belonging to 30 families and 56 genera. These plants can be classified into emergent, floating-leaved and submerged anchored hydrophytes. Flora analysis demonstrated that the floristic element of aquatic plant was complicated. The species distribution showed obvious regional characteristics. The special species of china was abundant and the temperate traits of aquatic plant were mainly reflected from the level of genera and species. The aquatic plant communities could classified into 15 associations, and most of them were emergent anchored vegetation. DCA ordination and TWINSPAN classification had the similar result. The spatial distribution traits of the aquatic community was consistent with the ecological environment gradient . The first axis can basically reflect the elevation gradient variation and the second axis was closely relative to the relationship between water environment and the life form of constructive species. The spatial distribution of species was similar to the its community distribution
     The studies ofα-diversity index of the community showed that it tended to decrease as the increasing of altitude, and the human disturbance could increase its value. Among these indices ofα-diversity, Shannon-Wiener index was more sensitive in terms of the diversity measure, and the Simpson diversity index was more stable because of the limitation by evenness. It was more appropriate to use Pielou index than Alatalo index in the plots with a few species. The diversity index based on important value had involved the parameters of relative height and the relative coverage, made it more general in the measuring of the community diversity. The DCA analysis of species diversity showed the correlation between community and all kinds of species diversity indices. The first axis mainly reflected the tendency of richness as the second axis mainly reflected the change of evenness.
     The studies ofβ-diversity between communities showed that the species composition between plots changed significantly as the change of altitude and some other factors. The data based on important value was more general and stable. And the analyses of altitude and space cluster showed that the altitude gradient was a main factor which affected theβ-diversity index of aquatic plant community, as the increase of altitude and height difference, theβ-diversity index changed significantly, and also the change of species composition. Meanwhile,β-diversity index could be divide into 4 types, the effects of non-altitude factor of III type indicated that drainage area feature and community type could affect diversity to some extent.
     The water quality characteristics of each plots in Jiuzhaigou mainly behaved as the decrease of water temperature with the increase of altitude, and an alkalescent water pH value. The total-N and DO (dissolve oxygen) wer differ significantly between these water plots, and the total-P was relatively low. The correlation analysis showed that the altitude was positively correlated with water temperature, and also with the pH value and DO. And the species diversity was generally correlated with pH value negatively, and positively correlated with total-N, but the correlation with total-P is nonsignificant. The DO was more or less negatively correlated with richness and species diversity indices. The partial analyses suggested the altitude factor had limited the correlation between pH value and species diversity. Stepwise regression analyses indicated that the species diversity indices of community are influenced by the synthetical factors significantly, such as water quanlity. Of all the above, total-N was the key factor which influence species diversity. The first axis of DCCA reflected the change of water temperature, and also total-N and pH value had some correlation with it, while the second axis almost reflected the change of DO in the water environment of different plots.
     The chemical characteristics of soil in all kinds of sample plots was that the soil pH value was above 7.5, with high content of total-N and total-K having significant difference among them., but with low content of total-P, available-N available-P and available-K. The relative analyses showed that the altitude had positive relationship with the soil environment. The total-N and available-N , total-P and total-K had the same results. The water environment and the soil environment had positive relationship between pH values. Total-N in water was positive with soil pH value and total-N. And total-P in water also was positive with soil total-P. Dissolved oxygen had close relation with available N, P, K, while water temperature had great influence on soil total-N, available-N, total-P and available-K. Species diversity in communities had important relation with soil Ph, soil total-N and available-N. Partial correlation analyses indicated that altitude environmental factor had significant impact on the relativity between species abundance in communities and soil environment. Stepwise regression analysis revealed that diversity indices of most communities were extremely affected by soil composite environment factors, while the key factor was soil pH. The first plot of DCCA ordination mainly reflected the changes of soil pH, total-N and available-K while the second plot reflected the changes of soil pH and total-N.
     In addition, on the foundation of general investigation and study on tourist resources exploitation, this paper summarized the ecology countermeasure from the faces of tourist behavior, inhabitant behavior, tour infrastructure, tourism management and ecological security to reduce the influence of tourism exploitation and protect the ecological environment.
引文
1. Fisher R. A., Corbet & Williams. The relation between the number of individuals and the number of species in a random sample of an animal population[J]. J. Anim. Ecol., 1943, 12:42~58
    2. Williams C. B. Patterns in the Balance of Nature[M]. New York: Academic Press. 1964
    3. MacArthur R. H. Patterns of species diversity[J]. Biol. Rev., 1965, 40:510~533
    4. Whittaker R. H. Dominance and diversity in land plant communities[J]. Science, 1965, 147:25~260
    5. Whittaker R. H. Evolution and measurement of species diversity[J]. Taxen, 1972, 21:39~62
    6. NOSSRF. Indicators for monitoring biodiversity: a hierarchical approach[J]. Conse Biology, 1990, 4(4): 355~364.
    7.汪永华,陈北关,苏志尧.物种多样性研究的进展[J].生态科学,2000,19(3):50~54
    8.KIMMINS J P.森林生态学[M].文剑平等译.北京:中国林业出版社,1992,363~370
    9.Odum E P.生态学基础[M].孙儒泳等泽.北京:人民教育出版社,1981,144~148.
    10. Cowling R M, Hilton-Taylor C. Patterns of plant diversity and endemism in South Africa. In: Huntley B J(ed .), Botanical Diversity in Southern Africa[J]. Pretoria: National Botanical Institute, 1994, 31~53
    11. Frankel O H, Brown A H D, Burdon J J. The conservation of plant biodiversity. Cambridge: Cambridge[M] University Press, 1995
    12.周红章.福建省肖叶甲科属种分布类型与动物地理格局[J].动物分类学报,1999,24(1):65~75
    13. Gleason H A. The individualistic concept of species diversity. A critique and alternative parameters[J]. Ecology, 52:577~586
    14. Menhinick E. J. A comparison of some species-individual diversity indices applied to samples of field insects[J]. Ecology, 1964, 45:859~861
    15. Margalef R. Perspective in Ecological Therory. Chicago: University of Chicago Press, 1968
    16. Simpson, E. H. Measurement of diversity[J]. Nature, 1949, 163~688
    17. Shannon,C.E., W. Weiner. The mathematical theory of communication[J]. Urbana: University of Illinois Press, 1949
    18. Pielou E. C. An introduction to mathematical ecology[J]. New York: Wiley lntersciece, 1969
    19. Hurlbert S. H. The non-concept of species diversity, A critique and alternative parameters[J]. Ecology, 1971,52:577~586
    20. Hill M. O. Reciprocal averaging, an eigenvector method of ordination[J]. Journal of Ecology, 1973, 61:237~249
    21. Hill M. O. Reciprocal averaging, an eigenvector method of ordination[J]. Journal of Ecology, 1973, 61: 237~249
    22. Whittaker R. H. Vegetation of the Siskiyou mountains, Oregin and California[J]. Ecological Mounograhps, 1960, 30:279~338
    23.王峥峰,安树青,David G.C.,等.海南岛吊罗山山地雨林物种多样性[J].生态学报,1999,19(1):61~67
    24.叶万辉.物种多样性与植物群落的维持机制[J].生物多样性,2000,8(1):17~24
    25.傅伯杰.景观多样性分析及其制图研究[J].生态学报,1995,15(4):345~350
    26.陈灵芝.东灵山区在暖温带落叶阔叶林中的重要性.陈灵芝主编.暖温带森林生态系统结构和功能研究[J].北京:科学出版社,1997,1~9
    27.马克明,傅伯杰,周华锋.北京东灵山地区森林的物种多样性和景观格局多样性研究[J].生态学报,1999,19(1):1~7
    28.林开敏,黄宝龙.杉木人工林林下植物物种β多样性的研究[J].生物多样性,2001,9(2):157~161
    29.杨小波,张桃林,吴庆书.海南琼北地区不同植被类型物种多样性与土壤肥力的关系[J].生态学报,2002,22(2):190~196
    30.黄世国,林思祖,曹光球,等.陈建宇不同生境中杉阔混交林物种多样性特征初步研究[J].生物多样性,2001,9(2):162~167
    31.毛志宏,朱教君.干扰对植物群落物种组成及多样性的影响[J].生态学报,2006,26(8):2695~2701
    32. Pascarella J B, Aide T M, Zimmerman J K. Short-term response of secondary forests to hurricane disturbance in Puerto Rico, USA[J]. Forest Ecology and Management, 2004, 199:379~393
    33.郭泉水,王德艺,冯天杰,等.雾灵山落叶阔叶林采伐迹地物种多样性和植物种群动态变化研究[J].应用生态学报,1999,10(6):645~649
    34.李振基,刘初钿,杨志伟,等.武夷山自然保护区郁闭稳定甜槠林与人为干扰甜槠林物种多样性比较[J].植物生态学报,2000,24(1):64~68
    35.王琳,张金屯,上官铁梁,等.历山山地草甸的物种多样性及其与土壤理化性质的关系[J].应用 与环境生物学报,2004,10(1):18~22
    36. Fulbright T E. Disturbance effects on species richness of herbaceous plants in a semi—arid habit[J]. Journal of Arid Environment, 2003, 58:119~1331
    37.胡玉佳,丁小球.海南岛坝王岭热带天然林植物物种多样性研究[J].生物多样性,2000,8(4):370~377
    38.胡绍庆,丁炳扬,陈征海.浙江省珍稀濒危植物物种多样性保护的关键区域[J].生物多样性,2002,10(1):15~23
    Den Hartog C, Segal S. A. A new classification of the water-plant communitie[J]s. Acta Bot Neerl, 1964, 13:367~393
    39.李伟.洪湖水生维管束植物区系研究[J].武汉植物学研究,1997,15(2):113~122
    40. Best E. P. H. The phytosociological approach to the description and classification of aquatic maerophytic vegetation. In: Symoens J. J. ed. Handbook of Vegetation Science: Vol. 15. Vegetation of Inland Waters[J]. The Hague: Dr. W. Junk, 1988, 155~182
    41. Cook C D K, Gut B J, Rix F M et al. Water Plants of the World[J]. The Hague; W. Junk, 1974
    42. Cook C D K. Aquatic Plant Book[M]. The Hague, the Netherlands: SPD Academic Publishing, 1990
    43.王德华.水生植物的定义与适应[J].生物学通报,1994,29(6):10
    44.潘文斌,黎道丰,唐涛,等.水生植物叶片的分形特征研究.水生生物学报,2004,28(1):23~27
    45.成水平,吴振斌,夏宜铮.水生植物的气体交换与输导代谢[J].水生生物学报,2003,27(4):413~417
    46.由文辉,宋永昌.淀山湖3种沉水植物的种子萌发生态[J].应用生态学报,1999,6(2):196~200
    47.李文朝,连光华.几种沉水植物营养繁殖体萌发的光需求研究[J].湖泊科学,1996,8(增刊):25~29
    48.崔心红,熊秉红,蒲云海,等.5种沉水植物无性繁殖和定居能力的比较研究[J].植物生态学报,2000,24(4):502~505
    49.李天煜,李洪敬,谢素霞.水生维管植物克隆繁殖方式的多样性[J].广西植物,2000,20(3):233~238
    50.郭友好,黄双全,陈家宽.水生被子植物的繁育系统与进化[J].水生生物学报,1998,22(1):79~85
    51.李伟,刘贵华,周进,等.淡水湿地种子库研究综述[J].生态学报,2002,22(3):395~402
    52.李宏文,梁娜,Paulk.Chien.水生植物的生态敏感度研究[J].苏州城建环保学院学报,2000,13(1):23~34
    53.李宏文.三种水生植物的生态敏感度研究[J].南京林业大学学报,2000,24(增刊):74~77
    54.李天煜.水生维管植物研究:Ⅱ、水生维管植物对干涸的适应[J].广西植物,2001,21(4):326~329
    55.赵桦,王东.汉中地区汉水流域水生维管植物种类及地理分布.西北植物学报,2002,22(6):1445~1450
    56.于丹.东北水生植物地理学的研究[J].植物研究,1994,14(2):169~178
    57.于丹.东北水生植物区系与周缘地区水生植物区系关系的分析[J].植物研究,1994,14(4):401~408
    58.于丹.东北水生植物区划[J].水生生物学报,1996,20(4):322~332
    59.陈中义,雷泽湘,周进,等.梁子湖六种沉水植物种群数量和生物量周年动态[J].水生生物学报,2000,24(6):582~588
    60.任明迅,吴振斌.植物的冗余及其生态学意义 Ⅱ.大型水生植物生长冗余研究.生态学报,2001,21(7):1072~1078
    61.唐萍,吴国荣,陆长梅,等.太湖水域几种高等水生植物的克藻效应[J].农村生态环境,2001,17(3):42~47
    62.章宗涉.水生高等植物-浮游植物关系和湖泊营养状态[J].湖泊科学,1998,10(4):83~86
    63.赵佐成.青藏高原甘孜县水生植物群落调查[J].武汉植物学研究,1996,14(1):33~40
    64.赵佐成.青藏高原四县水生植物群落调查[J].武汉植物学研究,1997,15(2):131~136
    65.赵佐成.四川省红原县水生植物群落调查[J].武汉植物学研究,1996,14(3):213~222
    66.赵佐成.四川省泸定、康定县水生植物群落调查[J].武汉植物学研究,1996,14(2):147~152
    67.吴中华,于丹,王东,等.汉江水生植物群落的结构与数量特征[J].植物生态学报,2003,27(1):118~124
    68.王辰,刘全儒,张潮.北京水生维管植物群落调查[J].北京师范大学学报(自然科学版),2004,40(3):380~385
    69.李伟,钟扬.湖北斧头湖湖滨湿地水田碎米荠群落的定量分析[J].水生生物学报,1995,19(3):250~256
    70.李伟,钟扬.湖北斧头湖湖滨湿地植物的联结与相关分析[J].武汉植物学研究,1995,13(1): 65~69
    71.陈家宽,周进.湖北斧头湖浮叶水生植物群落学研究:Ⅰ.菱群落的结构[J].水生生物学报,1995,19(1):40~48
    72.周进,陈家宽.湖北斧头湖浮叶水生植物群落学研究:Ⅱ.荇菜群落的结构[J].水生生物学报,1996,20(1):49~56
    73.潘文斌,邓红兵,唐涛,等.地统计学在水生植物群落格局研究中的应用.应用生态学报,2003,14(10):1692~1696
    74.于丹,吴刚,詹存卫,等.山地-水域交错区的生境异质性与水生植物多样性的关系研究[J].生态学报,1998,18(1):69~75
    75.彭映辉,简永兴,李仁东.鄱阳湖平原湖泊水生植物群落的多样性[J].中南林学院学报,2003,23(4):22~27
    76.徐新伟,吴中华,于丹,等.汉江中下游水生植物多样性及南水北调工程对其影响[J].生态学报,2002,22(11):1933~1938
    77.吴中华,于丹,涂芒辉,等.汉江水生植物多样性研究[J].水生生物学报,2002,26(4):348~356
    78.简永兴,王建波,何国庆,等.洞庭湖区三个湖泊水生植物多样性的比较研究[J].水生生物学报,2002,26(2):160~167
    79.梁银铨,胡小健,胡兴跃,等.东港湖的水生维管束植物及其利用建议[J].水利渔业,1998,3:13~15
    80.叶居新,杨海龙,洪瑞川.江西水生维管束植物和群落的生态地理分布及其保护[J].南昌大学学报(理科版),1997,21(1):95~102
    81.刘晓燕,胡东,陈卫.北京白河沉水植物研究[J].首都师范大学学报(自然科学版),2004,25(1):46~50
    82.马凯,蔡庆华,谢志才,筹.沉水植物分布格局对湖泊水环境N、P因子影响[J].水生生物学报,2003,27(3):232~236
    83.杨海龙.水质环境对水生维管束植物生态分布的影响[J].韩山师范学院学报(自然科学版),1998,2:107~111
    84.杨海龙,叶居新.江西省水生维管束植物群落与环境因子关系的初步研究[J].生态学杂志,2001,20(1):45~47
    85.杨海龙.影响水生维管束植物生长与分布的主要生态因子分析[J].韩山师范学院学报,2006,2: 76~78
    86.于丹.水生植物群落动态与演替的研究[J].植物生态学报,1994,18(4):372~378
    87.任久长,戴长亮,董巍,等.京密引水渠常见沉水植物的生态位和群落演替[J].北京大学学报(自然科学版),1999,35(4):523~528
    88.李鹏,安黎哲,冯虎元,等.黑河流域中游水生维管植物群落及其生态特征研究[J].西北植物学报,2000,20(3):448~453
    89.简永兴,李仁东,王建波,等.鄱阳湖滩地水生植物多样性调查及滩地植被的遥感研究[J].植物生态学报,2001,25(5):581~587
    90.杨永兴.国际湿地科学研究的主要特点、进展与展望[J].地理科学进展,2002,21(2):111~120
    91.李广玉,叶思源,张正贤,等.湿地的研究展望及其保护对策[J].海洋地质动态,2005,21(6):8~11
    92.付为国,李萍萍,吴沿友,等.北固山湿地植物群落特征及其物种多样性研究[J].湿地科学,2006,4(1):42~47
    93.詹存卫,于丹,吴中华,等.梁子湖水-陆交错区水生植物群落生态学研究[J].植物生态学报,2001,25(5):573~580
    94.胡耀辉.伊乐藻等几种沉水植物的生物量和生产量测定以及竞争态势试验[J].湖泊科学,1996,8(增刊):73~78
    95.李伟,黄德世.水生植物生产量测定的种群统计学方法[J].武汉植物学研究,1999,17(3):249~253
    96.王树功,黎夏,周永章.湿地植被生物量测算方法研究进展[J].地理与地理信息科学,2004,20(5):104~109
    97.李伟,程玉.洪湖主要沉水植物群落的定量分析Ⅰ.微齿眼子菜群落[J].水生生物学报,1999,23(1):53~58
    98.李伟,程玉.洪湖主要沉水植物群落的定量分析Ⅱ.微齿眼子菜+穗花狐尾藻+轮藻群落[J].水生生物学报,1999,23(3):240~244
    99.李海洋,陈宇,郑玉林.湖泊人工控制水生植物生物量试验[J].淡水渔业,2000,30(3):32~35
    100.崔心红,钟扬,李伟,等.特大洪水对鄱阳湖水生植物三个优势种的影响[J].水生生物学报,2000,24(4):322~325
    101.杨清心.东太湖水生植被的生态功能及调节机制[J].湖泊科学,1998,10(1):67~72
    102.李建国,李贵宝,刘芳,等.白洋淀芦苇资源及其生态功能与利用[J].南水北调与水利科技,2004,2(5):37~40
    103.苏胜齐,姚维志.沉水植物与环境关系评述[J].农业环境保护,2002,21(6):570~573
    104.李文朝,陈开宁,吴庆龙,等.东太湖水生植物生物质腐烂分解实验[J].湖泊科学,2001,13(4):331~336
    105.陈立侨,刘影,杨再福,等.太湖生态系统的演变与可持续发展[J].华东师范大学学报(自然科学版),2003,4:99~106
    106.方云亿,丁炳扬,张庆勉.植物资源利用与开发(二)浙江省水生维管束植物资源的调查研究[J].植物学通报,1994.11:53~57
    107.钟运芳,王慈生.熊天寿.重庆市江河鱼类饵料生物—水生维管束植物[J].重庆师范学院学报(自然科学版),1994,11(2):48~52
    108.王秋艳.哲里木盟水生植物资源及其合理开发利用[J] .内蒙古草业,1996,1:24~26
    109.尚士友,杜健民,张志毅,等.沉水植物资源开发与湖泊保护的研究[J].农业工程学报,1997,3:11~15
    110.蒲正学.西藏山南水生和湿生植物资源及利用[J].草业科学,1998,15(6):5~6
    111.于丹,种云霄,涂芒辉.中国水生高等植物受危种的研究[J].生物多样性,1998,6(1):13~21
    112.周凤霞.水生维管束植物对污水的净化效应及其应用前景[J].污染防治技术,1998,11(3):160~161
    113.田淑嫒,王景峰,朗铁柱,等.水生维管束植物处理污水及其综合利用[J].城市环境与城市生态,2000,13(6):54~56
    114.陈锡涛,叶春芳,杉辛野,等.水生维管束植物自屏对水质净化资源化效应的研究[J].环境科学与技术,1994,65(2):1~4
    115.陈毓华,汪俊三,梁明易,等.华南地区11种高等水生维管植物净化城镇污水效益评价[J].农村生态环境(学报),1995,11(1):26~29
    116.时双喜.高等水生植物体内酶活性与污水净化[J].环境保护科学,1997,23(1):10~12
    117.种云霄,胡洪营,钱易.大型水生植物在水污染治理中的应用研究进展[J].环境污染治理技术与设备,2003,4(2):36~40
    118.成小英,王国祥,濮培民,等.凤眼莲腐烂分解对湖泊水质的影响[J].中国环境科学,2004,24(3):303~306
    119.成水平,夏宜铮.香蒲、灯心草人工湿地的研究—Ⅱ.净化污水的空间[J].湖泊科学,1998,10(1):62~66
    120.童昌华,杨肖娥,濮培民,等.低温季节水生植物对污染水体的净化效果研究[J].水土保持学报,2003,17(2):159~162
    121.辛晓云,马秀东,氧化塘水生植物净化污水的研究[J].山西大学学报(自然科学版),2003,26(1):85~87
    122.许航,杨一清.水生植物塘运行规律及设计参数的研究[J].城市环境与城市生态,2002,15(3):19~21
    123.黄祖新.福州西湖富营养化水体的治理初探[J].福建地理,2002,17(4):27~30
    124.贺锋,吴振斌.水生植物在污水处理和水质改善中的应用.植物学通报,2003,20(6):641~647
    125.朱斌,陈飞星.利用水生植物净化富营养化水体的研究进展[M].上海环境科学,2002,21(9):564~582
    126.Gersberg R. M., Elkins B.V., Lyon S.R., etal. Role of aquatic plants in waste water treatment by artificial wetlands[J]. Wat. Res., 1986, 20(3): 363~368
    127.Tanner C. C., Clayton J. S., Upsdeil M. P. Effect of loading rote and planting on treatment of dairy farm waste aters in constructed wetlands-Ⅱ. Removal of nitrogen and phosphorus[J]. Wat. Res., 1995, 29(1): 27~34
    128.Vermaat J. E., Hanif M. K. Performance of common duckweed species(Lemnaceae) and the waterfem A zolla filiculoldes o ndifferent types of waste water[J]. Wat. Res., 1998, 32(9): 2569~2576
    129.Breen, P. F. A mass balance method for assessing the potential of artificial wetlands for waste water treatment[J]. Wat. Res., 1990, 24(6): 689~697.
    130.李文朝.五里湖底质条件与水生高等植物的适应性研究[J].湖泊科学,1996,8(增刊):30~36
    131.李文朝.五里湖富营养化过程中水生生物及生态环境的演变.湖泊科学,1996,8(增刊):37~45
    132.葛滢,常杰,王晓月,等.两种程度富营养化水中不同植物生理生态特性与净化能力的关系[J].生态学报,2000,20(6):1050~1055
    133.成小英,王国祥,濮培民,等.冬季富营养化湖泊中水生植物的恢复及净化作[J].湖泊科学,2002,14(2):139~144
    134.唐尚坚.水生植物吸收水中重金属的研究[J].渝州大学学报(自然科学版),1993,28(4):7~12
    135.于丹,于洪贤,宋连发,等.红旗泡水生植物群落结构与功能的研究[J].水生生物学报,1994, 18(1):50~58
    136.简敏菲,弓晓峰,游海,等.鄱阳湖水土环境及其水生维管束植物重金属污染[J].长江流域资源与环境,2004,13(6):589~593
    137.任久长,周红,孙亦彤.滇池光照强度的垂直分布与沉水植物的光补偿深度[J].北京大学学报(自然科学版),1997,33(2):211~214
    138.邱东茹,吴振斌.武汉东湖水生植物生态学研究——沉水植被重建的可行性研究[J].长江流域资源与环境,1998,7(1):43~48
    139.吴振斌,邱东茹,贺锋,等.水生植物对富营养水体水质净化作用研究[J].武汉植物学研究,2001,19(4):299~303
    140.赵晟,吴学灿,夏峰.滇池水生植物研究概述[J].云南环境科学,1999,18(3):4~8
    141.刘丽萍.滇池富营养化发展趋势分析及其控制对策[J].云南环境科学,2001,20(增刊):24~27
    142.李伟,刘贵华,熊秉红,等.1998年特大洪水后鄱阳湖自然保护区主要湖泊水生植被的恢复[J].武汉植物学研究,2004,22(4):301~306
    143.柳骅,夏宜平.水生植物造景[J].规划与设计,2003,3:59~62
    144.徐锐.利用野生水生植物资源美化水景园[J].中山大学学报论丛,2002,22(3):126~128
    145.杨俊义,郭建强,彭东.九寨沟风景名胜区水循环模式[J].四川地质学报,2000,20(2):155~157
    146.郭建强,彭东,曹俊,等.四川九寨沟地貌与第四纪地质[J].四川地质学报,2000,20(3):183~192
    147.杨远兵,刘玉成,方任吉.九寨沟自然保护区森林植物的数量分类[J].生态学杂志,1998,17(3):7~10
    148.辜寄蓉,范晓.九寨沟旅游景观资源保护和规划中GIS的应用[J].地球信息科学,2002,2:100~103
    149.张捷,聂献忠,李升峰.九寨沟自然保护区喀斯特研究的旅游业意义[J].中国岩溶,1997,16(4):386~392
    150.王荷生.植物区系地理[M].北京:科学出版社,1992,1~3
    151.王伟,陆健健.上海地区湿地水生维管束植物及其区系特征[J].湿地科学,2004,2(3):171~175
    152.吴征镒,周浙昆,李德铢,等.世界种子植物科的分布区类型系统[J].云南植物研究,2003,25(3):245~257
    153.吴征镒.中国种子植物屆的分布区类型[J].云南植物研究,1991,增刊Ⅳ:1~139
    154.李锡文.中国种子植物区系统计分析[J].云南植物研究,1996,18(4):363~384
    155.中国科学院《中国植物志》编辑委员会.《中国植物志——第一卷至八十卷》[m].北京:科学出版社
    156.中国植被编辑委员会编著.中国植被[M].北京:科学出版社,1980
    157.李锡文,李捷.横断山脉地区种子植物区系的初步研究[J].云南植物研究,1993,15(3):217~231
    158.孙航,周浙昆.喜马拉雅山东部雅鲁藏布大峡谷地区植物区系的特点及来源[J].云南植物研究,1996,18(2):185~204
    159.丁炳扬,陈根荣,程秋波,等.浙江凤阳山自然保护区种子植物区系的统计分析[J].云南植物研究,2000,22(1):27~37
    160.金孝锋,丁炳扬,郑朝宗,等.浙江百山祖自然保护区种子植物区系分析[J].云南植物研究,2004,26(6):605~618
    161.张金屯.数量生态学[M].北京:科学出版社,2004,120~242
    162.吴春林.广西热带石灰岩季节雨林分类与排序[J].植物生态学与地植物学学报,1991,15(1):17~26
    163.张新时.西藏阿里植物群落的间接梯度分析、数量分类与环境解释[J].植物生态学与地植物学学报,1991,15(2):101~113
    164.高琼,郑慧莹.模糊ISODATA在草地植物群落分类上的应用[J].植物生态学与地植物学学报,1991,15(4):312~317
    165.王仁忠.采用系统聚类分析法对羊草草地放牧演替阶段的划分[J].生态学报,1991,11(4):367~371
    166.陈灵芝.暖温带山地针叶林排序和数量分类[J].植物生态学与地植物学学报,1992,16(4):301~310
    167.黄净,韩进轩,阳含熙.长白山北坡阔叶红松林的DCA排序分析[J].植物生态学与地植物学学报,1993,17(3):193~206
    168.江洪.川西北甘南云冷杉林的数量分类[J].植物生态学报,1994,18(3):271~282
    169.潘代远.孔令韶,金启宏.新疆呼图壁盐化草甸群落的DCA、CCA及DCCA分析[J].植物生态学报,1995,19(2):115~127
    170,何立新.李立军,许鹏.新疆呼图壁种牛场天然草地类型数量分析研究[J].植物生态学报,1995,19(2):175~182
    171.米湘成,张金屯,张峰,上官铁梁.山西蟒河自然保护区栓皮栎林的聚类和排序[J].植物研究, 1995,15(3):397~402
    172.陈仲新,张新时.毛乌素沙化草地景观生态学分类与排序的研究[J].植物生态学报,1996,20(5):423~437
    173.刘文治,张全发,李天煜,等.丹江口库区湿地植被的数量分类和排序[J].武汉植物学研究,2006,24(3):220~224
    174.吴东丽,上官铁梁,张金屯,等.滹沱河流域湿地植被的数量分类和排序[J].西北植物学报,2005,25(4):648~654
    175.McCune, B., Mefford M. J. PC-ORD. Multivariate analysis of ecological data, version 4. MjM Software Design,Gleneden Beach, Oregon, USA. 1995
    176.宋永昌著.植被生态学[M].上海:华东师范大学出版社,2001,105,417~420
    177.Magurran. Ecological diversity and ItS Measurement[M]. New Jersey: Princerton University Press, 1988.
    178.May R M. How many species are there on earth?[J]Scientific American, 1988, 10: 18~24
    179.马克平.生物群落多样性的基本原理和方法.生物多样性研究的原理和方法(钱迎倩、马克平主编)[M].北京:中国科学技术出版社,1994,141~165
    180.贺金生,马克平.物种多样性.见:蒋志刚,马克平,韩兴国(主编).保护生物学(M).浙江:浙江科学技术出版社,1997,20~33
    181.朱锦懋,姜志林.闽北森林群落物种多样性的可塑性面积单元问题[J].生态学报,1999,19(3):304~311
    182.沈泽吴,方精云,刘增力,等.贡嘎山东坡植被垂直带谱的物种多样性格局分析[J].植物生态学报,2001,25(6):721~732
    183.罗民波,段昌群,沈新强,等.滇池水环境退化与区域内物种多样性的丧失[J].海洋渔业,2006,28(1):71~78
    184.马克明,叶万辉,桑卫国等.北京东灵山地区植物群落多样性研究,Ⅹ.不同尺度下群落样带的β多样性及分形分析[J].生态学报,1997,17(6):626~634
    185.林开敏,黄宝龙.杉木人工林林下植物物种β多样性的研究[J].生物多样性,2001,9(2):157~161.
    186.马克平,刘灿然,刘玉明.生物群落多样性的测度方法Ⅱ β-多样性的测度方法[J].生物多样性,1995,3(1):38~43
    187.赵淑清,方精云,宗占江,等.长白山北坡植物群落组成、结构及物种多样性的垂直分布[J].生 物多样性,2004,12(1):164~173
    188.刘增力,郑成洋,方精云.河北小五台山北坡植物物种多样性的垂直梯度变化[J].生物多样性,2004,12(1):137~145
    189.郭正刚,刘慧霞,王根绪,等.人类工程对青藏高原北部草地群落β-多样性的影响[J].生态学报,2004,24(2):385~388
    190.盂庆繁,胡隐月,王庆贵,等.黑龙江东部森林群落β-多样性的研究[J].应用生态学报,1999,1O(2):140~142
    191.张建彪,闫美芳,上官铁梁.五台山亚高山草甸的β-多样性研究[J].西北植物学报,2006,26(2):389~392
    192.郝占庆,于德永,吴钢,等.长白山北坡植物群落β多样性分析[J].生态学报,2001,21(12):2019~2022
    193.白永飞,邢雪荣,许志信,等.内蒙古高原针茅、草原群落β多样性研究[J].应用生态学报,2000,11(3):408~412
    194.Wilson M. V., Schmida A. Measuring beta diversity with presence-absence data[J]. Journal of Ecology, 1984, 72:1055~1064
    195.Bray J. R., Curtis J. D. An ordination of the upland forest communities of southern Wisconsin[J]. Ecology Monograph. 1957, 27:325~349
    196.高贤明,马克平,黄建辉,等.北京东灵山地区植物群落多样性的研究,Ⅺ.山地草甸β多样性[J].生态学报,1998,18(1):24~32
    197.陈伟民,黄详飞,周万平.湖泊生态系统观测方法[M].北京:中国环境科学出版社,2005,1~154
    198.李青山,李怡庭.水环境监测实用手册[M].北京:中国水利水电出版社,2003,1~34
    199.鲁光四,周怀东,李怡庭.水质分析方法[M].北京:学术书刊出版社,1989,1~204
    200.时红,孙新忠,范建华,等.水质分析方法与技术[M].北京:地震出版社,2001,1-24
    201.杨万勤,钟章成,陶建平,等.缙云山森林土壤酶活性与植物多样性的关系.林业科学,2001,37(4):124~128
    202.陈光升,钟章成.重庆缙云山常绿阔叶林群落物种多样性与土壤因子的关系[J].应用与环境生物学报,2004,10(1):12~17
    203.王顺忠,陈桂琛,柏玉平,等.青海湖鸟岛地区植物群落物种多样性与土壤环境因子的关系[J].应用生态学报,2005,16(1):186~188
    204.刘忠宽,智建飞,李英杰,等.休牧后土壤养分空间异质性和植物群落α多样性[J].河北农业科学,2004,8(4):1~8
    205.中国土壤学会编土壤农业化学分析方法[M].北京:中国农业科技出版社,1999
    206.傅岳瑛,刘琴.我国西部生态旅游的现状和开发建议[J].地理学与国土研究,2002,18,(2):103~106
    207.陈孝青.自然保护区生态旅游开发与保护浅析[J].世界林业研究,2002,14,(2):71~75
    208.环境污染分析方法科研协作组.环境污染分析方法[M].北京:解放出版社,1987
    209.樊萍,孙健,李坤,等.环境监测数据预审中部分指标的相关性分析[J].环境研究与监测,2006,19(4):17~19
    210.马艳琼,陈春艳,彭进琼,螳螂川水质评价及污染防治对策[J].环境科学导刊,2007,26(1):90~92
    211.Moorhead, Reddy. Oxygen transport through selected aquatic macrophytes[J]. J Environ Qual, 1998, 17:138~142
    212.彭青林,敖洁,曾经.水生植物塘中的溶解氧变化及对污水处理研究[J].长沙电力学院学报(自然科学版),2004,19(1):81~83
    213.鄢和琳.生态旅游区环境容量确定的基本原理及其应用探讨[J].生态学杂志,2002,21,(3):73~75
    214.郭建强,杨俊义.九寨沟旅游地质资源特征及可持续发展[J].中国区域地质,2001,20,(3):322~327
    215.肖笃宁,陈文波.论生态安全的基本概念和研究内容[J].应用生态学报,2002,13(3):354~358

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700